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• The cost of a market orders depends nonlinearly on the
traded amount.

• There is no numeraire: much of trading consists of
exchanging sequences of cash-flows (swaps, insurance
contracts, coupon payments, dividends, . . . )

• We extend basic results on indifference pricing, arbitrage,
optimal portfolios and duality to markets with nonlinear
illiquidity effects and general swap contracts.
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1. Market model with nonlinear trading costs and portfolio
constraints. In particular, existence of a numeraire is not
assumed.

2. Optimal investment problem parameterized by a sequence
of cash-flows.

3. Indifference pricing extended to general swap contracts.

4. Existence of solutions established under an extended
no-arbitrage condition.

5. Dual expressions for the optimal value and swap rates in
terms of state price densities that capture uncertainty as
well as time-value of money in the absense of a numeraire.
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Example 1 (Limit order markets) The cost of a market
order is obtained by integrating the order book.

236

237

238

239

240

241

242

-100000 -50000 0 50000

QUANTITY

P
R
IC
E



Market model

Market model

Optimal investment

Swap contracts

Existence of solutions

Duality

5 / 27

Consider a financial market where a finite set J of assets can
be traded at t = 0, . . . , T .

• Let (Ω,F , (Ft)
T
t=0, P ) be a filtered probability space.

• The cost (in cash) of buying a portfolio x ∈ R
J at time t in

state ω will be denoted by St(x, ω).

• We will assume that

◦ St(·, ω) is convex with St(0, ω) = 0,
◦ St(x, ·) is Ft-measurable.

(In particular, St is a Carathéodory function and thus,
B(RJ)⊗Ft-measurable, so ω 7→ St(xt(ω), ω) is
Ft-measurable when xt is so.)

• Such a sequence (St) will be called a convex cost process.



Market model

Market model

Optimal investment

Swap contracts

Existence of solutions

Duality

6 / 27

Example 2 (Liquid markets) If s = (st)
T
t=0 is an

(Ft)
T
t=0-adapted R

J -valued price process, then the functions

St(x, ω) = st(ω) · x

define a convex cost process.

Example 3 (Jouini and Kallal, 1995) If (sat )
T
t=0 and

(sbt)
T
t=0 are (Ft)

T
t=0-adapted with sb ≤ sa, then the functions

St(x, ω) =

{

sat (ω)x if x ≥ 0,

sbt(ω)x if x ≤ 0

define a convex cost process.
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Example 4 (Çetin and Rogers, 2007) If s = (st)
T
t=0 is an

(Ft)
T
t=0-adapted process and ψ is a lower semicontinuous

convex function on R with ψ(0) = 0, then the functions

St(x, ω) = x0 + st(ω)ψ(x
1)

define a convex cost process.

Example 5 (Dolinsky and Soner, 2013) If s = (st)
T
t=0 is

(Ft)
T
t=0-adapted and Gt(x, ·) are Ft-measurable functions

such that Gt(·, ω) are finite and convex, then the functions

St(x, ω) = x0 + st(ω) · x
1 +Gt(x

1, ω)

define a convex cost process.
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• We allow for portfolio constraints requiring that the
portfolio held over (t, t+ 1] in state ω has to belong to a
set Dt(ω) ⊆ R

J .

• We assume that

◦ Dt(ω) are closed and convex with 0 ∈ Dt(ω).
◦ {ω ∈ Ω |Dt(ω) ∩ U 6= ∅} ∈ Ft for every open U ⊂ R

J .



Market model

Market model

Optimal investment

Swap contracts

Existence of solutions

Duality

9 / 27

• Models where Dt(ω) is independent of (t, ω) have been
studied e.g. in [Cvitanić and Karatzas, 1992] and [Jouini
and Kallal, 1995].

• In [Napp, 2003],

Dt(ω) = {x ∈ R
d |Mt(ω)x ∈ K},

where K ⊂ R
L is a closed convex cone and Mt is an

Ft-measurable matrix.

• General constraints have been studied in [Evstigneev,
Schürger and Taksar, 2004], [Rokhlin, 2005] and
[Czichowsky and Schweizer, 2012].
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Let c ∈ M := {(ct)
T
t=0 | ct ∈ L0(Ω,Ft, P )} and consider the

problem

minimize
T
∑

t=0

Vt(St(∆xt) + ct) over x ∈ ND

• ND = {(xt)
T
t=0 | xt ∈ L0(Ω,Ft, P ;R

J), xt ∈ Dt, xT = 0},

• Vt : L
0 → R are convex, nondecreasing and Vt(0) = 0.

Example 6 If Vt = δL0

−

for t < T , the problem can be written

minimize VT (ST (∆xT ) + cT ) over x ∈ ND

subject to St(∆xt) + ct ≤ 0, t = 0, . . . , T − 1.
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Example 7 (Markets with a numeraire) When

St(x, ω) = x0 + S̃t(x̃, ω) and Dt(ω) = R× D̃t(ω),

the problem can be written as

minimize VT

(

T
∑

t=0

S̃t(∆x̃t) +
T
∑

t=0

ct

)

over x ∈ ND.

When S̃t(x̃, ω) = s̃t(ω) · x̃,

T
∑

t=0

S̃t(∆x̃t) =
T
∑

t=0

s̃t ·∆x̃t = −
T−1
∑

t=0

x̃t ·∆s̃t+1.
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We denote the optimal value function by

ϕ(c) = inf
x∈ND

T
∑

t=0

Vt(St(∆xt) + ct).

• When Vt = δL0

−

for t = 0, . . . , T , we have ϕ = δC where

C = {c ∈ M|∃x ∈ ND : St(∆xt) + ct ≤ 0 ∀t}.

is the set of claims that can be superhedged for free.

• In the classical linear model,

C = {c ∈ M|∃x ∈ ND :
T
∑

t=0

ct ≤
T−1
∑

t=0

x̃t ·∆s̃t+1}.

• We always have, ϕ(c) = infd∈C
∑T

t=0 Vt(ct − dt).
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Lemma 8 The value function ϕ is convex and

ϕ(c̄+ c) ≤ ϕ(c̄) ∀c̄ ∈ M, c ∈ C∞.

where C∞ = {c ∈ M| c̄+ αc ∈ C ∀c̄ ∈ C, ∀α > 0}.

• In particular, ϕ is constant with respect to the linear space
C∞ ∩ (−C∞).

• If St are positively homogeneous and Dt are conical, then C
is a cone and C∞ = C.



Swap contracts

Market model

Optimal investment

Swap contracts

Existence of solutions

Duality

14 / 27

• In a swap contract, an agent receives a sequence p ∈ M of
premiums and delivers a sequence c ∈ M of claims.

• Examples:

◦ Swaps with a “fixed leg”: p = (1, . . . , 1), random c.
◦ In credit derivatives (CDS, CDO, . . . ) and other
insurance contracts both p and c are random.

◦ Traditionally in mathematical finance:

p = (1, 0, . . . , 0) and c = (0, . . . , 0, cT ).

• Claims and premiums live in the same space

M = {(ct)
T
t=0 | ct ∈ L0(Ω,Ft, P ;R)}.
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• If we already have liabilities c̄ ∈ M, then

π(c̄, p; c) := inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

gives the least swap rate that would allow us to enter a
swap contract without worsening our financial position.

• Similarly,

πb(c̄, p; c) := sup{α ∈ R |ϕ(c̄−c+αp) ≤ ϕ(c̄)} = −π(c̄, p;−c)

gives the greatest swap rate we would need on the opposite
side of the trade.

• When p = (1, 0, . . . , 0) and c = (0, . . . , 0, cT ), we get a
nonlinear version of the indifference price of [Hodges and
Neuberger, 1989].
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Define the super- and subhedging swap rates,

πsup(c) = inf{α | c−αp ∈ C∞}, πinf(c) = sup{α |αp−c ∈ C∞}.

In the classical model with p = (1, 0, . . . , 0), we recover the
usual super- and subhedging costs.

Theorem 9 If π(c̄, p; 0) ≥ 0, then

πinf(c) ≤ πb(c̄, p; c) ≤ π(c̄, p; c) ≤ πsup(c)

with equalities if c− αp ∈ C∞ ∩ (−C∞) for some α ∈ R.

• Agents with identical views P , preferences V and financial
position c̄ have no reason to trade with each other.

• Prices are independent of such subjective factors when
c− αp ∈ C∞ ∩ (−C∞) for some α ∈ R.
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Example 10 (Linear models) When St(x) = st · x and
Dt = R

J , we have c− αp ∈ C∞ ∩ (−C∞) if there is an
x ∈ ND such that st ·∆xt + ct = αpt. The converse holds
under the no-arbitrage condition C ∩M+ = {0}.

Example 11 (The classical model) When Dt = R
J ,

St(x) = x0 + s̃t · x̃ and p = (1, 0, . . . , 0), we have
c−αp ∈ C∞∩ (−C∞) if

∑T

t=0 ct is attainable in the sense that

T
∑

t=0

ct = α +
T−1
∑

t=0

x̃t ·∆s̃t+1

for some α ∈ R and x ∈ ND. The converse holds under the
no-arbitrage condition.
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Given a market model (S,D), let

S∞
t (x, ω) = sup

α>0

St(αx, ω)

α
and D∞

t (ω) =
⋂

α>0

αDt(ω).

If S is sublinear and D is conical, then S∞ = S and D∞ = D

Theorem 12 Assume that Vt(ct) = Evt(ct), where vt are
bounded from below. If the cone

L := {x ∈ ND∞ |S∞
t (∆xt) ≤ 0}

is a linear space, then ϕ is proper and lower semicontinuous in
L0 and the infimum is attained for every c ∈ M.
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Example 13 In the classical perfectly liquid market model

L = {x ∈ N | st ·∆xt ≤ 0, xT = 0},

so the linearity condition coincides with the no-arbitrage
condition. When vt = δR−

, we have ϕ = δC so we recover the
key lemma from [Schachermayer, 1992].

Example 14 In unconstrained models with proportional
transactions costs, the linearity condition becomes the robust
no-arbitrage condition introduced by [Schachermayer, 2004]
(for claims with physical delivery).
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Example 15 If S∞
t (x, ω) > 0 for x /∈ R

J
−, we have L = {0}.

Example 16 In [Çetin and Rogers, 2007] with

St(x, ω) = x0 + st(ω)ψ(x
1)

one has S∞
t (x, ω) = x0 + st(ω)ψ

∞(x1). When inf ψ′ = 0 and
supψ′ = ∞ we have ψ∞ = δR−

, so the condition in
Example 15 holds.

Example 17 If St(·, ω) = st(ω) · x for a componentwise
strictly positive price process s and D∞

t (ω) ⊆ R
J
+ (infinite

short selling is prohibited), we have L = {0}.
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Proposition 18 Assume that ϕ is proper and lower
semicontinuous. Then, for every c̄ ∈ domϕ and p ∈ M, the
conditions

• supα>0 ϕ(αp) > ϕ(0),

• π(c̄, p; 0) > −∞,

• π(c̄, p; c) > −∞ for all c ∈ M,

are equivalent and imply that π(c̄, p; ·) is proper and lower
semicontinuous on M and that the infimum

π(c̄, p; c) = inf{α |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

is attained for every c ∈ M.
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• Let Mp = {c ∈ M| ct ∈ Lp(Ω,Ft, P ;R)}.

• The bilinear form

〈c, y〉 := E

T
∑

t=0

ctyt

puts M1 and M∞ in separating duality.

• The conjugate of a function f on M1 is defined by

f ∗(y) = sup
c∈M1

{〈c, y〉 − f(c)}.

• If f is proper, convex and lower semicontinuous, then

f(y) = sup
y∈M∞

{〈c, y〉 − f ∗(y)}.
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Lemma 19 The conjugate of ϕ can be expressed in terms of the support

function σC(y) = supc∈C〈c, y〉 of C as

ϕ∗(y) = E

T
∑

t=0

v∗t (yt) + σC(y).

Theorem 20 If ϕ is lower semicontinuous, we have

ϕ(c) = sup
y∈M∞

{

〈c, y〉 − σC(y)− E

T
∑

t=0

v∗t (yt)

}

.

In particular, when C is a cone,

ϕ(c) = sup
y∈C∗

{

〈c, y〉 − E

T
∑

t=0

v∗t (yt)

}

,

where C∗ := {y ∈ M∞ | 〈c, y〉 ≤ 0 ∀c ∈ C ∩M1} is the polar cone of C.
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Lemma 21 If St(x, ·) are integrable, then for y ∈ M∞
+ ,

σC(y) = inf
v∈N 1

{

T
∑

t=0

E(ytSt)
∗(vt) +

T−1
∑

t=0

EσDt
(E[∆vt+1|Ft])

}

,

while σC1(y) = +∞ for y /∈ M∞
+ . The infimum is attained.

Example 22 If St(ω, x) = st(ω) · x and Dt(ω) is a cone,

C∗ = {y ∈ M∞ |E[∆(yt+1st+1) |Ft] ∈ D∗
t }.

Example 23 If St(ω, x) = sup{s · x | s ∈ [sbt(ω), s
a
t (ω)]} and

Dt(ω) = R
J , then

C∗ = {y ∈ M∞ | ys is a martingale for some s ∈ [sb, sa]}.

Example 24 In the classical model, C∗ consists of positive multiples of

martingale densities.
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Theorem 25 Let c̄ ∈ M1, A(c̄) = {c |ϕ(c̄+ c) ≤ ϕ(c̄)} and
assume that ϕ is proper and lower semicontinuous. Then

1. supα>0 ϕ(αp) > ϕ(0),

2. π(c̄, p; 0) > −∞,

3. π(c̄, p; c) > −∞ for all c ∈ M,

4. 〈p, y〉 = 1 for some y ∈ dom σA(c̄)

are equivalent and imply that

π(c̄, p; c) = sup
y∈M∞

{

〈c, y〉 − σA(c̄)(y)
∣

∣ 〈p, y〉 = 1
}

.

Moreover, if inf ϕ < ϕ(c̄), then

σA(c̄) = σB(c̄) + σC,

where B(c̄) = {c ∈ M1 | V(c̄+ c) ≤ ϕ(c̄)}.
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Example 26 In the classical model, with p = (1, 0, . . . , 0)
and vt = δR−

for t < T , we get

π(c̄, p; c) = sup
y∈M∞

{

〈c, y〉 − σA(c̄)(y)
∣

∣ 〈p, y〉 = 1
}

= sup
Q∈Q

{

EQ

T
∑

t=0

(c̄t + ct)− σB(c̄)

(

Et

dQ

dP

)

}

= sup
Q∈Q

sup
α>0

EQ

{

T
∑

t=0

(c̄t + ct)− α

[

v∗T (
dQ

dP
/α)− ϕ(c̄)

]

}

,

where Q is the set of absolutely continuous martingale
measures; see [Biagini, Frittelli, Grasselli, 2011] for a
continuous time version.
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• Financial contracts often involve sequences of cash-flows.

• The adequacy of swap rates/prices is subjective (views, risk
preferences, the current financial position).

• Much of classical asset pricing theory can be extended to
convex models of illiquid markets.

• In the absence of numeraire, martingale measures have to
be replaced by more general dual variables that capture
uncertainty as well as time value of money.
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