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Optimal Liquidation

How to liquidate X shares of an asset?

1 Macroscopic time scale:
• Horizon T̄ > 0 over which the shares X need to be liquidated.
• Depends on long term variables: average daily volume,

strategic considerations, news events, ...

2 Mesoscopic time scale:
• Trade schedule 0 ≤ t0 ≤ t1 . . . ≤ ti ≤ . . . ≤ tn = T̄ for the

“child” trades.
• Depends on medium term variables: volatility of the stock, risk

aversion of the trader, price impact considerations, ...

3 Microscopic time scale:
• Within a time interval (ti , ti+1], what is the timing and the

type of order used to liquidate the “child” trade?
• Depends on short term variables: limit order book information.
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Mesoscopic Time Scale

The trade schedule (Almgren and Chriss (1998)):
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Microscopic Time Scale

• We assume that the trade schedule is given.

• The goal is then to liquidate one lot (the shares xt) in the
time window (ti , ti+1], i.e., what is the optimal time τ in
[0,T ] to sell the lot, where T = ti+1 − ti > 0.

• T is typically short, e.g., 1 minute.

• For such short time periods, observing the limit order book
can be very advantageous in identifying good liquidation
times.

• However, latency in the trade execution can diminish this
advantage!
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Latency

• Latency arises in every trade execution:

1 Time of datafeed to travel from exchange to execution
machine;

2 The algorithm making a decision;
3 The order being sent back to the market.

• Latency has no effect on deterministic trade schedules.

• In our model the algorithm will take into account that if a
market order is sent at time t it will actually be executed at
the best price available at time t + l , for latency l > 0.

• This worsen the performance of our optimal liquidation
algorithm, thus allowing us to quantify the cost of latency.
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Outline

1 Optimal liquidation:

• The top-of-book imbalance process.

• Optimal stopping problem.

• The trade and no-trade regions.

2 Trading with latency.

3 Dynamic programming.

4 Backtesting strategy on TAQ data.

5 Conclusions.
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The Imbalance Process

• The imbalance process:

I (t) =
B(t)

A(t) + B(t)

B(t) is the bid size, A(t) is the ask size.

• We assume I (t) is a Markov process.

• Imbalance is a predictor of short term price moves
• As a consequence of a zero-intelligence model: Cont, Stoikov

and Talreja (2010)
• Empirically: Avellaneda, Reed and Stoikov (2011)
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Motivation

There is empirical evidence that selling on small imbalances can be
profitable:

• On each quote i , record the imbalance Ii and the mid price Sm
i

• At a later quote in the future j , record the mid price Sm
j

• Take averages of (Sm
j − Sm

i ) for Ii in different buckets
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Cost as a fraction of the spread

x axis is time, y axis is cost
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Cost of trading on a given imbalance, for dt=20 seconds
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The Optimal Liquidation Problem

• Goal: Identify an optimal time τ in [0,T ] to sell the share, i.e.,

V (t, x) = inf
t≤τ≤T

E [Iτ |It = x ],

for x ∈ [0, 1] and t ∈ [0,T ], and τ ∈ T , where T is the set of
stopping times with respect to σ(I (t))t≥0.

• In general we may solve

V (t, x) = inf
t≤τ≤T

E [g(Iτ )|It = x ],
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Optimal Liquidation based on Minimizing Imbalance

Define

D = {(t, x) ∈ [0,T ]× [0, 1) : V (t, x) = x} ,
C = {(t, x) ∈ [0,T ]× [0, 1) : V (t, x) < x} .

Proposition

There exists a non-decreasing function w∗ : [0,T ]→ [0, 1] with
w∗(T ) = 1, such that D = {(x , t) ∈ [0, 1)× [0,T ] : x ≤ w∗(t)}.
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Trade/no Trade Regions
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Trading with Latency

• A trade triggered at time t is executed at time t + L for L > 0.

• Consider

V L(t, x) = inf
t≤τL≤T−L

E[I (τL + L)|I (t) = x ],

where τL ∈ T .

• This is equivalent to:

V L(t, x) = inf
t≤τL≤T−L

E[GL(I (τL))|I (t) = x ].
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The function G

V L(t, x) is equivalent to

V L(t, x) = inf
t≤τL≤T−l

E[GL(I (τL))|I (t) = x ].

where GL(u) = E[I (L)|I (0) = u].
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Latency is Costly

Proposition

Fix t ∈ [0,T ], s ∈ R, then V L(t, x) is increasing in L for L ∈ [0,T ].
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Trade/No-Trade Regions with Latency

The “trade region” is still connected, but the “no-trade” region
does not need to be connected anymore:

Proposition

There exists a non-decreasing function w∗
L : [0,T ]→ [0, 1] and a

non-increasing function v∗L : [0,T ]→ [0, 1], with v∗L ≤ w∗
L ,

w∗
L (t) = 1 for t ∈ [T − L,T ] and v∗L = 0 for t ∈ [T − L,T ], such

that

DL = {(t, u) ∈ [0,T ]× [0, 1) : v∗L (t) ≤ u ≤ w∗
L (t)} .
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Trade/No-Trade Regions with Latency cont.
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Discretization Approximation

• Knowing V L(t, x), is enough to identify good liquidation
times.

• Let N,E ∈ N. Define,

k : [0,T ]→ K = {0, . . . ,N}
t 7→ k(t) = sup {n ∈ {0, . . . ,N} |nT/N ≤ t} ,

h : [0, 1)→ H = {1, . . . ,E}
x 7→ h(x) = bExc+ 1.

• These mappings transform the original state space
[0,T ]× [0, 1) into a discrete state space with (N + 1)E states.
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The transition matrix

The probability pij that the imbalance will transitions from state i
to state j in 500ms
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Dynamic Program

• Bellman’s recursion:

V L
E ,N(n, i) = max

{
GL(i),E[V L

E ,N(n + 1, I (n + 1))|I (n) = i ]
}
,

• Conditional probability:

E[V L
E ,N(n + 1, I (n + 1))|I (n) = i ] =

E∑
k=1

pikV L
E ,N(n + 1, k).
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Discretization Convergence
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As N →∞ and E →∞ the boundary between trade and no-trade
region converges to a smooth curve.
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Overview

Backtesting on TAQ data for 5-years US treasury bonds for 21
days (July 2010).

1 The time-weighted average price (TWAP) strategy liquidates
one share per minute independently of the state of the limit
order book.

2 Our imbalance-based algorithm will have T equal to 1 minute.
For each day we backtest,

• we compute the optimal execution region, using the empirical
transition matrix from the previous day’s data

• we walk through each quote, decide whether we are in the
trade region or not

• if we are in the trade region submit a sell order which will be
executed at the bid L milliseconds later
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Optimal Stopping vs. TWAP Strategy

• Consider residuals R̂ = Sb
τ − Sb

T , where τ is the stopping time
from the optimal stopping problem V (t, x).

• Compare 5,649 intervals of length 1 minute.

• Without latency the optimal liquidation strategy saves on
average 31 $ per share, i.e., 1/3 of the spread (Spread is 78$
for 5 yrs US-treasury bonds):

ˆE[R] ˆσ(R)

Optimal policy vs. TWAP 31.26 $ 49.14 $
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Realized Imbalances
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Empirical evidence for trading on low imbalances

Empirical observed imbalance I (t) conditioned a trade occurs
on the next quote.
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Cost of Latency

• Cost of latency:

COL = E[Sb(τ)− Sb(τ + L)],

where τ is the stopping time induced by V (t, x).

• Note, we calculate the COL with respect to the optimal
strategy with no latency.
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The Cost of Latency cont.
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• 10ms latency ≈ 10$ per share.

• For latencies ≥ 2000ms (i.e., 2 secs) the advantage of
observing the limit order book diminishes (performance
becomes similar to TWAP).

• Adjusting the liquidation policy brings only minor
improvement in the performance.
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Conclusions

• We consider an optimal stopping problem that depends on:
• Information found in the order book;
• Latency;
• The time left to catch up with the TWAP algorithm.

• The solution comes in the form of a trade/ no-trade regions in
the imbalance process.

• We estimate model parameters with level-I trades and quotes
data.

• We find that our optimal liquidation algorithm significantly
outperforms a TWAP algorithm.

• We quantify the cost of latency.

• Reference: Optimal Asset Liquidation Using Limit Order Book
Information

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2113827
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2113827
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