Optimal investment and contingent claimvaluation in illiquid markets

Teemu Pennanen Department of Mathematics, King's College London

Illiquidity

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

- The cost of ^a market orders depends nonlinearly on the traded amount.
- There is no numeraire: much of trading consists of exchanging sequences of cash-flows (swaps, insurance contracts, coupon payments, dividends, . . .)
- We extend basic results on indifference pricing, arbitrage, optimal portfolios and duality to markets with nonlinear illiquidity effects and genera^l swap contracts.

Outline

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

- 1. Market model with nonlinear trading costs and portfolio constraints. In particular, existence of ^a numeraire is not assumed.
- 2. Optimal investment problem parameterized by ^a sequence of cash-flows.
- 3. Indifference pricing extended to genera^l swap contracts.
- 4. Existence of solutions established under an extendedno-arbitrage condition.
- 5. Dual expressions for the optimal value and swap rates in terms of state price densities that capture uncertainty as well as time-value of money in the absense of ^a numeraire.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Example 1 (Limit order markets) The cost of a market order is obtained by integrating the order book.

[Market](#page-4-0) model

Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Consider a financial market where a finite set J of assets can be traded at $t = 0, \ldots, T$.

- • \bullet Let $(\Omega, \mathcal{F},(\mathcal{F}_t)_{t=0}^T,P)$ be a filtered probability space.
- The cost (in cash) of buying a portfolio $x \in \mathbb{R}^J$ at time t in state ω will be denoted by $S_t(x,\omega)$.
- We will assume that
	- $\circ \ S_t(\cdot, \omega)$ is convex with $S_t(0, \omega) = 0,$
	- $\circ \; S_t(x,\cdot)$ is $\mathcal{F}_t\text{-measurable}.$

(In particular, S_t is a Carathéodory function and thus,

- $\mathcal{B}(\mathbb{R}^J) \otimes \mathcal{F}_t$ -measurable, so $\omega \mapsto S_t(x_t(\omega), \omega)$ is \mathcal{F}_t -measurable when x_t is so λ
- \mathcal{F}_t -measurable when x_t is so.)
- \bullet Such a sequence (S_t) will be called a convex cost process.

[Market](#page-4-0) model

Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Example 2 (Liquid markets) If $s = (s_t)_{t=0}^T$ is an $(\mathcal{F}_t)_{t=0}^T$ -adapted \mathbb{R}^J -valued price process, then the functions

$$
S_t(x,\omega) = s_t(\omega) \cdot x
$$

define ^a convex cost process.

Example 3 (Jouini and Kallal, 1995) If $(s_t^a)_{t=0}^T$ and $(s^b_t)_{t=0}^T$ are $(\mathcal{F}_t)_{t=0}^T$ -adapted with $s^b \leq s^a$, then the functions

$$
S_t(x,\omega) = \begin{cases} s_t^a(\omega)x & \text{if } x \ge 0, \\ s_t^b(\omega)x & \text{if } x \le 0 \end{cases}
$$

define ^a convex cost process.

[Market](#page-4-0) model

Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Example 4 (Çetin and Rogers, 2007) If $s = (s_t)_{t=0}^T$ is an $(\mathcal{F}_t)_{t=0}^T$ -adapted process and ψ is a lower semicontinuous convex function on $\mathbb R$ with $\psi(0)=0$, then the functions

 $S_t(x,\omega) = x^0 + s_t(\omega)\psi(x^1)$

define ^a convex cost process.

Example 5 (Dolinsky and Soner, 2013) If $s=(s_t)_{t=0}^T$ is $(\mathcal{F}_t)_{t=0}^T$ -adapted and $G_t(x,\cdot)$ are \mathcal{F}_t -measurable functions such that $G_t(\cdot,\omega)$ are finite and convex, then the functions

 $S_t(x, \omega) = x^0 + s_t(\omega) \cdot x^1 + G_t(x^1, \omega)$

define ^a convex cost process.

[Market](#page-4-0) model

Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

- We allow for portfolio constraints requiring that the portfolio held over $(t,t+1]$ in state ω has to belong to a set $D_t(\omega) \subseteq \mathbb{R}^J.$
- We assume that
	- \circ $D_t(\omega)$ are closed and convex with $0 \in D_t(\omega)$.
	- ◦ $\{\omega \in \Omega \mid D_t(\omega) \cap U \neq \emptyset\} \in \mathcal{F}_t$ for every open $U \subset \mathbb{R}^J$.

[Market](#page-4-0) model

- Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**
- \bullet Models where $D_t(\omega)$ is independent of (t,ω) have been studied e.g. in [Cvitanić and Karatzas, 1992] and [Jouini and Kallal, 1995].
- In [Napp, 2003],

 $D_t(\omega) = \{x \in \mathbb{R}^d \mid M_t(\omega)x \in K\},\$

where $K \subset \mathbb{R}^L$ is a closed convex cone and M_t is an
 τ research la matrix \mathcal{F}_t -measurable matrix.

• General constraints have been studied in [Evstigneev, Schürger and Taksar, 2004], [Rokhlin, 2005] and [Czichowsky and Schweizer, 2012].

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0)

[Existence](#page-17-0) of solutions

[Duality](#page-21-0)

Let $c \in \mathcal{M} := \{(c_t)_{t=0}^T \, | \, c_t \in L^0(\Omega, \mathcal{F}_t, P) \}$ and consider the
problem problem $\sqrt{ }$

minimize
$$
\sum_{t=0}^{T} \mathcal{V}_t(S_t(\Delta x_t) + c_t) \quad \text{over} \quad x \in \mathcal{N}_D
$$

• $\mathcal{N}_D = \{(x_t)_{t=0}^T | x_t \in L^0(\Omega, \mathcal{F}_t, P; \mathbb{R}^J), x_t \in D_t, x_T = 0\},\$ • $V_t: L^0 \to \mathbb{R}$ are convex, nondecreasing and $V_t(0) = 0$.

Example 6 If $\mathcal{V}_t = \delta_{L_-^0}$ for $t < T$, the problem can be written

minimize $V_T(S_T(\Delta x_T) + c_T)$ over $x \in \mathcal{N}_D$ subject to $S_t(\Delta x_t) + c_t \leq 0$, $t = 0, \ldots, T-1$.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Example ⁷ (Markets with ^a numeraire) When $S_t(x,\omega) = x^0 + \tilde{S}_t(\tilde{x},\omega)$ and $D_t(\omega) = \mathbb{R} \times \tilde{D}_t(\omega),$

the problem can be written as

minimize

e
$$
V_T\left(\sum_{t=0}^T \tilde{S}_t(\Delta \tilde{x}_t) + \sum_{t=0}^T c_t\right)
$$
 over $x \in \mathcal{N}_D$.

When $\tilde{S}_t(\tilde{x}, \omega) = \tilde{s}_t(\omega) \cdot \tilde{x}$,

$$
\sum_{t=0}^{T} \tilde{S}_t(\Delta \tilde{x}_t) = \sum_{t=0}^{T} \tilde{s}_t \cdot \Delta \tilde{x}_t = -\sum_{t=0}^{T-1} \tilde{x}_t \cdot \Delta \tilde{s}_{t+1}.
$$

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0)

[Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

We denote the optimal value function by $\varphi(c) = \inf_{x \in \mathcal{N}_D} \sum_{\square}$ \bm{T} $t{=}0$ $\mathcal{V}_t(S_t(\Delta x_t) + c_t).$

• When $\mathcal{V}_t = \delta_{L^0_-}$ for $t = 0, \ldots, T$, we have $\varphi = \delta_{\mathcal{C}}$ where

$$
\mathcal{C} = \{c \in \mathcal{M} \mid \exists x \in \mathcal{N}_D : S_t(\Delta x_t) + c_t \leq 0 \quad \forall t\}.
$$

is the set of claims that can be <mark>superhedged</mark> for free.

• In the classical linear model,

$$
\mathcal{C} = \{c \in \mathcal{M} \mid \exists x \in \mathcal{N}_D : \sum_{t=0}^T c_t \le \sum_{t=0}^{T-1} \tilde{x}_t \cdot \Delta \tilde{s}_{t+1} \}.
$$

• We always have, $\varphi(c) = \inf_{d \in \mathcal{C}} \sum_{t=0}^{T} \mathcal{V}_t(c_t - d_t).$

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Lemma 8 The value function φ is convex and $\varphi(\bar{c}+c) \leq \varphi(\bar{c}) \quad \forall \bar{c} \in \mathcal{M}, \ c \in \mathcal{C}^{\infty}.$ where $\mathcal{C}^{\infty} = \{c \in \mathcal{M} \mid \bar{c} + \alpha c \in \mathcal{C} \quad \forall \bar{c} \in \mathcal{C}, \ \forall \alpha > 0\}.$

• In particular, φ is constant with respect to the linear space $\mathcal{C}^{\infty} \cap (-\mathcal{C}^{\infty}).$

 \bullet If S_t are positively homogeneous and D_t are conical, then $\mathcal C$ is a cone and $\mathcal{C}^{\infty}=\mathcal{C}$.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

• In a swap contract, an agent receives a sequence $p \in \mathcal{M}$ of premiums and delivers a sequence $c \in \mathcal{M}$ of claims. premiums and delivers a sequence $c \in \mathcal{M}$ of claims.
• Examples:

• Examples:

- \circ Swaps with a "fixed leg": $p=(1,\ldots,1)$, random \circ Swaps with a $\;$ fixed leg $:\; p = (1, \ldots, 1),$ random $c.$ on the credit derivatives (CDS, CDO, , , ,) and other
- \circ In credit derivatives (CDS, CDO, \ldots) and other insurance contracts both p and c are random.
- Traditionally in mathematical finance:

 $p = (1, 0, \ldots, 0)$ and $c = (0, \ldots, 0, c_T)$.

• Claims and premiums live in the same space

$$
\mathcal{M} = \{ (c_t)_{t=0}^T \mid c_t \in L^0(\Omega, \mathcal{F}_t, P; \mathbb{R}) \}.
$$

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

• If we already have liabilities $\bar{c} \in \mathcal{M}$, then

$$
\pi(\overline{c}, p; c) := \inf \{ \alpha \in \mathbb{R} \mid \varphi(\overline{c} + c - \alpha p) \le \varphi(\overline{c}) \}
$$

^gives the least swap rate that would allow us to enter ^a swap contract without worsening our financial position. • Similarly,

 $\pi^{b}(\bar{c}, p; c) := \sup \{ \alpha \in \mathbb{R} \mid \varphi(\bar{c}-c+\alpha p) \leq \varphi(\bar{c}) \} = -\pi(\bar{c}, p; -c)$

^gives the greatest swap rate we would need on the opposite side of the trade.

• When $p = (1, 0, \ldots, 0)$ and $c = (0, \ldots, 0, c_T)$, we get a nonlinear version of the indifference price of [Hodges andNeuberger, 1989].

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Define the super- and subhedging swap rates, $\pi_{\sup}(c) = \inf \{ \alpha \mid c - \alpha p \in C^{\infty} \}, \ \pi_{\inf}(c) = \sup \{ \alpha \mid \alpha p - c \in C^{\infty} \}.$ In the classical model with $p=(1,0,\ldots,0)$, we recover the usual super- and subhedging costs.

Theorem 9 If $\pi(\bar{c}, p; 0) \geq 0$, then

 $\pi_{\inf}(c) \leq \pi_b(\bar{c}, p; c) \leq \pi(\bar{c}, p; c) \leq \pi_{\sup}(c)$

with equalities if $c - \alpha p \in \mathcal{C}^{\infty} \cap (-\mathcal{C}^{\infty})$ for some $\alpha \in \mathbb{R}$.

- Agents with identical views P , preferences $\mathcal V$ and financial position $\bar c$ have no reason to trade with each other.
- Prices are independent of such subjective factors when $c -\alpha p \in C^{\infty} \cap (-C^{\infty})$ for some $\alpha \in \mathbb{R}$.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Example 10 (Linear models) When $S_t(x) = s_t \cdot x$ and $D_t =$ $\mathcal{R}=\mathbb{R}^J$, we have $c-\alpha p\in \mathcal{C}^\infty\cap(-\mathcal{C}^\infty)$ if there is an $x \in \mathcal{N}_D$ such that $s_t \cdot \Delta x_t + c_t = \alpha p_t$. The converse holds under the no-arbitrage condition $\mathcal{C} \cap \mathcal{M}_+ = \{0\}$.

Example ${\bf 11}$ (The classical model) When $D_t = \mathbb{R}^J$, $S_t(x) = x_0 + \tilde{s}_t \cdot \tilde{x}$ and $p = (1, 0, \ldots, 0)$, we have $c \alpha-\alpha p\in \mathcal{C}^{\infty}\cap (-\mathcal{C}^{\infty})$ if $\sum_{t=0}^{T}c_{t}$ is attainable in the sense that

$$
\sum_{t=0}^{T} c_t = \alpha + \sum_{t=0}^{T-1} \tilde{x}_t \cdot \Delta \tilde{s}_{t+1}
$$

for some $\alpha \in \mathbb{R}$ and $x \in \mathcal{N}_D$. The converse holds under the no-arbitrage condition.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Given a market model (S, D) , let

$$
S_t^{\infty}(x,\omega)=\sup_{\alpha>0}\frac{S_t(\alpha x,\omega)}{\alpha} \quad \text{and} \quad D_t^{\infty}(\omega)=\bigcap_{\alpha>0}\alpha D_t(\omega).
$$

If S is sublinear and D is conical, then $S^{\infty} = S$ and $D^{\infty} = D$

Theorem 12 Assume that $V_t(c_t) = Ev_t(c_t)$, where v_t are bounded from below. If the cone

 $\mathcal{L} := \{x \in \mathcal{N}_{D^{\infty}} \mid S_t^{\infty}(\Delta x_t) \leq 0\}$

is a linear space, then φ is proper and lower semicontinuous in L^0 and the infimum is attained for every $c \in \mathcal{M}$.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Example 13 In the classical perfectly liquid market model

$$
\mathcal{L} = \{x \in \mathcal{N} \mid s_t \cdot \Delta x_t \leq 0, \ x_T = 0\},\
$$

so the linearity condition coincides with the no-arbitrage condition. When $v_t = \delta_{\mathbb{R}_-}$, we have $\varphi = \delta_{\mathcal{C}}$ so we recover the key lemma from [Schachermayer, 1992].

Example 14 In unconstrained models with proportional transactions costs, the linearity condition becomes the robust no-arbitrage condition introduced by [Schachermayer, 2004] (for claims with physical delivery).

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Example 15 If $S_t^{\infty}(x,\omega) > 0$ for $x \notin \mathbb{R}^J_+$, we have $\mathcal{L} = \{0\}.$

 $\pmb{\text{Example 16}}$ In [Çetin and Rogers, 2007] with

 $S_t(x,\omega) = x^0 + s_t(\omega)\psi(x^1)$

one has $S^\infty_t(x,\omega)=x^0+s_t(\omega)\psi^\infty(x^1).$ When $\inf\psi'=0$ and $\sup \psi' = \infty$ we have $\psi^{\infty} = \delta_{\mathbb{R}_-}$, so the condition in
Example 15 holds Example [15](#page-19-0) holds.

Example 17 If $S_t(\cdot,\omega) = s_t(\omega) \cdot x$ for a componentwise strictly positive price process s and $D_t^{\infty}(\omega) \subseteq \mathbb{R}_+^J$ (infinite
short selling is muchibited), we have $\mathcal{C} = \{0\}$ short selling is prohibited), we have $\mathcal{L} = \{0\}$.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Proposition 18 Assume that φ is proper and lower semicontinuous. Then, for every $\bar{c}\in\mathrm{dom}\,\varphi$ and $p\in\mathcal{M}$, the conditions

- $\sup_{\alpha>0} \varphi(\alpha p) > \varphi(0)$,
- $\pi(\bar{c}, p; 0) > -\infty$,
- \bullet $\pi(\bar{c}, p; c) > -\infty$ for all $c \in \mathcal{M}$,

are equivalent and imply that $\pi(\bar{c}, p; \cdot)$ is proper and lower semicontinuous on ^M and that the infimum

 $\pi(\bar{c}, p; c) = \inf\{\alpha \mid \varphi(\bar{c} + c - \alpha p) \leq \varphi(\bar{c})\}\$

is attained for every $c \in \mathcal{M}$.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions

[Duality](#page-21-0)

• Let $\mathcal{M}^p = \{c \in \mathcal{M} \mid c_t \in L^p(\Omega, \mathcal{F}_t, P; \mathbb{R})\}.$

• The bilinear form

$$
\langle c, y \rangle := E \sum_{t=0}^{T} c_t y_t
$$

puts \mathcal{M}^1 and \mathcal{M}^∞ in separating duality.

 \bullet The conjugate of a function f on \mathcal{M}^1 is defined by

$$
f^*(y) = \sup_{c \in \mathcal{M}^1} \{ \langle c, y \rangle - f(c) \}.
$$

 \bullet If f is proper, convex and lower semicontinuous, then

$$
f(y) = \sup_{y \in \mathcal{M}^{\infty}} \{ \langle c, y \rangle - f^*(y) \}.
$$

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Lemma 19 The conjugate of φ can be expressed in terms of the support function $\sigma_{\mathcal{C}}(y) = \sup_{c \in \mathcal{C}} \langle c, y \rangle$ of $\mathcal C$ as $\varphi^*(y) = E \sum_i v_t^*(y_t) + \sigma_\mathcal{C}(y).$ $\, T \,$ $t{=}0$

Theorem 20 If φ is lower semicontinuous, we have

$$
\varphi(c) = \sup_{y \in \mathcal{M}^{\infty}} \left\{ \langle c, y \rangle - \sigma_{\mathcal{C}}(y) - E \sum_{t=0}^{T} v_t^*(y_t) \right\}.
$$

In particular, when $\cal C$ is a cone,

$$
\varphi(c) = \sup_{y \in C^*} \left\{ \langle c, y \rangle - E \sum_{t=0}^T v_t^*(y_t) \right\},\,
$$

where $\mathcal{C}^*:=\{y\in \mathcal{M}^\infty\,|\,\langle c,y\rangle\leq 0\,\,\forall c\in \mathcal{C}\cap \mathcal{M}^1\}$ is the polar cone of $\mathcal{C}.$

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Lemma 21 If $S_t(x, \cdot)$ are integrable, then for $y \in \mathcal{M}_+^{\infty}$, $\sigma_{\mathcal{C}}(y) = \inf_{v \in \mathcal{N}^1}$ $\left\{\sum_{t=0}^T E(y_t S_t)^*(v_t) + \sum_{t=0}^{T-1} E \sigma_{D_t}(E[\Delta v_{t+1}|\mathcal{F}_t])\right\},$ while $\sigma_{\mathcal{C}^1}(y) = +\infty$ for $y \notin \mathcal{M}_+^\infty$. The infimum is attained.

Example 22 If $S_t(\omega, x) = s_t(\omega) \cdot x$ and $D_t(\omega)$ is a cone, $\mathcal{C}^* = \{y \in \mathcal{M}^{\infty} \, | \, E[\Delta(y_{t+1}s_{t+1}) \, | \mathcal{F}_t] \in D_t^* \}.$

Example 23 If $S_t(\omega, x) = \sup\{s \cdot x \, | \, s \in [s_t^b(\omega), s_t^a(\omega)]\}$ and $D_t(\omega) = \mathbb{R}^J$, then

 $\mathcal{C}^*=\{y\in\mathcal{M}^\infty\,|\,ys$ is a martingale for some $s\in[s^b,s^a]\}.$

Example 24 In the classical model, \mathcal{C}^* consists of positive multiples of martingale densities.

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**

Theorem 25 Let $\overline{c} \in M^1$, $\mathcal{A}(\overline{c}) = \{c \mid \varphi(\overline{c} + c) \leq \varphi(\overline{c})\}$ and assume that φ is proper and lower semicontinuous. Then 1. $\sup_{\alpha>0} \varphi(\alpha p) > \varphi(0)$, 2. $\pi(\bar{c}, p; 0) > -\infty$, 3. $\pi(\bar{c}, p; c) > -\infty$ for all $c \in \mathcal{M}$, 4. $\langle p, y \rangle = 1$ for some $y \in \operatorname{dom} \sigma_{\mathcal{A}(\bar{c})}$ are equivalent and imply that $\pi(\bar{c}, p; c) = \sup_{y \in \mathcal{M}^{\infty}} \left\{ \langle c, y \rangle - \sigma_{\mathcal{A}(\bar{c})}(y) \mid \langle p, y \rangle = 1 \right\}.$ Moreover, if $\inf \varphi < \varphi(\bar{c})$, then $\sigma_{\mathcal{A}(\bar{c})}=\sigma_{\mathcal{B}(\bar{c})}+\sigma_{\mathcal{C}},$ where $\mathcal{B}(\bar{c}) = \{c \in \mathcal{M}^1 \mid \mathcal{V}(\bar{c} + c) \leq \varphi(\bar{c})\}.$

[Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions

[Duality](#page-21-0)

Example 26 In the classical model, with $p = (1, 0, \ldots, 0)$ and $v_t = \delta_{\mathbb{R}_+}$ for $t < T$, we get

$$
\pi(\bar{c}, p; c) = \sup_{y \in \mathcal{M}^{\infty}} \left\{ \left\langle c, y \right\rangle - \sigma_{\mathcal{A}(\bar{c})}(y) \, \middle| \, \left\langle p, y \right\rangle = 1 \right\}
$$
\n
$$
= \sup_{Q \in \mathcal{Q}} \left\{ E^{Q} \sum_{t=0}^{T} (\bar{c}_{t} + c_{t}) - \sigma_{\mathcal{B}(\bar{c})} \left(E_{t} \frac{dQ}{dP} \right) \right\}
$$
\n
$$
= \sup_{Q \in \mathcal{Q}} \sup_{\alpha > 0} E^{Q} \left\{ \sum_{t=0}^{T} (\bar{c}_{t} + c_{t}) - \alpha \left[v_{T}^{*} \left(\frac{dQ}{dP} / \alpha \right) - \varphi(\bar{c}) \right] \right\}
$$

where $\mathcal Q$ is the set of absolutely continuous martingale
measures: see D iagini, Erittelli, Cresselli, 2011] for a measures; see [Biagini, Frittelli, Grasselli, 2011] for ^a continuous time version.

Summary

- [Market](#page-4-0) model Optimal [investment](#page-9-0) Swap [contracts](#page-13-0) [Existence](#page-17-0) of solutions **[Duality](#page-21-0)**
- Financial contracts often involve sequences of cash-flows.
- The adequacy of swap rates/prices is subjective (views, risk preferences, the current financial position).
- Much of classical asset pricing theory can be extended to convex models of illiquid markets.
- In the absence of numeraire, martingale measures have to be replaced by more genera^l dual variables that capture uncertainty as well as time value of money.