Transition operators for the free convolution

Guillaume Cébron, Paris 6

Fields Institute, Toronto

July 22, 2013

Guillaume Cébron, Paris 6 Transition operators for the free convolution

Introduction

2 Computing conditional expectations

- The algebra $\mathbb{C}{X}$
- Free convolution operators

3 Free Hall transform

- Another characterization
- The large-N limit

Main problem

Let A, B be free random variables in a W^* -probability space (A, τ) . There is a unique conditional expectation from A to $W^*(B)$, denoted by $\tau(\cdot|B)$. We consider $\tau(P(A + B)|B)$ for any polynomial P.

• • = • • = •

Main problem

Let A, B be free random variables in a W^* -probability space (A, τ) . There is a unique conditional expectation from A to $W^*(B)$, denoted by $\tau(\cdot|B)$. We consider $\tau(P(A+B)|B)$ for any polynomial P.

Theorem (Biane 1998)

If A and B are self-adjoint, there is a Feller-Markov kernel $k_{A,B}(x, dy)$ such that, for all Borel bounded function $f : \mathbb{R} \to \mathbb{R}$,

 $\tau(f(\mathbf{A}+\mathbf{B})|\mathbf{B})=(K_{\mathbf{A},\mathbf{B}}f)(\mathbf{B})$

(where $(K_{A,B}f)(x) = \int f(y)k_{A,B}(x, dy)$).

4 冊 ト 4 三 ト 4 三 ト

Main problem

Let A, B be free random variables in a W^* -probability space (\mathcal{A}, τ) . There is a unique conditional expectation from \mathcal{A} to $W^*(B)$, denoted by $\tau(\cdot|B)$. We consider $\tau(P(A+B)|B)$ for any polynomial P.

Theorem (Biane 1998)

If A and B are self-adjoint, there is a Feller-Markov kernel $k_{A,B}(x, dy)$ such that, for all Borel bounded function $f : \mathbb{R} \to \mathbb{R}$,

 $\tau(f(\mathbf{A} + \mathbf{B})|\mathbf{B}) = (K_{\mathbf{A},\mathbf{B}}f)(\mathbf{B})$

(where $(K_{A,B}f)(x) = \int f(y)k_{A,B}(x, dy)$).

Goal: construct a framework to avoid the self-adjointness, the dependence in B, and the limitation of f to be univariate.

A B A A B A

Motivation

Let t > 0. Let S_t be a semi-circular variable of variance t in a W^* -probability space (\mathcal{A}, τ) . Let \mathcal{B} be a random variable free from S_t . We have $\tau((S_t + \mathcal{B})^3 | \mathcal{B}) = \mathcal{B}^3 + 2t\mathcal{B} + t\tau(\mathcal{B})$.

3 1 4

Motivation

Let t > 0. Let S_t be a semi-circular variable of variance t in a W^* -probability space (\mathcal{A}, τ) . Let B be a random variable free from S_t . We have $\tau((S_t + B)^3|B) = B^3 + 2tB + t\tau(B)$. There doesn't exist a polynomial Q independent of B such that

$$\tau((\mathbf{S}_t + \mathbf{B})^3 | \mathbf{B}) = Q(\mathbf{B}).$$

Motivation

Let t > 0. Let S_t be a semi-circular variable of variance t in a W^* -probability space (\mathcal{A}, τ) . Let B be a random variable free from S_t . We have $\tau((S_t + B)^3|B) = B^3 + 2tB + t\tau(B)$. There doesn't exist a polynomial Q independent of B such that

$$\tau((\mathbf{S}_t + \mathbf{B})^3 | \mathbf{B}) = Q(\mathbf{B}).$$

We guess that there is an abstract object

 $X^3 + 2tX + t\tau(X),$

which is independent of B. The space of polynomials has to be extended.

4 B N 4 B N

The algebra $\mathbb{C}{X}$ Free convolution operators

Universal property of $\mathbb{C}\{X\}$

The algebra $\mathbb{C}[X]$ possesses the following universal property: for all element A of an algebra \mathcal{A} , there exists a unique algebra homomorphism φ such that $\varphi(X) = A$.

$$X \in \mathbb{C}[X] \xrightarrow{\varphi} \mathcal{A} \ni \mathcal{A}, \ \varphi(X) = \mathcal{A}.$$

・ロト ・同ト ・ヨト ・ヨト

The algebra $\mathbb{C}{X}$ Free convolution operators

Center-valued expectation

$$X \in \mathbb{C}[X] \xrightarrow{\varphi} \mathcal{A} \ni \mathcal{A}, \ \varphi(X) = \mathcal{A}.$$

A center-valued expectation τ is a linear function from ${\cal A}$ to its center such that

- for all $A, B \in \mathcal{A}$, we have $\tau(\tau(A)B) = \tau(A)\tau(B)$;
- $(\mathbf{1}_{\mathcal{A}}) = \mathbf{1}_{\mathcal{A}}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

-

The algebra $\mathbb{C}{X}$ Free convolution operators

Universal property of $\mathbb{C}\{X\}$

There exists an algebra $\mathbb{C}\{X\}$ endowed with a center-valued expectation tr which possesses the following universal property: for all element A of an algebra \mathcal{A} endowed with a center-valued expectation τ , there exists a unique algebra homomorphism φ such that $\varphi(X) = A$ and $\varphi \circ tr = \tau \circ \varphi$.

$$\begin{array}{ccc} \overset{\mathrm{tr}}{\swarrow} & \overset{\tau}{\frown} \\ X \in & \mathbb{C}\{X\} & \xrightarrow{\varphi} & \mathcal{A} & \ni A, \ \varphi(X) = A, \ \varphi \circ \mathrm{tr} = \tau \circ \varphi. \end{array}$$

4 冊 ト 4 三 ト 4 三 ト

The algebra $\mathbb{C}{X}$ Free convolution operators

More about $\mathbb{C}\{X\}$

The space $\mathbb{C}\{X\}$ is unique up to an isomorphism. We have naturally $\mathbb{C}[X] \subset \mathbb{C}\{X\}$. Furthermore,

$$\{X^{k_0}\operatorname{\mathsf{tr}}(X^{k_1})\cdots\operatorname{\mathsf{tr}}(X^{k_n}):n\in\mathbb{N},k_0,\ldots,k_n\in\mathbb{N}\}$$

is a basis of $\mathbb{C}{X}$, called the canonical basis.

Image: A Image: A

The algebra $\mathbb{C}{X}$ Free convolution operators

The $\mathbb{C}{X}$ -calculus

$$X \in \mathbb{C}[X] \xrightarrow{\varphi} \mathcal{A} \ni \mathcal{A}, \ \varphi(X) = \mathcal{A},$$

Polynomial calculus: for all $P \in \mathbb{C}[X]$, we set $P(A) = \varphi(P)$.

(人間) ト く ヨ ト (く ヨ ト

э

The algebra $\mathbb{C}{X}$ Free convolution operators

The $\mathbb{C}{X}$ -calculus

$$X \in \mathbb{C}[X] \xrightarrow{\varphi} \mathcal{A} \ni \mathcal{A}, \ \varphi(X) = \mathcal{A},$$

Polynomial calculus: for all $P \in \mathbb{C}[X]$, we set $P(A) = \varphi(P)$.

$$\begin{array}{cccc} \overset{\mathrm{tr}}{\searrow} & \overset{\tau}{\frown} \\ X \in & \mathbb{C}\{X\} & \overset{\varphi}{\dashrightarrow} & \mathcal{A} & \ni \mathcal{A}, \ \varphi(X) = \mathcal{A}, \ \varphi \circ \mathrm{tr} = \tau \circ \varphi. \end{array}$$
$$\mathbb{C}\{X\}\text{-calculus: for all } P \in \mathbb{C}\{X\}, \ \mathrm{we \ set} \ P(\mathcal{A}) = \varphi(P). \end{array}$$

(人間) ト く ヨ ト (く ヨ ト

э

The algebra $\mathbb{C}{X}$ Free convolution operators

The $\mathbb{C}{X}$ -calculus

$$X \in \mathbb{C}[X] \xrightarrow{\varphi} \mathcal{A} \ni \mathcal{A}, \ \varphi(X) = \mathcal{A},$$

Polynomial calculus: for all $P \in \mathbb{C}[X]$, we set $P(A) = \varphi(P)$.

$$\begin{array}{ccc} \overset{\mathrm{tr}}{\swarrow} & \overset{\tau}{\backsim} \\ X \in \mathbb{C}\{X\} & \overset{\varphi}{\dashrightarrow} & \mathcal{A} & \ni \mathcal{A}, \ \varphi(X) = \mathcal{A}, \ \varphi \circ \mathrm{tr} = \tau \circ \varphi. \end{array}$$

 $\mathbb{C}{X}$ -calculus: for all $P \in \mathbb{C}{X}$, we set $P(A) = \varphi(P)$. For all $n \in \mathbb{N}, k_0, \ldots, k_n \in \mathbb{N}$, if we set $P = X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(X^{k_n})$, we have

$$P(\mathbf{A}) = \mathbf{A}^{k_0} \tau(\mathbf{A}^{k_1}) \cdots \tau(\mathbf{A}^{k_n}).$$

マロト イヨト イヨト

The algebra $\mathbb{C}{X}$ Free convolution operators

Main theorem

Theorem

Let $A \in A$. There exists an operator Δ_A on $\mathbb{C}\{X\}$ such that, for all $P \in \mathbb{C}\{X\}$, and all $B \in A$ free from A, we have

 $\tau\left(\left.P\left(\boldsymbol{A}+\boldsymbol{B}\right)\right|\boldsymbol{B}\right)=\left(e^{\Delta_{\boldsymbol{A}}}P\right)\left(\boldsymbol{B}\right).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Main theorem

Theorem

Let $A \in A$. There exists an operator Δ_A on $\mathbb{C}\{X\}$ such that, for all $P \in \mathbb{C}\{X\}$, and all $B \in A$ free from A, we have

 $\tau\left(\left.P\left(\boldsymbol{A}+\boldsymbol{B}\right)\right|\boldsymbol{B}\right)=\left(e^{\Delta_{\boldsymbol{A}}}P\right)\left(\boldsymbol{B}\right).$

Example: we have, for all $B \in \mathcal{A}$ free from S_t ,

$$\tau\left(\left(\mathbf{S}_{t}+\mathbf{B}\right)^{3}|\mathbf{B}\right)=\left(e^{\Delta s_{t}}(X^{3})\right)(\mathbf{B})=\mathbf{B}^{3}+2t\mathbf{B}+t\tau(\mathbf{B}).$$

Other versions:

- There exists also an operator D_A for the multiplicative case: $\tau (P(AB)|B) = (e^{D_A}P)(B).$
- The multivariate case requires the space $\mathbb{C}\{X_i : i \in I\}$.

• • = • • = •

The algebra $\mathbb{C}{X}$ Free convolution operators

Description of Δ_A

The operator Δ_A is a derivation for the product $(P, Q) \mapsto P \operatorname{tr}(Q)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The algebra $\mathbb{C}{X}$ Free convolution operators

Description of Δ_A

The operator Δ_A is a derivation for the product $(P, Q) \mapsto P \operatorname{tr}(Q)$. For all $n \in \mathbb{N}, k_0, \ldots, k_n \in \mathbb{N}$, if we set $P = X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(X^{k_n})$, we have

$$\Delta_{\mathcal{A}}P = \sum_{i=0}^{n} X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(\Delta_{\mathcal{A}}(X^{k_i})) \cdots \operatorname{tr}(X^{k_n}).$$

• • = • • = •

The algebra $\mathbb{C}{X}$ Free convolution operators

Description of Δ_A

The operator Δ_A is a derivation for the product $(P, Q) \mapsto P \operatorname{tr}(Q)$. For all $n \in \mathbb{N}, k_0, \ldots, k_n \in \mathbb{N}$, if we set $P = X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(X^{k_n})$, we have

$$\Delta_{\mathcal{A}}P = \sum_{i=0}^{n} X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(\Delta_{\mathcal{A}}(X^{k_i})) \cdots \operatorname{tr}(X^{k_n}).$$

It suffices to describe $\Delta_A(X^n)$ for all $n \in \mathbb{N}$.

• • = • • = •

The algebra $\mathbb{C}{X}$ Free convolution operators

Description of Δ_A

Let $n \in \mathbb{N}$.

$$\Delta_{\mathcal{A}}(X^n) = \sum_{1 \le k_1 < \ldots < k_m \le n} \kappa_m(\mathcal{A}) \cdot X \cdots X \operatorname{tr}(X \cdots X) \cdots \operatorname{tr}(X \cdots X) X \cdots X,$$

where $\kappa_m(A)$ $(m \ge 1)$ are the free cumulants of A.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

An example: the semi-circular case

Let t > 0 and S_t be a semi-circular variable of variance t. The free cumulants of S_t are $\kappa_1(S_t) = 0$, $\kappa_2(S_t) = t$ and $\kappa_n(S_t) = 0$ for all n > 2. We have $\Delta_{S_t} X^3 = 2tX + t \operatorname{tr}(X)$, and $(\Delta_{S_t})^2 X^3 = \Delta_{S_t}(2tX + t \operatorname{tr}(X)) = 0$. Thus,

$$e^{\Delta_{S_t}}(X^3) = X^3 + \Delta_{S_t}X^3 + 0 = X^3 + 2tX + t \operatorname{tr}(X).$$

Using the theorem, we have, for all $B \in \mathcal{A}$ free from S_t ,

$$\tau\left(\left(S_t+B\right)^3|B\right)=\left(e^{\Delta_{S_t}}(X^3)\right)(B)=B^3+2tB+t\tau(B).$$

Another characterization The large-N limit

Free multiplicative Brownian motion

The (right) free unitary Brownian motion $(U_t)_{t\geq 0}$ is defined to be the solution of the following free stochastic differential equation

$$\begin{cases} U_0 = 1, \\ \mathrm{d}U_t = i \,\mathrm{d}S_t U_t - \frac{1}{2}U_t \,\mathrm{d}t. \end{cases}$$

where S_t is a free semicircular process.

伺い イヨト イヨト

Another characterization The large-N limit

Free multiplicative Brownian motion

The (right) free unitary Brownian motion $(U_t)_{t\geq 0}$ is defined to be the solution of the following free stochastic differential equation

$$\begin{cases} U_0 = 1, \\ \mathrm{d}U_t = i \,\mathrm{d}S_t U_t - \frac{1}{2}U_t \,\mathrm{d}t. \end{cases}$$

where S_t is a free semicircular process. Similarly, the (right) free circular multiplicative Brownian motion $(G_t)_{t\geq 0}$ is the solution of the free stochastic differential equation

$$\begin{cases} G_0 = 1, \\ \mathrm{d}G_t = \mathrm{d}C_tG_t. \end{cases}$$

where C_t is a free circular process.

伺下 イヨト イヨト

Another characterization The large-N limit

Free Hall transform

We denote by $L^2(U_t, \tau)$ and $L^2_{hol}(G_t, \tau)$ the Hilbert completion of the algebra generated respectively by U_t and U_t^{-1} , and by G_t and G_t^{-1} (for the norm $\|\cdot\|_2 : A \mapsto \tau (A^*A)^{1/2}$).

Theorem (Biane 1997)

Let t > 0. There exists a Hilbert space isomorphism \mathcal{F}_t between $L^2(U_t, \tau)$ and $L^2_{\text{hol}}(G_t, \tau)$, called the free Hall transform.

伺下 イヨト イヨト

Another characterization The large-N limit

Free Hall transform

We denote by $L^2(U_t, \tau)$ and $L^2_{hol}(G_t, \tau)$ the Hilbert completion of the algebra generated respectively by U_t and U_t^{-1} , and by G_t and G_t^{-1} (for the norm $\|\cdot\|_2 : A \mapsto \tau (A^*A)^{1/2}$).

Theorem (Biane 1997)

Let t > 0. There exists a Hilbert space isomorphism \mathcal{F}_t between $L^2(U_t, \tau)$ and $L^2_{\text{hol}}(G_t, \tau)$, called the free Hall transform.

Theorem (C 2013)

Let t > 0. For all $P \in \mathbb{C}[X]$, $\mathcal{F}_t(P(U_t)) = (e^{D_{U_t}}P)(G_t)$. Moreover, if U_t and G_t are free, for all $P \in \mathbb{C}\{X\}$,

$$\mathcal{F}_t\Big(P(\boldsymbol{U}_t)\Big)=\tau\Big(P(\boldsymbol{U}_t\boldsymbol{G}_t)\Big|\boldsymbol{G}_t\Big).$$

イロト イポト イヨト イヨト

Another characterization The large-*N* limit

Multiplicative Brownian motions

The (right) Brownian motion $(U_t^{(N)})_{t\geq 0}$ on U(N) is defined to be the solution of the following stochastic differential equation

$$\begin{cases} U_0^{(N)} = 1, \\ dU_t^{(N)} = i dH_t U_t^{(N)} - \frac{1}{2} U_t^{(N)} dt. \end{cases}$$

where H_t is a Hermitian Brownian motion in $M_N(\mathbb{C})$.

• • = • • = •

Another characterization The large-*N* limit

Multiplicative Brownian motions

The (right) Brownian motion $(U_t^{(N)})_{t\geq 0}$ on U(N) is defined to be the solution of the following stochastic differential equation

$$\begin{cases} U_0^{(N)} = 1, \\ dU_t^{(N)} = i dH_t U_t^{(N)} - \frac{1}{2} U_t^{(N)} dt. \end{cases}$$

where H_t is a Hermitian Brownian motion in $M_N(\mathbb{C})$. Similarly, the (right) Brownian motion $(G_t^{(N)})_{t\geq 0}$ on $GL_N(\mathbb{C})$ is the solution of the stochastic differential equation

$$\begin{cases} G_0^{(N)} = 1, \\ \mathrm{d}G_t^{(N)} = \mathrm{d}Z_t G_t^{(N)} \end{cases}$$

where Z_t is a complex Brownian motion in $M_N(\mathbb{C})$.

Another characterization The large-*N* limit

The classical Segal-Bargmann-Hall transform

We denote by ρ_t and μ_t the respective laws of $U_t^{(N)}$ and $G_t^{(N)}$.

• • = • • = •

The classical Segal-Bargmann-Hall transform

We denote by ρ_t and μ_t the respective laws of $U_t^{(N)}$ and $G_t^{(N)}$.

Theorem (Hall 1994)

Let t > 0. The linear map $B_t : f \mapsto e^{\frac{t}{2}\Delta_{U(N)}}f$ is an isomorphism of Hilbert spaces between $L^2(\rho_t)$ and $L^2_{hol}(\mu_t)$.

- E - - E -

The classical Segal-Bargmann-Hall transform

We denote by ρ_t and μ_t the respective laws of $U_t^{(N)}$ and $G_t^{(N)}$.

Theorem (Hall 1994)

Let t > 0. The linear map $B_t : f \mapsto e^{\frac{t}{2}\Delta_{U(N)}}f$ is an isomorphism of Hilbert spaces between $L^2(\rho_t)$ and $L^2_{hol}(\mu_t)$.

We consider $B_t^{(N)} : L^2(\rho_t) \otimes M_N(\mathbb{C}) \to L^2_{\text{hol}}(\mu_t) \otimes M_N(\mathbb{C})$. The $\mathbb{C}\{X\}$ -calculus is adapted in this framework: for all $P \in \mathbb{C}\{X\}$,

$$P = \left(U \mapsto P(U) \right) \in L^{2}(\rho_{t}) \otimes M_{N}(\mathbb{C}).$$

Another characterization The large-N limit

The large-N limit

For all
$$P \in \mathbb{C}\{X\}$$
, $B_t^{(N)}(P) = e^{\frac{t}{2}\Delta_{U(N)}}P$ and $\mathcal{G}_t(P) = e^{D_{U_t}}P$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Another characterization The large-*N* limit

The large-N limit

For all $P \in \mathbb{C}\{X\}$, $B_t^{(N)}(P) = e^{\frac{t}{2}\Delta_{U(N)}}P$ and $\mathcal{G}_t(P) = e^{\mathcal{D}_{U_t}}P$. But the Laplace operator $\Delta_{U(N)}$ satisfies

$$\frac{t}{2}\Delta_{U(N)} = D_{U_t} + O(1/N^2)$$

when acting on the functions given by the $\mathbb{C}{X}$ -calculus.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Another characterization The large-*N* limit

The large-N limit

For all $P \in \mathbb{C}\{X\}$, $B_t^{(N)}(P) = e^{\frac{t}{2}\Delta_{U(N)}}P$ and $\mathcal{G}_t(P) = e^{\mathcal{D}_{U_t}}P$. But the Laplace operator $\Delta_{U(N)}$ satisfies

$$\frac{t}{2}\Delta_{U(N)} = D_{U_t} + O(1/N^2)$$

when acting on the functions given by the $\mathbb{C}{X}$ -calculus.

Theorem (C, Driver-Hall-Kemp 2013)
Let
$$t > 0$$
. For all $P \in \mathbb{C}[X, X^{-1}]$, we have

$$\left\| B_t^{(N)}(P) - \mathcal{G}_t(P) \right\|_{L^2_{hol}(\mu_t) \otimes \mathcal{M}_N(\mathbb{C})}^2 = O(1/N^2).$$

• • • • • • • • •

References

- Philippe Biane. Free Brownian motion, free stochastic calculus and random matrices. In *Free probability theory, (Waterloo ON, 1995)*, 1997.
- Philippe Biane. Processes with free increments. Mathematische Zeitschrift, 227(1):143–174, January 1998.
- G. Cébron. Free Convolution Operators and Free Hall Transform. arXiv:1304.1713, 2013.
- Bruce K. Driver, Brian C. Hall, and Todd Kemp. The Large-N Limit of the Segal–Bargmann Transform on U_N. arXiv:1305.2406, 2013.
- Brian C. Hall. The Segal-Bargmann "Coherent State" Transform for Compact Lie Groups. *Journal of Functional Analysis*, 122(1):103–151, 1994.
- related work:

Todd Kemp. arXiv:1306.2140 and arXiv:1306.6033