Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	000000	00000	0000	000000	0

Computational Finance 14 Time is Money: Estimating the Cost of Latency in Trading

Sasha Stoikov (joint work with Rolf Waeber)

Cornell University

October 28, 2013

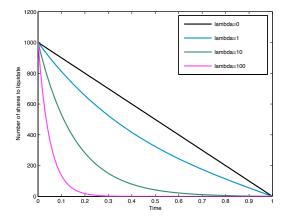
Introduction •0000	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions O
Optima	al Liquidatio	n			

How to liquidate X shares of an asset?

- 1 Macroscopic time scale:
 - Horizon $\overline{T} > 0$ over which the shares X need to be liquidated.
 - Depends on *long term* variables: average daily volume, strategic considerations, news events, ...
- 2 Mesoscopic time scale:
 - Trade schedule $0 \le t_0 \le t_1 \ldots \le t_i \le \ldots \le t_n = \overline{T}$ for the "child" trades.
 - Depends on *medium term* variables: volatility of the stock, risk aversion of the trader, price impact considerations, ...
- **3 Microscopic** time scale:
 - Within a time interval $(t_i, t_{i+1}]$, what is the *timing* and the *type of order* used to liquidate the "child" trade?
 - Depends on *short term* variables: limit order book information.

Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions 0
Mesosc	opic Time S	Scale			

The trade schedule (Almgren and Chriss (1998)):



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions O
Micros	copic Time	Scale			

- We assume that the trade schedule is **given**.
 - The goal is then to liquidate one lot (the shares x_t) in the time window (t_i, t_{i+1}], i.e., what is the optimal time τ in [0, T] to sell the lot, where T = t_{i+1} t_i > 0.
 - *T* is typically short, e.g., 1 minute.
 - For such short time periods, observing the limit order book can be very advantageous in identifying good liquidation times.
 - However, **latency** in the trade execution can diminish this advantage!

Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions O
Latency	/				

- Latency arises in every trade execution:
 - Time of datafeed to travel from exchange to execution machine;
 - 2 The algorithm making a decision;
 - 3 The order being sent back to the market.
- Latency has no effect on deterministic trade schedules.
- In our model the algorithm will take into account that if a market order is sent at time t it will actually be executed at the best price available at time t + I, for latency I > 0.
- This worsen the performance of our optimal liquidation algorithm, thus allowing us to quantify the cost of latency.

Introduction 0000●	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions O
Outline	÷				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Optimal liquidation:

- The top-of-book imbalance process.
- Optimal stopping problem.
- The trade and no-trade regions.
- Trading with latency.
- **3** Dynamic programming.
- **4** Backtesting strategy on TAQ data.
- 6 Conclusions.

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	000000	00000	0000	000000	0

The Imbalance Process

The imbalance process:

$$I(t) = \frac{B(t)}{A(t) + B(t)}$$

B(t) is the bid size, A(t) is the ask size.

- We assume I(t) is a Markov process.
- Imbalance is a predictor of short term price moves
 - As a consequence of a zero-intelligence model: Cont, Stoikov and Talreja (2010)
 - Empirically: Avellaneda, Reed and Stoikov (2011)

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	000000	00000	0000		O
Motiva	tion				

There is empirical evidence that selling on small imbalances can be profitable:

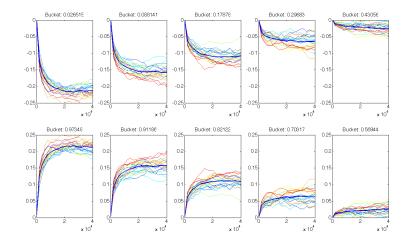
• On each quote *i*, record the imbalance I_i and the mid price S_i^m

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- At a later quote in the future j, record the mid price S_i^m
- Take averages of $(S_i^m S_i^m)$ for I_i in different buckets

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	000000	00000	0000	000000	0

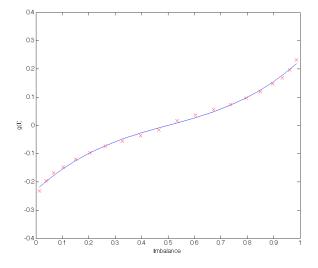
Cost as a fraction of the spread



x axis is time, y axis is cost

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	0000000	00000	0000	000000	0

Cost of trading on a given imbalance, for dt=20 seconds



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	0000000	00000	0000	000000	0

The Optimal Liquidation Problem

• Goal: Identify an optimal time τ in [0, T] to sell the share, i.e.,

$$V(t,x) = \inf_{t \le \tau \le T} E[I_{\tau}|I_t = x],$$

for $x \in [0, 1]$ and $t \in [0, T]$, and $\tau \in T$, where T is the set of stopping times with respect to $\sigma(I(t))_{t \ge 0}$.

In general we may solve

$$V(t,x) = \inf_{t \leq \tau \leq T} E[g(I_{\tau})|I_t = x],$$

Introduction 00000 Optimal liquidation

Latency 00000 Dynamic programming 0000

Backtesting on TAQ data 000000

Conclusions 0

Optimal Liquidation based on Minimizing Imbalance

Define

$$D = \{(t, x) \in [0, T] \times [0, 1) : V(t, x) = x\},\$$

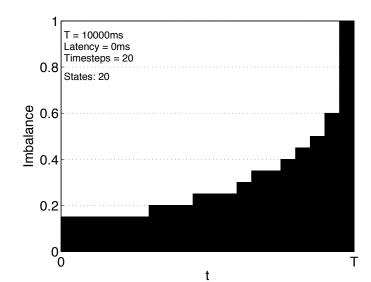
$$C = \{(t, x) \in [0, T] \times [0, 1) : V(t, x) < x\}.$$

Proposition

There exists a non-decreasing function $w^* : [0, T] \rightarrow [0, 1]$ with $w^*(T) = 1$, such that $D = \{(x, t) \in [0, 1) \times [0, T] : x \le w^*(t)\}$.

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	000000	00000	0000	000000	0

Trade/no Trade Regions



Introduction 00000	Optimal liquidation	Latency ●0000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions 0
Trading	g with Later	ιсу			

- A trade triggered at time t is executed at time t + L for L > 0.
- Consider

$$V^{L}(t,x) = \inf_{t \leq \tau^{L} \leq T-L} \mathbb{E}[I(\tau^{L}+L)|I(t)=x],$$

where $\tau^{L} \in \mathcal{T}$.

• This is equivalent to:

$$V^{L}(t,x) = \inf_{t \leq \tau^{L} \leq T-L} \mathbb{E}[G^{L}(I(\tau^{L}))|I(t) = x].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

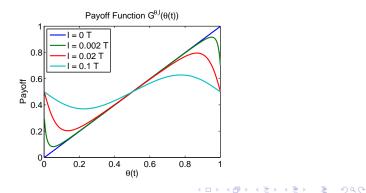
Introduction 00000	Optimal liquidation	Latency ○●○○○	Dynamic programming 0000	Backtesting on TAQ data	Conclusions 0
	-				

The function G

 $V^{L}(t,x)$ is equivalent to

$$V^{L}(t,x) = \inf_{t \leq \tau^{L} \leq T-I} \mathbb{E}[G^{L}(I(\tau^{L}))|I(t) = x].$$

where $G^{L}(u) = \mathbb{E}[I(L)|I(0) = u].$



Introduction 00000	Optimal liquidation	Latency 00●00	Dynamic programming 0000	Backtesting on TAQ data	Conclusions 0
Latency	y is Costly				

Proposition Fix $t \in [0, T]$, $s \in \mathbb{R}$, then $V^{L}(t, x)$ is increasing in L for $L \in [0, T]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Optimal liquidation Dynamic programming Backtesting on TAQ data Latency 00000

Trade/No-Trade Regions with Latency

The "trade region" is still connected, but the "no-trade" region does not need to be connected anymore:

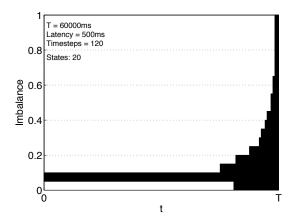
Proposition

There exists a non-decreasing function $w_I^* : [0, T] \rightarrow [0, 1]$ and a non-increasing function $v_l^* : [0, T] \to [0, 1]$, with $v_l^* \leq w_l^*$, $w_t^*(t) = 1$ for $t \in [T - L, T]$ and $v_t^* = 0$ for $t \in [T - L, T]$, such that

$$D^{L} = \{(t, u) \in [0, T] \times [0, 1) : v_{L}^{*}(t) \le u \le w_{L}^{*}(t)\}.$$

Introduction
00000Optimal liquidation
00000Latency
00000Dynamic programming
0000Backtesting on TAQ data
000000Conclusions
0

Trade/No-Trade Regions with Latency cont.



・ロト ・ 一下・ ・ モト・ ・ モト・

3

The no-trade region is split in two.

Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming •000	Backtesting on TAQ data	Conclusions 0
D .					

Discretization Approximation

- Knowing $V^{L}(t, x)$, is enough to identify good liquidation times.
- Let $N, E \in \mathbb{N}$. Define,

$$k: [0, T] \to K = \{0, \dots, N\}$$

$$t \mapsto k(t) = \sup \{n \in \{0, \dots, N\} | nT/N \le t\},$$

$$h: [0, 1) \to H = \{1, \dots, E\}$$

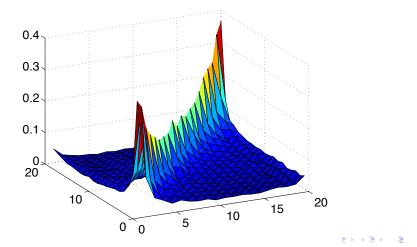
$$x \mapsto h(x) = \lfloor Ex \rfloor + 1.$$

These mappings transform the original state space
 [0, T] × [0, 1) into a *discrete state space* with (N + 1)E states.

Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions O

The transition matrix

The probability p_{ij} that the imbalance will transitions from state i to state j in 500ms



Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming 00●0	Backtesting on TAQ data	Conclusions O
Dynam	ic Program				

• Bellman's recursion:

$$V_{E,N}^{L}(n,i) = \max \left\{ G^{L}(i), \mathbb{E}[V_{E,N}^{L}(n+1,I(n+1))|I(n)=i] \right\},$$

• Conditional probability:

$$\mathbb{E}[V_{E,N}^{L}(n+1,I(n+1))|I(n)=i] = \sum_{k=1}^{E} p_{ik}V_{E,N}^{L}(n+1,k).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 00000 Optimal liquidation

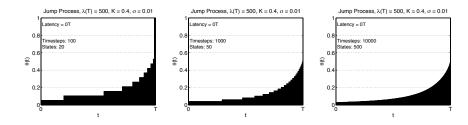
atency 0000

Dynamic programming

Backtesting on TAQ data 000000

Conclusions 0

Discretization Convergence



As $N \to \infty$ and $E \to \infty$ the boundary between trade and no-trade region converges to a smooth curve.

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000		00000	0000	•00000	0
Overvie	W.				

Backtesting on TAQ data for 5-years US treasury bonds for 21 days (July 2010).

- The time-weighted average price (TWAP) strategy liquidates one share per minute **independently** of the state of the limit order book.
- Our imbalance-based algorithm will have T equal to 1 minute. For each day we backtest,
 - we compute the optimal execution region, using the empirical transition matrix from the previous day's data
 - we walk through each quote, decide whether we are in the trade region or not
 - if we are in the trade region submit a sell order which will be executed at the bid *L* milliseconds later

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	0000000	00000	0000	00000	0

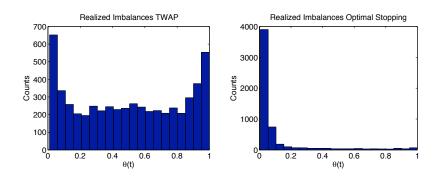
Optimal Stopping vs. TWAP Strategy

- Consider residuals $\hat{R} = S_{\tau}^{b} S_{T}^{b}$, where τ is the stopping time from the optimal stopping problem V(t, x).
- Compare 5,649 intervals of length 1 minute.
- Without latency the optimal liquidation strategy saves on average 31 \$ per share, i.e., **1/3 of the spread** (Spread is 78\$ for 5 yrs US-treasury bonds):

$$\begin{array}{c|c} & \mathbb{E}[\hat{R}] & \sigma(\hat{R}) \\ \hline \\ \text{Optimal policy vs. TWAP} & 31.26 \$ & 49.14 \$ \\ \end{array}$$

Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions 0

Realized Imbalances



Introduction 00000 Optimal liquidation 0000000 otency [

Dynamic programming

Backtesting on TAQ data

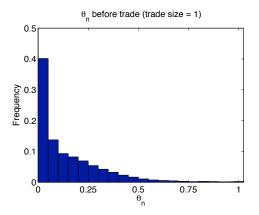
(日)、

э

Conclusions 0

Empirical evidence for trading on low imbalances

Empirical observed imbalance I(t) conditioned a trade occurs on the next quote.



Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000		00000	0000	0000€0	0
Cost of	Latency				

• Cost of latency:

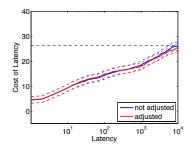
$$COL = \mathbb{E}[S_b(\tau) - S_b(\tau + L)],$$

where τ is the stopping time induced by V(t, x).

• Note, we calculate the COL with respect to the **optimal strategy with no latency**.

Introduction	Optimal liquidation	Latency	Dynamic programming	Backtesting on TAQ data	Conclusions
00000	0000000	00000	0000	000000	0

The Cost of Latency cont.



- 10ms latency \approx 10\$ per share.
- For latencies ≥ 2000ms (i.e., 2 secs) the advantage of observing the limit order book diminishes (performance becomes similar to TWAP).
- Adjusting the liquidation policy brings only minor improvement in the performance.

Introduction 00000	Optimal liquidation	Latency 00000	Dynamic programming 0000	Backtesting on TAQ data	Conclusions •
Conclus	sions				

- We consider an optimal stopping problem that depends on:
 - Information found in the order book;
 - Latency;
 - The time left to catch up with the TWAP algorithm.
- The solution comes in the form of a trade/ no-trade regions in the imbalance process.
- We estimate model parameters with level-I trades and quotes data.
- We find that our optimal liquidation algorithm significantly outperforms a TWAP algorithm.
- We quantify the cost of latency.
- Reference: Optimal Asset Liquidation Using Limit Order Book Information