Commodity price modeling in EDF. Parameter estimation and calibration

Olivier FÉRON.^{1,2}

¹ Electricité de France (EDF)– Recherche & développements 1 Avenue du Général de Gaulle, CLAMART, FRANCE

² Laboratoire de Finance des marchés de l'énergie Université Paris Dauphine

Agenda

1 Introduction

- Objectives of an electrician
- Constraints in commodity price modeling

² 2-factor model

- Description
- **a** Calibration methods
- Impact on valuation

³ Strutural model

- Description
- Study on forward prices reconstruction
- **a** Calibration issues

⁴ Conclusion and perspectives

Commodity modeling in EDF: objectives

- Short term (1 day \rightarrow 2 weeks) prediction
- Market comprehension
- Mid term risk management
	- Gross energy margin prediction
	- Risk measurement
	- Hedging
- o Pricing
	- **A** Valuation of Production assets
	- Valuation of flexibilities in supply contracts
- **O** Investment decision

• Production units

• Approximation : Strip of European spread options of payoff $CF(t)$

$$
CF(t) = \left(S_t^{power} - hS_t^{fuel} - h'S_t^{CO2} - K\right)^+ \qquad \forall t \in [0 \; ; \; T]
$$

- More realistic: dynamic constraints
	- Startup costs, limited number of startups
	- Scheduled outage periods

Gas storage, Hydro dam

- Swing option : lets the holder buy a flexible quantity $Q \in [Q_{min} : Q_{max}]$
- Additional constraints: minimal and maximal quantity per day, per month...

\bullet **Supply contracts**

- Indexed price: moving average opions
- Flexibility in quantity: swing options
- Daily spot for fuels
- (semi)Hourly spot price for power

Figure : French power spot prices on January 12th 2012

- **Power specificity: delivery period**
- Different maturities and different delivery periods

Future market

- **Power specificity: delivery period**
- Different maturities and different delivery periods

Future market

- **Power specificity: delivery period**
- Different maturities and different delivery periods

Future market

- **Power specificity: delivery period**
- Different maturities and different delivery periods

Contraints of modeling

Portfoltio exposition

- Power and fuels spot prices (or "unitary forward prices")
- Power and fuels forward products
- Link between power and fuels

Available hedging products

• forward products (with delivery periods for power)

Incomplete market: No derivatives (market information) on

- "unitary" (instantaneous) forward prices
- any link (spread) between fuels and power

Consequences

- We need to model spot prices and forward products
- The link is obtained from the forward curve

Calibration issues

- 2 different sets of observed data (spot prices and forward products)
- Complex relationship between parameters and observed forward products

Electricity price modeling: two approaches

Forward curve of unitary future price as a starting point

 $dF_t(T) = \mu(t, T, F_t(T))dt + \sigma(t, T, F_t(T))dW_t$

- Spot price deduced as a limit $S_t = \lim_{T \to t} F_t(T)$
- Forward products deduced by no-arbitrage principles

$$
F_t(T,\theta) = \int_0^\theta w(u) F_t(T+u) du
$$

• Spot price as a starting point

$$
dS_t = \mu(t, S_t, X_t)dt + \sigma(t, S_t, X_t)dW_t
$$

- \bullet Some other stochastic processes X_t (fuel prices, demand...) may turn up.
- Forward prices deduced by no-arbitrage principles

$$
F_t(T) = \mathbb{E}^{\mathbb{Q}}_t [S_T]
$$

Parameter estimation of the model currently used in EDF for risk management

- 2-factor model description
- Estimation / Calibration on forward products and spot prices
- Impact of calibration method on European option valuation

Structural model for commodity prices

- Model description
- Study on the forward products reconstruction
- Integration of parameters uncertainty in the forward products recontruction
- **Calibration**

Interests: performance of a model and its calibration

- in representing market information
- in introducing information

Two different works

Parameter estimation of the model currently used in EDF for risk management

- 2-factor model description
- Estimation / Calibration on forward products and spot prices
- Impact of calibration method on European option valuation
- **•** Structural model for commodity prices
	- Model description
	- Study on the forward products reconstruction
	- Integration of parameters uncertainty in the forward products recontruction
	- **•** Calibration

Two-factor model description

Formulation

$$
\frac{dF_t(T)}{F_t(T)} = \sigma_s(t) e^{-\alpha(T-t)} dW_t^{(s)} + \sigma_l(t) dW_t^{(l)}
$$

with $\alpha \in \mathbb{R}^+_*$ and $\sigma_s(t)$ and $\sigma_l(t)$ are positive integrable functions.

- "Discretized" forward product formulation $F_t(T, \theta) = \frac{1}{\theta} \sum_{i=0}^{\theta-1} F_t(T + i)$ \bullet
- **Forward product process**

$$
dF_t(T,\theta) = \frac{1}{\theta} \sum_{i=0}^{\theta-1} \left[\sigma_s(t) e^{-\alpha (T+i-t)} dW_t^{(s)} + \sigma_l(t) dW_t^{(l)} \right] F_t(T+i)
$$

The forward product process is not Markovian [\[Benth & Koekebakker \(2008\)\]](#page-41-0)

shaping factors $\lambda_i^{t, T, \theta} = \frac{F_t(T+i)}{F_t(T, \theta)}$ and $\Psi(\alpha, t, T, \theta) = \sum_{i=0}^{\theta} \lambda_i^{t, T, \theta} e^{-\alpha t}$

$$
\frac{dF_t(T,\theta)}{F_t(T,\theta)} = \sigma_s(t)e^{-\alpha(T-t)}\Psi(\alpha,t,T,\theta)dW_t^{(s)} + \sigma_l(t)dW_t^{(l)}
$$

Approximation on shaping factors, Markovian process

- Strong approximation for the calibration
	- Constant shaping factors $\lambda_i^{t,T,\theta} \equiv 1$
	- **Constant volatility functions** $\sigma_s(t) \equiv \sigma_s$ and $\sigma_l(t) \equiv \sigma_l$ [\[Kiesel et al. \(2007\)\]](#page-41-1)
- **Consequences:** $\Psi(\alpha, t, T, \theta) \equiv \Psi(\alpha, \theta)$ is determistic and the dynamics on forward products becomes Markovian
- Two different methods of parameters estimation
	- Estimation on Marginal volatilities (average of log-returns variance over the cotation period)
		- Express the theoretical marginal volatility of a forward product as a function of model parameters
		- Fit the theoretical marginal volatility to the empirical (or implied) marginal volatility computed from observed cotations
	- Estimation from spot prices
		- Long term volatility estimated from long term forward products
		- Short term parameters estimated from spot prices

Estimation on marginal volatilities

- N observations $(F_n(T, \theta))_{n=1,...,N}$ at dates $(t_n)_{n=1,...,N}$, with $t_{n+1} t_n = \delta t$
- Model on geometric returns

$$
R_n(T,\theta) = \ln\left(\frac{F_{n+1}(T,\theta)}{F_n(T,\theta)}\right) = \sigma_s e^{-\alpha(T-t_n)} \Psi(\alpha,\theta) \sqrt{\nu(\delta t)} \varepsilon_n^s + \sigma_t \sqrt{\delta t} \varepsilon_n^t
$$

with $\nu(\delta t) = \frac{e^{2\alpha \delta t} - 1}{2\alpha}$

Marginal volatility: average of instantaneous return variance

$$
MV^{2}(T, \theta, \alpha, \sigma_{s}, \sigma_{l}) = \frac{1}{N} \sum_{n=1}^{N} Var[R_{n}(T, \theta)]
$$

- Historical (or implied) marginal volatility $\hat{\mathcal{MV}}^2(\mathcal{T}, \theta)$ from observed forward returns (or options)
- Estimation: minimization of the squared difference

$$
(\hat{\alpha}, \hat{\sigma_s}, \hat{\sigma_l}) = \underset{(\alpha, \sigma_s, \sigma_l)}{\arg \min} \sum_{(\tau, \theta)} (\hat{MV}^2(\tau, \theta) - MV^2(\tau, \theta, \alpha, \sigma_s, \sigma_l))^2
$$

Two-factor model: Estimation on spot prices

$$
\frac{dF_t(T)}{F_t(T)} = \sigma_s e^{-\alpha(T-t)} dW_t^{(s)} + \sigma_l dW_t^{(l)}
$$

• Spot price formulation:

$$
\ln S_t = \ln F_0(t) - \frac{1}{2} \left[\sigma_s^2 \frac{1 - e^{-2\alpha t}}{2\alpha} + \sigma_l^2 t \right] + \underbrace{\int_0^t \sigma_s e^{-\alpha(t-u)} dW_u^{(s)}}_{X_t^{(s)}} + \underbrace{\int_0^t \sigma_l dW_u^{(l)}}_{X_t^{(l)}}
$$

- Deseasonalization step
- Long term volatility σ_l estimated from long term forward products
- Short term parameters estimated from a state-space model
	- State equation: two hidden factors $X_t^{(\mathrm{s})}$ and $X_t^{(\mathrm{l})}$
	- \bullet σ_s and α estimated by Likelihood maximization on deseasonalized spot prices, by using a Kalman filter

Estimation results

- Date of estimation: 12-Mar-2013
- 1 year of historical data
- Two different estimation methods
	- Estimation on (empirical) marginal volatilities
	- Estimation on long term forward products (for the long term factor) and spot prices (for the short term factor)
- Study on resulting parameter values: strip of European options on monthly forward products (Apr-2013 \rightarrow Mar-2015)

$$
(F(t, T, \theta) - K)^+ , \qquad K = F(t_0, T, \theta)
$$

- Comparison in European option pricing
- "Benchmark" value defined from a multi-factor model fitted on empirical volatilities $\hat{\mathcal{MV}}^2(\mathcal{T},\theta)$

Results: estimation on UK Power

Figure : Calibration results on UK power

Results: European options pricing (UK Power)

Figure : European option princing on UK Power

Conclusion

2 factor model objectives

- Represent spot prices and forward products
- Can be calibrated on historical or implied volatility, and on spot prices
- Can fit perfectly the forward products at a given date

Caibration issues: need approximations

- Constant and equally weighted shaping factors
- **Constant volatility function** $\sigma_s(t)$ and $\sigma_l(t)$
- No statistical results
- Calibration methods have a high impact on indicators
	- A "benchmark" value can give e reference for forward derivatives
	- More difficult for options on spot prices

Some other issues

- No specific event (spikes, negative prices...)
- Weak relationship between commodities

Parameter estimation of the model currently used in EDF for risk management

- 2-factor model description
- **•** Estimation / Calibration on forward products and spot prices
- Impact of calibration method on European option valuation

Structural model for commodity prices

- Model description
- Study on the forward products reconstruction
- Integration of parameters uncertainty in the forward products recontruction
- **A** Calibration

Power spot price modeling

$$
S_t = g(C_t^{\text{max}} - D_t) \sum_{i=1}^n h_i S_t^i \mathbb{1}_{D_t \in I_t^i}
$$

with

- \bullet D_t demand at t.
- C_t^i production capacity of fuel *i*,
- C_t^{max} total capacity,
- S_t^i spot price of fuel *i*,
- \bullet h_i heat rate of production with fuel *i*.
- I_t^i capacity interval where fuel *i* is marginal.
- $\overset{\sim}{{\boldsymbol{g}}}\!\!\left({\boldsymbol{x}}\right) = \min\left(\boldsymbol{\mathsf{M}}, \frac{\gamma}{\boldsymbol{x}^\nu}\right) \mathbbm{1}_{\boldsymbol{x} > \boldsymbol{0}} + \boldsymbol{\mathsf{M}} \mathbbm{1}_{\boldsymbol{x} < \boldsymbol{0}}$

Results on spot prices

Spot price (in €/MWh)

Figure : Spot price reconstruction from the structural model

Consequence on forward prices

• No-arbitrage condition

$$
F_t(T)=\mathbb{E}^{\mathbb{Q}}[S_T|\mathcal{F}_t]
$$

• Induced relation between forward prices

$$
F_t(T) = \sum_{i=1}^n \underbrace{\mathbb{E}^* \left[g \left(C_T^{\text{max}} - D_T \right) \mathbf{1}_{D_T \in I_T^i} \middle| \mathcal{F}_t \right]}_{G_T^i(t, C_t, D_t)} h_i F_t^i(T)
$$

Final reconstruction (assuming $F_t^i(T') = F_t^i(T, \theta)$ $\forall T' \in [T : T + \theta]$:

$$
\mathcal{F}_t(T, \theta) = \sum_{i=1}^n \underbrace{\left(\frac{1}{\theta} \sum_{T'=T}^{T+\theta} G_{T'}^i(t, C_t, D_t)\right)}_{\text{stochastic weights}} h_i \mathcal{F}_t^i(T, \theta)
$$

Modeling demand and capacities

Deterministic part + stochastic part (Ornstein-Uhlenbeck)

$$
D_t = f_D(t) + Z_D(t)
$$

$$
C_t^i = f_i(t) + Z_i(t)
$$

• Deterministic part:

$$
\begin{vmatrix} f_D(t) = d_1^{(D)} + d_2^{(D)} \cos\left(2\pi(t - d_3^{(D)})\right) + \text{week}_D(t) \\ f_i(t) = d_1^{(i)} + d_2^{(i)} \cos\left(2\pi(t - d_3^{(i)})\right) + \text{week}_i(t) \end{vmatrix}
$$

• Stochastic part: Ornstein-Uhlenbeck process

$$
\left. \begin{array}{l}\n dZ_D(t) = -\alpha_D Z_D(t) dt + \beta_D dW_t^D \\
dZ_i(t) = -\alpha_i Z_i(t) dt + \beta_i dW_t^i\n \end{array} \right|
$$

Study on forward reconstruction

$$
F(t, T, \theta) = \sum_{i=1}^{n} \left(\frac{1}{\theta} \sum_{T'=T}^{T+\theta} G'_{T'}(t, C_t, D_t) \right) h_i F^{i}(t, T, \theta)
$$

$$
G'_{T'}(t, C_t, D_t) = \mathbb{E}^* \left[g \left(C_T^{\text{max}} - D_T \right) \mathbf{1}_{D_T \in I_T^i} | \mathcal{F}_t \right]
$$

Model specifications

- 3 types of capacities: nuclear, (gas/coal), oil
- Carbon taken into account
- Estimation of Demand and Capacities model parameters $d_1^{(*)}, d_2^{(*)}, d_3^{(*)}$ and **week**∗(t) on two years of historical data from RTE¹
- \bullet Observation of commodity forward products from Platts 2

¹www.rte-france.fr

²www.platts.fr

Workshop on Electricity, Energy and Commodities Risk Management - Fields Institute, Toronto, 2013 32 / 41

Electricity forward reconstruction: Month-ahead

Figure : 1-Month-ahead reconstruction: observed prices (blue) and reconstructed forward prices from complete structural model with (red) and without (pink) the scarcity function

Electricity forward reconstruction: Quarter-ahead

Figure : 1-Quarter-ahead reconstruction: observed prices (blue) and reconstructed forward prices from complete structural model with (red) and without (pink) the scarcity function

Electricity forward reconstruction: Year-ahead

Figure : 1-Year-ahead reconstruction: observed prices (blue) and reconstructed forward prices from complete structural model with (red) and without (pink) the scarcity function

Forward reconstruction with model uncertainty

$$
f_D(t) = d_1^{(D)} + d_2^{(D)} \cos\left(2\pi(t - d_3^{(D)})\right) + \text{week}_D(t)
$$

$$
f_i(t) = d_1^{(i)} + d_2^{(i)} \cos\left(2\pi(t - d_3^{(i)})\right) + \text{week}_i(t)
$$

$$
dZ_D(t) = -\alpha_D Z_D(t)dt + \beta_D dW_t^D
$$

$$
dZ_i(t) = -\alpha_i Z_i(t)dt + \beta_i dW_t^i
$$

- Parameters of demand and capacities models are estimated on historical data
- Confidence intervals can also be estimated
- A confidence interval can be dedeuced on forward prices
	- from 20 model parameters
	- with 400 Monte Carlo simulation on each parameter's confidence interval

Forward reconstruction with model uncertainty

• Calibration problem

- At a given date t, we observe several forward products $(F_t(T, \theta))$ (T, θ)
- Objective of calibration: determine model parameters to exactly retrieve all the forward products
- Impossible for the current model
- Introduction of a "risk premium" $\varepsilon(T)$ in the demand process

$$
f_D(t) = \varepsilon(T) + d_1^{(D)} + d_2^{(D)} \cos\left(2\pi(t - d_3^{(D)})\right) + \text{week}_D(t)
$$

$$
f_i(t) = d_1^{(i)} + d_2^{(i)} \cos\left(2\pi(t - d_3^{(i)})\right) + \text{week}_i(t)
$$

Calibration results

Figure : Calibrated $\varepsilon(T)$ on observed forward prices: 1MAH \rightarrow 6MAH, 1QAH \rightarrow 3QAH and 1YAH observed on 28-Jun-2011.

Calibration results

Figure : Evolution of $\varepsilon(T)$ over time

Conclusion

Satisfactory reconstruction of forward products

- Enough random factors to produce non trivial long term prices
- Long term products seem to be strongly linked with fundamentals
- **A** risk aversion is observable

The calibration on observed forward products is possible

- The "implied" function $\varepsilon(T)$ is reasonable
- Short-term forward products present more risk aversion

Perspectives

- **2-factor model**
	- Keep volatility functions $\sigma_s(t)$ and $\sigma_l(t)$
	- **•** Semi-parametric estimation
	- Some first statistical results
	- improve the link between commodities

Structural model

- Deepen the parameter uncertainty propagation
- Calibration on options

Bibliography

Results: Earnings at Risk (UK Power)

Figure : Earnig-at-Risk estimation

Results: Estimation on Fench Power

Figure : Estimation results on French power: volatility reconstruction

Results: European options pricing (French Power)

Figure : European option pricing on French Power

Results: Earnings at Risk (French Power)

Figure : Earning-at-Risk estimation

Recent work on parameters estimation

• Model formulation: keep $\sigma_s(t)$ and $\sigma_l(t)$ as function.

$$
\frac{dF_t(T)}{F_t(T)} = \sigma_s(t)e^{-\alpha(T-t)}dW_t^{(s)} + \sigma_l(t)dW_t^{(l)}
$$

- Approximation $F_t(T, \theta) = F_t(T) \Rightarrow$ statistical (asymptotic) results on estimates
- Semi-parametric estimation
	- \bullet $\sigma_s(t)$ and $\sigma_l(t)$ are not parametrized
	- Focus on estimation of α (considering $\sigma_s(t)$ and $\sigma_l(t)$ as nuisance parameters)
	- Non parametric estimation of functions $\sigma_s(t)$ and $\sigma_l(t)$

Identification and estimation with two maturities

Observations $\left(F_{t_0}(\mathcal{T}_1)\right)_{t_0\in[0\;\;;\; \mathcal{T}_1]}$ and $\left(F_{t_0}(\mathcal{T}_2)\right)_{t_0\in[0\;\;;\; \mathcal{T}_2]}$ of two forward products of respective delivery T_1 and T_2 . We will suppose $T_1 < T_2$ and $t_N = T_1$ (i.e. the number of jointly observale forward products is N).

• Let us note
$$
\Delta F_i^n(T) = \ln \left(\frac{F_{t_i}(T)}{F_{t_{i-1}}(T)} \right)
$$

• Estimation of α

\n- Define the function
$$
g: (-1, 1) \ni x \mapsto -\frac{1}{T_2 - T_1} \ln \left(\frac{1+x}{1-x} \right) \in \mathbb{R}
$$
.
\n- Let $\hat{q} = \frac{\sum_{i=1}^{n} \left(\Delta F_i^p(T_2) - \Delta F_i^p(T_1) \right)^2}{\sum_{i=1}^{n} \left(\left(\Delta F_i^p(T_2) \right)^2 - \left(\Delta F_i^p(T_1) \right)^2 \right)}$.
\n- Estimate of $\alpha \left[\hat{\alpha} = g \left(\hat{q} \mathbf{1}_{\hat{q} \in (-1, 1)} \right) \right]$.
\n

Identification and estimation with two maturities

Theorem

Suppose

\n- \n
$$
\sigma_s
$$
 and σ_l are continuous on $[0, 7_1]$,\n
\n- \n $\exists (\kappa, K) \in (\mathbb{R}_*^+)^2, \forall i = 1, \ldots, n, \kappa \frac{T_1}{n} \leq |t_i - t_{i-1}| \leq K \frac{T_1}{n}$ \n
\n- \n Then $\sqrt{n}(\hat{\alpha} - \alpha) \xrightarrow[n \to +\infty]{} \mathcal{N}(0, V_\infty(\alpha))$ with\n
\n

$$
V_{\infty}(\alpha) = \frac{T_1}{(T_2 - T_1)^2} \left(e^{\alpha (T_2 - T_1)} - 1 \right)^2 \frac{\int_0^{T_1} e^{-2\alpha (T_1 - t)} \sigma_s^2(t) \sigma_l^2(t) \mathrm{d}H_t}{\left(\int_0^{T_1} e^{-2\alpha (T_1 - t)} \sigma_s^2(t) \mathrm{d}t \right)^2} \tag{1}
$$

with $H_t = \lim_{n \to +\infty} \frac{n}{T_1} \sum_{t_i \leq t} (t_i - t_{i-1})^2$ the Asymptotic Quadratic Variation of Time.

By noting $\mathcal{T}_2 = \mathcal{T}_1 + \tau$, we have $\mathcal{V}_\infty(\alpha) \xrightarrow[\mathcal{T}_1 \to \infty]{}$ $2\alpha(e^{\alpha\tau}-1)^2$ $\frac{\alpha\tau-1}{\tau^2} \frac{\sigma_l^2}{\sigma_s^2}$ T₁

• When $T_1 \rightarrow \infty$, the behavior of $V_{\infty}(\alpha)$ is linear in T_1

• $V_\infty(\alpha)$ increases when α increases