Commodity price modeling in EDF. Parameter estimation and calibration

Olivier FÉRON,1,2

¹ Electricité de France (EDF)- Recherche & développements 1 Avenue du Général de Gaulle, CLAMART, FRANCE

² Laboratoire de Finance des marchés de l'énergie Université Paris Dauphine

Agenda

Introduction

- Objectives of an electrician
- Constraints in commodity price modeling

2-factor model

- Description
- Calibration methods
- Impact on valuation

Strutural model

- Description
- Study on forward prices reconstruction
- Calibration issues

Conclusion and perspectives

Commodity modeling in EDF: objectives

- Short term (1 day \rightarrow 2 weeks) prediction
- Market comprehension
- Mid term risk management
 - Gross energy margin prediction
 - Risk measurement
 - Hedging
- Pricing
 - Valuation of Production assets
 - Valuation of flexibilities in supply contracts
- Investment decision

Production units

• Approximation : Strip of European spread options of payoff CF(t)

$$extsf{CF}(t) = \left(S^{ extsf{power}}_t - hS^{ extsf{fuel}}_t - h'S^{ extsf{CO2}}_t - \mathcal{K}
ight)^+ \qquad orall t \in \left[0 \ ; \ T
ight]$$

- More realistic: dynamic constraints
 - Startup costs, limited number of startups
 - Scheduled outage periods

Gas storage, Hydro dam

- Swing option : lets the holder buy a flexible quantity $Q \in [Q_{min}; Q_{max}]$
- Additional constraints: minimal and maximal quantity per day, per month...

Supply contracts

- Indexed price: moving average opions
- Flexibility in quantity: swing options

Spot market

- Daily spot for fuels
- (semi)Hourly spot price for power

Figure : French power spot prices on January 12th 2012

- Power specificity: delivery period
- Different maturities and different delivery periods

- Power specificity: delivery period
- Different maturities and different delivery periods

- Power specificity: delivery period
- Different maturities and different delivery periods

- Power specificity: delivery period
- Different maturities and different delivery periods

Contraints of modeling

Portfoltio exposition

- Power and fuels spot prices (or "unitary forward prices")
- Power and fuels forward products
- Link between power and fuels

• Available hedging products

• forward products (with delivery periods for power)

Incomplete market: No derivatives (market information) on

- "unitary" (instantaneous) forward prices
- any link (spread) between fuels and power

Consequences

- We need to model spot prices and forward products
- The link is obtained from the forward curve

Calibration issues

- 2 different sets of observed data (spot prices and forward products)
- Complex relationship between parameters and observed forward products

Electricity price modeling: two approaches

Forward curve of unitary future price as a starting point

 $dF_t(T) = \mu(t, T, F_t(T))dt + \sigma(t, T, F_t(T))dW_t$

- Spot price deduced as a limit $S_t = \lim_{T \to t} F_t(T)$
- Forward products deduced by no-arbitrage principles

$$F_t(T,\theta) = \int_0^{\theta} w(u)F_t(T+u)du$$

Spot price as a starting point

$$dS_t = \mu(t, S_t, X_t)dt + \sigma(t, S_t, X_t)dW_t$$

- Some other stochastic processes X_t (fuel prices, demand...) may turn up.
- Forward prices deduced by no-arbitrage principles

$$F_t(T) = \mathbb{E}_t^{\mathbb{Q}} \left[S_T \right]$$

Two different works

Parameter estimation of the model currently used in EDF for risk management

- 2-factor model description
- Estimation / Calibration on forward products and spot prices
- Impact of calibration method on European option valuation

Structural model for commodity prices

- Model description
- Study on the forward products reconstruction
- Integration of parameters uncertainty in the forward products recontruction
- Calibration

Interests: performance of a model and its calibration

- in representing market information
- in introducing information

Two different works

Parameter estimation of the model currently used in EDF for risk management

- 2-factor model description
- Estimation / Calibration on forward products and spot prices
- Impact of calibration method on European option valuation
- Structural model for commodity prices
 - Model description
 - Study on the forward products reconstruction
 - Integration of parameters uncertainty in the forward products recontruction
 - Calibration

Two-factor model description

Formulation

$$\frac{dF_t(T)}{F_t(T)} = \sigma_s(t) \mathbf{e}^{-\alpha(T-t)} dW_t^{(s)} + \sigma_l(t) dW_t^{(l)}$$

with $\alpha \in \mathbb{R}^+_*$ and $\sigma_s(t)$ and $\sigma_l(t)$ are positive integrable functions.

- "Discretized" forward product formulation $F_t(T, \theta) = \frac{1}{\theta} \sum_{i=0}^{\theta-1} F_t(T+i)$
- Forward product process

$$dF_t(T,\theta) = \frac{1}{\theta} \sum_{i=0}^{\theta-1} \left[\sigma_s(t) e^{-\alpha(T+i-t)} dW_t^{(s)} + \sigma_l(t) dW_t^{(l)} \right] F_t(T+i)$$

The forward product process is not Markovian [Benth & Koekebakker (2008)]

• shaping factors
$$\lambda_i^{t,T,\theta} = \frac{F_t(T+i)}{F_t(T,\theta)}$$
 and $\Psi(\alpha, t, T, \theta) = \sum_{i=0}^{\theta} \lambda_i^{t,T,\theta} e^{-\alpha i}$

$$\frac{dF_t(T,\theta)}{F_t(T,\theta)} = \sigma_s(t)e^{-\alpha(T-t)}\Psi(\alpha, t, T, \theta)dW_t^{(s)} + \sigma_l(t)dW_t^{(l)}$$

Approximation on shaping factors, Markovian process

- Strong approximation for the calibration
 - Constant shaping factors $\lambda_i^{t,T,\theta} \equiv 1$
 - Constant volatility functions $\sigma_s(t) \equiv \sigma_s$ and $\sigma_l(t) \equiv \sigma_l$ [Kiesel et al. (2007)]
- Consequences: Ψ(α, t, T, θ) ≡ Ψ(α, θ) is determistic and the dynamics on forward products becomes Markovian
- Two different methods of parameters estimation
 - Estimation on *Marginal volatilities* (average of log-returns variance over the cotation period)
 - Express the theoretical marginal volatility of a forward product as a function of model parameters
 - Fit the theoretical marginal volatility to the empirical (or implied) marginal volatility computed from observed cotations
 - Estimation from spot prices
 - Long term volatility estimated from long term forward products
 - Short term parameters estimated from spot prices

Estimation on marginal volatilities

- N observations $(F_n(T, \theta))_{n=1,...,N}$ at dates $(t_n)_{n=1,...,N}$, with $t_{n+1} t_n = \delta t$
- Model on geometric returns

$$R_n(T,\theta) = \ln\left(\frac{F_{n+1}(T,\theta)}{F_n(T,\theta)}\right) = \sigma_s e^{-\alpha(T-t_n)} \Psi(\alpha,\theta) \sqrt{\nu(\delta t)} \varepsilon_n^s + \sigma_l \sqrt{\delta t} \varepsilon_n^l$$

with $\nu(\delta t) = \frac{e^{2\alpha\delta t} - 1}{2\alpha}$

Marginal volatility: average of instantaneous return variance

$$MV^{2}(T, \theta, \alpha, \sigma_{s}, \sigma_{l}) = \frac{1}{N} \sum_{n=1}^{N} Var\left[R_{n}(T, \theta)\right]$$

- Historical (or implied) marginal volatility MV²(T, θ) from observed forward returns (or options)
- Estimation: minimization of the squared difference

$$(\hat{\alpha}, \hat{\sigma_s}, \hat{\sigma_l}) = \arg\min_{(\alpha, \sigma_s, \sigma_l)} \sum_{(T, \theta)} \left(\hat{MV}^2(T, \theta) - MV^2(T, \theta, \alpha, \sigma_s, \sigma_l) \right)^2$$

Two-factor model: Estimation on spot prices

$$\frac{dF_t(T)}{F_t(T)} = \sigma_s e^{-\alpha(T-t)} dW_t^{(s)} + \sigma_l dW_t^{(l)}$$

Spot price formulation:

$$\ln S_{t} = \ln F_{0}(t) - \frac{1}{2} \left[\sigma_{s}^{2} \frac{1 - e^{-2\alpha t}}{2\alpha} + \sigma_{l}^{2} t \right] + \underbrace{\int_{0}^{t} \sigma_{s} e^{-\alpha (t-u)} dW_{u}^{(s)}}_{X_{t}^{(s)}} + \underbrace{\int_{0}^{t} \sigma_{l} dW_{u}^{(l)}}_{X_{t}^{(l)}}$$

- Deseasonalization step
- Long term volatility σ_l estimated from long term forward products
- Short term parameters estimated from a state-space model
 - State equation: two hidden factors $X_t^{(s)}$ and $X_t^{(l)}$
 - σ_s and α estimated by Likelihood maximization on deseasonalized spot prices, by using a Kalman filter

Estimation results

- Date of estimation: 12-Mar-2013
- 1 year of historical data
- Two different estimation methods
 - Estimation on (empirical) marginal volatilities
 - Estimation on long term forward products (for the long term factor) and spot prices (for the short term factor)
- Study on resulting parameter values: strip of European options on monthly forward products (Apr-2013 → Mar-2015)

$$(F(t,T,\theta)-K)^+, \qquad K=F(t_0,T,\theta)$$

- Comparison in European option pricing
- "Benchmark" value defined from a multi-factor model fitted on empirical volatilities $\hat{MV}^2(T, \theta)$

Results: estimation on UK Power

Figure : Calibration results on UK power

parameter	Estimation on MV	Estimation on spot
σ_{s}	19.1%	84.5%
α	1.37	162.65
σ_l	9.8%	9.8%

Results: European options pricing (UK Power)

Figure : European option princing on UK Power

	Empirical volatility	Estimation on MV	Estimation on spot
MtM (€)	64 252	60 787	52 295
Relative difference	-	-5%	-19%

Conclusion

2 factor model objectives

- Represent spot prices and forward products
- Can be calibrated on historical or implied volatility, and on spot prices
- Can fit perfectly the forward products at a given date

• Caibration issues: need approximations

- Constant and equally weighted shaping factors
- Constant volatility function $\sigma_s(t)$ and $\sigma_l(t)$
- No statistical results
- Calibration methods have a high impact on indicators
 - A "benchmark" value can give e reference for forward derivatives
 - More difficult for options on spot prices

Some other issues

- No specific event (spikes, negative prices...)
- Weak relationship between commodities

Two different works

Parameter estimation of the model currently used in EDF for risk management

- 2-factor model description
- Estimation / Calibration on forward products and spot prices
- Impact of calibration method on European option valuation

Structural model for commodity prices

- Model description
- Study on the forward products reconstruction
- Integration of parameters uncertainty in the forward products recontruction
- Calibration

Power spot price modeling

$$S_t = g\left(C_t^{max} - D_t\right) \sum_{i=1}^n h_i S_t^i \mathbb{1}_{D_t \in I_t^i}$$

with

- D_t demand at t,
- C_t^i production capacity of fuel *i*,
- C_t^{max} total capacity,
- S_t^i spot price of fuel *i*,
- *h_i* heat rate of production with fuel *i*.
- I_t^i capacity interval where fuel *i* is marginal.

•
$$g(x) = \min\left(M, \frac{\gamma}{x^{\nu}}\right) \mathbb{1}_{x>0} + M\mathbb{1}_{x<0}$$

Results on spot prices

Spot price (in €/MWh)

Figure : Spot price reconstruction from the structural model

Consequence on forward prices

No-arbitrage condition

$$F_t(T) = \mathbb{E}^{\mathbb{Q}}[S_T|\mathcal{F}_t]$$

Induced relation between forward prices

$$F_t(T) = \sum_{i=1}^n \underbrace{\mathbb{E}^* \left[g \left(C_T^{max} - D_T \right) \mathbf{1}_{D_T \in I_T^i} | \mathcal{F}_t \right]}_{G_T^i(t, C_t, D_t)} h_i F_t^i(T)$$

• Final reconstruction (assuming $F_t^i(T') = F_t^i(T, \theta) \ \forall T' \in [T; T + \theta]$:

$$F_{t}(T,\theta) = \sum_{i=1}^{n} \underbrace{\left(\frac{1}{\theta} \sum_{T'=T}^{T+\theta} G_{T'}^{i}(t, C_{t}, D_{t})\right)}_{\text{stochastic weights}} h_{i}F_{t}^{i}(T,\theta)$$

Modeling demand and capacities

Deterministic part + stochastic part (Ornstein-Uhlenbeck)

$$D_t = f_D(t) + Z_D(t)$$

 $C_t^i = f_i(t) + Z_i(t)$

Deterministic part:

$$\begin{aligned} f_D(t) &= d_1^{(D)} + d_2^{(D)} \cos\left(2\pi(t-d_3^{(D)})\right) + \mathsf{week}_D(t) \\ f_i(t) &= d_1^{(i)} + d_2^{(i)} \cos\left(2\pi(t-d_3^{(i)})\right) + \mathsf{week}_i(t) \end{aligned}$$

Stochastic part: Ornstein-Uhlenbeck process

$$dZ_D(t) = -\alpha_D Z_D(t) dt + \beta_D dW_t^D$$

$$dZ_i(t) = -\alpha_i Z_i(t) dt + \beta_i dW_t^i$$

Study on forward reconstruction

$$F(t, T, \theta) = \sum_{i=1}^{n} \left(\frac{1}{\theta} \sum_{T'=T}^{T+\theta} G_{T'}^{i}(t, C_{t}, D_{t}) \right) h_{i} F^{i}(t, T, \theta)$$

$$G_{T'}^{i}(t, C_{t}, D_{t}) = \mathbb{E}^{*} \left[g \left(C_{T}^{max} - D_{T} \right) \mathbf{1}_{D_{T} \in l_{T}^{i}} |\mathcal{F}_{t} \right]$$

Model specifications

- 3 types of capacities: nuclear, (gas/coal), oil
- Carbon taken into account
- Estimation of Demand and Capacities model parameters d₁^(*), d₂^(*), d₃^(*) and week_{*}(t) on two years of historical data from RTE¹
- Observation of commodity forward products from Platts²

¹www.rte-france.fr ²www.platts.fr

Workshop on Electricity, Energy and Commodities Risk Management - Fields Institute, Toronto, 2013

Electricity forward reconstruction: Month-ahead

Figure : 1-Month-ahead reconstruction: observed prices (blue) and reconstructed forward prices from complete structural model with (red) and without (pink) the scarcity function

Electricity forward reconstruction: Quarter-ahead

Figure : 1-Quarter-ahead reconstruction: observed prices (blue) and reconstructed forward prices from complete structural model with (red) and without (pink) the scarcity function

Electricity forward reconstruction: Year-ahead

Figure : 1-Year-ahead reconstruction: observed prices (blue) and reconstructed forward prices from complete structural model with (red) and without (pink) the scarcity function

Forward reconstruction with model uncertainty

$$f_D(t) = d_1^{(D)} + d_2^{(D)} \cos\left(2\pi(t - d_3^{(D)})\right) + \mathsf{week}_D(t)$$

$$f_i(t) = d_1^{(i)} + d_2^{(i)} \cos\left(2\pi(t - d_3^{(i)})\right) + \mathsf{week}_i(t)$$

$$dZ_D(t) = -\alpha_D Z_D(t) dt + \beta_D dW_t^D$$
$$dZ_i(t) = -\alpha_i Z_i(t) dt + \beta_i dW_t^i$$

- Parameters of demand and capacities models are estimated on historical data
- Confidence intervals can also be estimated
- A confidence interval can be dedeuced on forward prices
 - from 20 model parameters
 - with 400 Monte Carlo simulation on each parameter's confidence interval

Forward reconstruction with model uncertainty

Calibration

Calibration problem

- At a given date *t*, we observe several forward products $(F_t(T, \theta))(T, \theta)$
- Objective of calibration: determine model parameters to exactly retrieve all the forward products
- Impossible for the current model
- Introduction of a "risk premium" $\varepsilon(T)$ in the demand process

$$f_D(t) = \varepsilon(T) + d_1^{(D)} + d_2^{(D)} \cos\left(2\pi(t - d_3^{(D)})\right) + \mathbf{week}_D(t)$$

$$f_i(t) = d_1^{(i)} + d_2^{(i)} \cos\left(2\pi(t - d_3^{(i)})\right) + \mathbf{week}_i(t)$$

Calibration results

Figure : Calibrated $\varepsilon(T)$ on observed forward prices: 1MAH \rightarrow 6MAH, 1QAH \rightarrow 3QAH and 1YAH observed on 28-Jun-2011.

Calibration results

Figure : Evolution of $\varepsilon(T)$ over time

Conclusion

• Satisfactory reconstruction of forward products

- Enough random factors to produce non trivial long term prices
- Long term products seem to be strongly linked with fundamentals
- A risk aversion is observable

• The calibration on observed forward products is possible

- The "implied" function $\varepsilon(T)$ is reasonable
- Short-term forward products present more risk aversion

Perspectives

- 2-factor model
 - Keep volatility functions $\sigma_s(t)$ and $\sigma_l(t)$
 - Semi-parametric estimation
 - Some first statistical results
 - improve the link between commodities

Structural model

- Deepen the parameter uncertainty propagation
- Calibration on options

Bibliography

X. Warin, "Gas storage hedging ". FiME lab, report, rr-fime-11-04, Université Paris Dauphine, 2011,

Results: Earnings at Risk (UK Power)

Figure : Earnig-at-Risk estimation

Results: Estimation on Fench Power

Figure : Estimation results on French power: volatility reconstruction

parameter	Estimation on MV	Estimation on spot
σ_{s}	45%	302%
α	8.73	88.15
σ_l	11%	11%

Results: European options pricing (French Power)

Figure : European option pricing on French Power

	Empirical volatility	Estimation on MV	Estimation on spot
MtM (€)	41 068	40 326	27 649
Relative difference	-	-2%	-33%

Results: Earnings at Risk (French Power)

Figure : Earning-at-Risk estimation

Recent work on parameters estimation

• Model formulation: keep $\sigma_s(t)$ and $\sigma_l(t)$ as function.

$$\frac{dF_t(T)}{F_t(T)} = \sigma_s(t) e^{-\alpha(T-t)} dW_t^{(s)} + \sigma_l(t) dW_t^{(l)}$$

- Approximation $F_t(T, \theta) = F_t(T) \Rightarrow$ statistical (asymptotic) results on estimates
- Semi-parametric estimation
 - $\sigma_s(t)$ and $\sigma_l(t)$ are not parametrized
 - Focus on estimation of α (considering σ_s(t) and σ_l(t) as nuisance parameters)
 - Non parametric estimation of functions $\sigma_s(t)$ and $\sigma_l(t)$

Identification and estimation with two maturities

Observations (*F_{tn}*(*T*₁))_{tn∈[0; *T*₁]} and (*F_{tn}*(*T*₂))_{tn∈[0; *T*₂]} of two forward products of respective delivery *T*₁ and *T*₂.
 We will suppose *T*₁ < *T*₂ and *t_N* = *T*₁ (i.e. the number of jointly observale forward products is *N*).

• Let us note
$$\Delta F_i^n(T) = \ln \left(\frac{F_{t_i}(T)}{F_{t_{i-1}}(T)} \right)$$

• Estimation of α

• Define the function
$$g: (-1, 1) \ni x \mapsto -\frac{1}{T_2 - T_1} \ln\left(\frac{1+x}{1-x}\right) \in \mathbf{R}$$
.
• Let $\hat{q} = \frac{\sum_{i=1}^{n} \left(\Delta F_i^n(T_2) - \Delta F_i^n(T_1)\right)^2}{\sum_{i=1}^{n} \left(\left(\Delta F_i^n(T_2)\right)^2 - \left(\Delta F_i^n(T_1)\right)^2\right)}$.
• Estimator of α $\hat{\alpha} = g\left(\hat{q}\mathbf{1}_{\hat{q}\in(-1,1)}\right)$

Identification and estimation with two maturities

Theorem

Suppose

•
$$\sigma_s$$
 and σ_l are continuous on $[0; T_1]$,
• $\exists (\kappa, K) \in (\mathbb{R}^+_*)^2, \forall i = 1, ..., n, \kappa \frac{T_1}{n} \leq |t_i - t_{i-1}| \leq K \frac{T_1}{n}$
Then $\sqrt{n}(\hat{\alpha} - \alpha) \xrightarrow[n \to +\infty]{} \mathcal{N}(0, V_{\infty}(\alpha))$ with

$$V_{\infty}(\alpha) = \frac{T_1}{(T_2 - T_1)^2} \left(e^{\alpha(T_2 - T_1)} - 1 \right)^2 \frac{\int_0^{T_1} e^{-2\alpha(T_1 - t)} \sigma_s^2(t) \sigma_l^2(t) \mathrm{d}H_t}{\left(\int_0^{T_1} e^{-2\alpha(T_1 - t)} \sigma_s^2(t) \mathrm{d}t\right)^2}$$
(1)

with $H_t = \lim_{n \to +\infty} \frac{n}{T_1} \sum_{t_i \le t} (t_i - t_{i-1})^2$ the Asymptotic Quadratic Variation of Time.

• By noting $T_2 = T_1 + \tau$, we have $V_{\infty}(\alpha) \xrightarrow[\tau_1 \to \infty]{2\alpha (e^{\alpha \tau} - 1)^2} \frac{\sigma_l^2}{\sigma_s^2} T_1$

• When $T_1 \to \infty$, the behavior of $V_{\infty}(\alpha)$ is linear in T_1

• $V_{\infty}(\alpha)$ increases when α increases