
Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Computational Finance 14
Time is Money: Estimating the Cost of Latency in Trading

Sasha Stoikov (joint work with Rolf Waeber)

Cornell University

October 28, 2013



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Optimal Liquidation

How to liquidate X shares of an asset?

1 Macroscopic time scale:
• Horizon T̄ > 0 over which the shares X need to be liquidated.
• Depends on long term variables: average daily volume,

strategic considerations, news events, ...

2 Mesoscopic time scale:
• Trade schedule 0 ≤ t0 ≤ t1 . . . ≤ ti ≤ . . . ≤ tn = T̄ for the

“child” trades.
• Depends on medium term variables: volatility of the stock, risk

aversion of the trader, price impact considerations, ...

3 Microscopic time scale:
• Within a time interval (ti , ti+1], what is the timing and the

type of order used to liquidate the “child” trade?
• Depends on short term variables: limit order book information.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Mesoscopic Time Scale

The trade schedule (Almgren and Chriss (1998)):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Time

Nu
m

be
r o

f s
ha

re
s 

to
 liq

ui
da

te

lambda=0

lambda=1

lambda=10

lambda=100



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Microscopic Time Scale

• We assume that the trade schedule is given.

• The goal is then to liquidate one lot (the shares xt) in the
time window (ti , ti+1], i.e., what is the optimal time τ in
[0,T ] to sell the lot, where T = ti+1 − ti > 0.

• T is typically short, e.g., 1 minute.

• For such short time periods, observing the limit order book
can be very advantageous in identifying good liquidation
times.

• However, latency in the trade execution can diminish this
advantage!



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Latency

• Latency arises in every trade execution:

1 Time of datafeed to travel from exchange to execution
machine;

2 The algorithm making a decision;
3 The order being sent back to the market.

• Latency has no effect on deterministic trade schedules.

• In our model the algorithm will take into account that if a
market order is sent at time t it will actually be executed at
the best price available at time t + l , for latency l > 0.

• This worsen the performance of our optimal liquidation
algorithm, thus allowing us to quantify the cost of latency.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Outline

1 Optimal liquidation:

• The top-of-book imbalance process.

• Optimal stopping problem.

• The trade and no-trade regions.

2 Trading with latency.

3 Dynamic programming.

4 Backtesting strategy on TAQ data.

5 Conclusions.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

The Imbalance Process

• The imbalance process:

I (t) =
B(t)

A(t) + B(t)

B(t) is the bid size, A(t) is the ask size.

• We assume I (t) is a Markov process.

• Imbalance is a predictor of short term price moves
• As a consequence of a zero-intelligence model: Cont, Stoikov

and Talreja (2010)
• Empirically: Avellaneda, Reed and Stoikov (2011)



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Motivation

There is empirical evidence that selling on small imbalances can be
profitable:

• On each quote i , record the imbalance Ii and the mid price Sm
i

• At a later quote in the future j , record the mid price Sm
j

• Take averages of (Sm
j − Sm

i ) for Ii in different buckets



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Cost as a fraction of the spread

x axis is time, y axis is cost



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Cost of trading on a given imbalance, for dt=20 seconds



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

The Optimal Liquidation Problem

• Goal: Identify an optimal time τ in [0,T ] to sell the share, i.e.,

V (t, x) = inf
t≤τ≤T

E [Iτ |It = x ],

for x ∈ [0, 1] and t ∈ [0,T ], and τ ∈ T , where T is the set of
stopping times with respect to σ(I (t))t≥0.

• In general we may solve

V (t, x) = inf
t≤τ≤T

E [g(Iτ )|It = x ],



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Optimal Liquidation based on Minimizing Imbalance

Define

D = {(t, x) ∈ [0,T ]× [0, 1) : V (t, x) = x} ,
C = {(t, x) ∈ [0,T ]× [0, 1) : V (t, x) < x} .

Proposition

There exists a non-decreasing function w∗ : [0,T ]→ [0, 1] with
w∗(T ) = 1, such that D = {(x , t) ∈ [0, 1)× [0,T ] : x ≤ w∗(t)}.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Trade/no Trade Regions

0 T
0

0.2

0.4

0.6

0.8

1

t

Im
ba

la
nc

e

Timesteps = 20
Latency = 0ms
T = 10000ms

States: 20



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Trading with Latency

• A trade triggered at time t is executed at time t + L for L > 0.

• Consider

V L(t, x) = inf
t≤τL≤T−L

E[I (τL + L)|I (t) = x ],

where τL ∈ T .

• This is equivalent to:

V L(t, x) = inf
t≤τL≤T−L

E[GL(I (τL))|I (t) = x ].



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

The function G

V L(t, x) is equivalent to

V L(t, x) = inf
t≤τL≤T−l

E[GL(I (τL))|I (t) = x ].

where GL(u) = E[I (L)|I (0) = u].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Payoff Function Gθ,l(θ(t))

θ(t)

P
ay

of
f

 

 
l = 0 T
l = 0.002 T
l = 0.02 T
l = 0.1 T



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Latency is Costly

Proposition

Fix t ∈ [0,T ], s ∈ R, then V L(t, x) is increasing in L for L ∈ [0,T ].



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Trade/No-Trade Regions with Latency

The “trade region” is still connected, but the “no-trade” region
does not need to be connected anymore:

Proposition

There exists a non-decreasing function w∗
L : [0,T ]→ [0, 1] and a

non-increasing function v∗L : [0,T ]→ [0, 1], with v∗L ≤ w∗
L ,

w∗
L (t) = 1 for t ∈ [T − L,T ] and v∗L = 0 for t ∈ [T − L,T ], such

that

DL = {(t, u) ∈ [0,T ]× [0, 1) : v∗L (t) ≤ u ≤ w∗
L (t)} .



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Trade/No-Trade Regions with Latency cont.

0 T
0

0.2

0.4

0.6

0.8

1

t

Im
ba

la
nc

e

Timesteps = 120
Latency = 500ms
T = 60000ms

States: 20

The no-trade region is split in two.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Discretization Approximation

• Knowing V L(t, x), is enough to identify good liquidation
times.

• Let N,E ∈ N. Define,

k : [0,T ]→ K = {0, . . . ,N}
t 7→ k(t) = sup {n ∈ {0, . . . ,N} |nT/N ≤ t} ,

h : [0, 1)→ H = {1, . . . ,E}
x 7→ h(x) = bExc+ 1.

• These mappings transform the original state space
[0,T ]× [0, 1) into a discrete state space with (N + 1)E states.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

The transition matrix

The probability pij that the imbalance will transitions from state i
to state j in 500ms

0 5 10 15 20

0

10

20
0

0.1

0.2

0.3

0.4



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Dynamic Program

• Bellman’s recursion:

V L
E ,N(n, i) = max

{
GL(i),E[V L

E ,N(n + 1, I (n + 1))|I (n) = i ]
}
,

• Conditional probability:

E[V L
E ,N(n + 1, I (n + 1))|I (n) = i ] =

E∑
k=1

pikV L
E ,N(n + 1, k).



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Discretization Convergence

0 T
0

0.2

0.4

0.6

0.8

1

t

!(
t)

Jump Process, "(T) = 500, K = 0.4, # = 0.01

Latency = 0T

Timesteps: 100
States: 20

0 T
0

0.2

0.4

0.6

0.8

1

t

!(
t)

Jump Process, "(T) = 500, K = 0.4, # = 0.01

Latency = 0T

Timesteps: 1000
States: 50

0 T
0

0.2

0.4

0.6

0.8

1

t

!(
t)

Jump Process, "(T) = 500, K = 0.4, # = 0.01

Latency = 0T

Timesteps: 10000
States: 500

As N →∞ and E →∞ the boundary between trade and no-trade
region converges to a smooth curve.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Overview

Backtesting on TAQ data for 5-years US treasury bonds for 21
days (July 2010).

1 The time-weighted average price (TWAP) strategy liquidates
one share per minute independently of the state of the limit
order book.

2 Our imbalance-based algorithm will have T equal to 1 minute.
For each day we backtest,

• we compute the optimal execution region, using the empirical
transition matrix from the previous day’s data

• we walk through each quote, decide whether we are in the
trade region or not

• if we are in the trade region submit a sell order which will be
executed at the bid L milliseconds later



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Optimal Stopping vs. TWAP Strategy

• Consider residuals R̂ = Sb
τ − Sb

T , where τ is the stopping time
from the optimal stopping problem V (t, x).

• Compare 5,649 intervals of length 1 minute.

• Without latency the optimal liquidation strategy saves on
average 31 $ per share, i.e., 1/3 of the spread (Spread is 78$
for 5 yrs US-treasury bonds):

ˆE[R] ˆσ(R)

Optimal policy vs. TWAP 31.26 $ 49.14 $



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Realized Imbalances

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700
Realized Imbalances TWAP

!(t)

Co
un

ts

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000
Realized Imbalances Optimal Stopping

!(t)

Co
un

ts



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Empirical evidence for trading on low imbalances

Empirical observed imbalance I (t) conditioned a trade occurs
on the next quote.

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

!n

Fr
eq

ue
nc

y
!n before trade (trade size = 1)



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Cost of Latency

• Cost of latency:

COL = E[Sb(τ)− Sb(τ + L)],

where τ is the stopping time induced by V (t, x).

• Note, we calculate the COL with respect to the optimal
strategy with no latency.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

The Cost of Latency cont.

101 102 103 104

0

10

20

30

40

Latency

C
os

t o
f L

at
en

cy

 

 

not adjusted
adjusted

• 10ms latency ≈ 10$ per share.

• For latencies ≥ 2000ms (i.e., 2 secs) the advantage of
observing the limit order book diminishes (performance
becomes similar to TWAP).

• Adjusting the liquidation policy brings only minor
improvement in the performance.



Introduction Optimal liquidation Latency Dynamic programming Backtesting on TAQ data Conclusions

Conclusions

• We consider an optimal stopping problem that depends on:
• Information found in the order book;
• Latency;
• The time left to catch up with the TWAP algorithm.

• The solution comes in the form of a trade/ no-trade regions in
the imbalance process.

• We estimate model parameters with level-I trades and quotes
data.

• We find that our optimal liquidation algorithm significantly
outperforms a TWAP algorithm.

• We quantify the cost of latency.

• Reference: Optimal Asset Liquidation Using Limit Order Book
Information

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2113827
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2113827

	Introduction
	

	Optimal liquidation
	

	Latency
	

	Dynamic programming
	

	Backtesting on TAQ data
	

	Conclusions
	


