Transition operators for the free convolution

Guillaume Cébron, Paris 6

Fields Institute, Toronto

July 22, 2013

 \overline{a}

 QQ

1 [Introduction](#page-2-0)

2 [Computing conditional expectations](#page-8-0)

- [The algebra](#page-8-0) $\mathbb{C}\{X\}$
- [Free convolution operators](#page-15-0)

3 [Free Hall transform](#page-22-0)

- [Another characterization](#page-22-0)
- [The large-](#page-26-0)N limit

Main problem

Let A, B be free random variables in a W*-probability space (A, τ) . There is a unique conditional expectation from $\mathcal A$ to $W^*(B)$, denoted by $\tau(\cdot|B)$. We consider $\tau (P(A + B)|B)$ for any polynomial P.

Allen Strategie

Main problem

Let A, B be free random variables in a W*-probability space (A, τ) . There is a unique conditional expectation from $\mathcal A$ to $W^*(B)$, denoted by $\tau(\cdot|B)$. We consider $\tau (P(A + B)|B)$ for any polynomial P.

Theorem (Biane 1998)

If \overline{A} and \overline{B} are self-adjoint, there is a Feller-Markov kernel $k_{AB}(x, dy)$ such that, for all Borel bounded function $f : \mathbb{R} \to \mathbb{R}$,

 $\tau(f(A+B)|B) = (K_{AB}f)(B)$

(where $(K_{A,B}f)(x) = \int f(y)k_{A,B}(x, dy)$).

in a minimum man

 200

Main problem

Let A, B be free random variables in a W*-probability space (A, τ) . There is a unique conditional expectation from $\mathcal A$ to $W^*(B)$, denoted by $\tau(\cdot|B)$. We consider $\tau (P(A + B)|B)$ for any polynomial P.

Theorem (Biane 1998)

If \overline{A} and \overline{B} are self-adjoint, there is a Feller-Markov kernel $k_{AB}(x, dy)$ such that, for all Borel bounded function $f : \mathbb{R} \to \mathbb{R}$,

 $\tau(f(A + B)|B) = (K_{AB}f)(B)$

(where $(K_{A,B}f)(x) = \int f(y)k_{A,B}(x, dy)$).

Goal: construct a framework to avoid the self-adjointness, the dependence in B , and the limitation of f to be univariate.

医阿雷氏阿雷氏

э

 200

Motivation

Let $t > 0$. Let S_t be a semi-circular variable of variance t in a W^{*}-probability space (\mathcal{A}, τ) . Let B be a random variable free from S_t . We have $\tau((S_t + B)^3 | B) = B^3 + 2tB + t\tau(B)$.

医骨盆 医骨

つくへ

Motivation

Let $t > 0$. Let S_t be a semi-circular variable of variance t in a W^{*}-probability space (\mathcal{A}, τ) . Let B be a random variable free from S_t . We have $\tau((S_t + B)^3 | B) = B^3 + 2tB + t\tau(B)$. There doesn't exist a polynomial Q independent of B such that

$$
\tau((S_t+B)^3|B)=Q(B).
$$

Motivation

Let $t > 0$. Let S_t be a semi-circular variable of variance t in a W^{*}-probability space (\mathcal{A}, τ) . Let B be a random variable free from S_t . We have $\tau((S_t + B)^3 | B) = B^3 + 2tB + t\tau(B)$. There doesn't exist a polynomial Q independent of B such that

$$
\tau((S_t+B)^3|B)=Q(B).
$$

We guess that there is an abstract object

 $X^3 + 2tX + t\tau(X),$

which is independent of B . The space of polynomials has to be extended.

in a minimum man

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

Universal property of $\mathbb{C}\{X\}$

The algebra $\mathbb{C}[X]$ possesses the following universal property: for all element A of an algebra A , there exists a unique algebra homomorphism φ such that $\varphi(X) = A$.

$$
X\in\mathbb{C}[X]_{-\rightarrow}^{\varphi}A\ni A,\ \varphi(X)=A.
$$

 $-10⁻¹⁰$

 \bigoplus \rightarrow \rightarrow \exists \rightarrow \rightarrow \exists \rightarrow

つくへ

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

Center-valued expectation

$$
X\in\mathbb{C}[X]\stackrel{\varphi}{\dashrightarrow} A\ni A,\ \varphi(X)=A.
$$

A center-valued expectation τ is a linear function from A to its center such that

- **1** for all $A, B \in \mathcal{A}$, we have $\tau(\tau(A)B) = \tau(A)\tau(B)$;
- \bullet $\tau(1_A) = 1_A$.

and the first

 $\langle \langle \overline{r} \rangle \rangle$, $\langle \langle \rangle \rangle$, $\langle \rangle$, $\langle \rangle$, $\langle \rangle$

性

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

Universal property of $\mathbb{C}{X}$

There exists an algebra $\mathbb{C}\{X\}$ endowed with a center-valued expectation tr which possesses the following universal property: for all element A of an algebra A endowed with a center-valued expectation τ , there exists a unique algebra homomorphism φ such that $\varphi(X) = A$ and $\varphi \circ \mathsf{tr} = \tau \circ \varphi$.

$$
X \in \mathbb{C}\lbrace X \rbrace \xrightarrow{\varphi} A \ni A, \ \varphi(X) = A, \ \varphi \circ \operatorname{tr} = \tau \circ \varphi.
$$

医阿里氏阿里氏

つくへ

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

More about $\mathbb{C}\{X\}$

The space $\mathbb{C}\{X\}$ is unique up to an isomorphism. We have naturally $\mathbb{C}[X] \subset \mathbb{C}\{X\}$. Furthermore,

$$
\{X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(X^{k_n}) : n \in \mathbb{N}, k_0, \ldots, k_n \in \mathbb{N}\}
$$

is a basis of $\mathbb{C}\{X\}$, called the canonical basis.

 $-10⁻¹⁰$

伊 ▶ (ヨ ▶ (ヨ

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

The $\mathbb{C}\{X\}$ -calculus

$$
X\in\mathbb{C}[X]\stackrel{\varphi}{\dashrightarrow} A\ni A,\ \varphi(X)=A,
$$

Polynomial calculus: for all $P \in \mathbb{C}[X]$, we set $P(A) = \varphi(P)$.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 299

э

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

The $\overline{\mathbb{C}{X}}$ -calculus

$$
X\in\mathbb{C}[X]\stackrel{\varphi}{\dashrightarrow} \mathcal{A}\ni A,\ \varphi(X)=A,
$$

Polynomial calculus: for all $P \in \mathbb{C}[X]$, we set $P(A) = \varphi(P)$.

$$
X \in \mathbb{C}\{X\} \xrightarrow{\varphi} \mathcal{A} \ni A, \ \varphi(X) = A, \ \varphi \circ \text{tr} = \tau \circ \varphi.
$$

$$
\mathbb{C}\{X\}
$$
-calculus: for all $P \in \mathbb{C}\{X\}$, we set $P(A) = \varphi(P)$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 299

э

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

The $\mathbb{C}\{X\}$ -calculus

$$
X\in\mathbb{C}[X]\stackrel{\varphi}{\dashrightarrow} \mathcal{A}\ni A,\ \varphi(X)=A,
$$

Polynomial calculus: for all $P \in \mathbb{C}[X]$, we set $P(A) = \varphi(P)$.

$$
X \in \mathbb{C}\lbrace X \rbrace \xrightarrow{\varphi} A \ni A, \ \varphi(X) = A, \ \varphi \circ \operatorname{tr} = \tau \circ \varphi.
$$

 $\mathbb{C}\{X\}$ -calculus: for all $P \in \mathbb{C}\{X\}$, we set $P(A) = \varphi(P)$. For all $n \in \mathbb{N}, k_0, \ldots, k_n \in \mathbb{N}$, if we set $P = X^{k_0}$ tr $(X^{k_1}) \cdots$ tr (X^{k_n}) , we have

$$
P(A) = A^{k_0} \tau(A^{k_1}) \cdots \tau(A^{k_n}).
$$

and in

オター・オート オート

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-16-0)

Main theorem

Theorem

Let $A \in \mathcal{A}$. There exists an operator Δ_A on $\mathbb{C}\{X\}$ such that, for all $P \in \mathbb{C}\{X\}$, and all $B \in \mathcal{A}$ free from A, we have

 $\tau\left(P\left(A+B\right)|B\right)=\left(e^{\Delta_A}P\right)\left(B\right).$

4 17 18

∢ 何 ▶ 《 三 》 《 三 》

性

Main theorem

Theorem

Let $A \in \mathcal{A}$. There exists an operator Δ_A on $\mathbb{C}\{X\}$ such that, for all $P \in \mathbb{C}\{X\}$, and all $B \in \mathcal{A}$ free from A, we have

 $\tau\left(P\left(A+B\right)|B\right)=\left(e^{\Delta_A}P\right)\left(B\right).$

Example: we have, for all $B \in \mathcal{A}$ free from S_t ,

$$
\tau\left(\left(S_t+B\right)^3|B\right)=\left(e^{\Delta_{S_t}}(X^3)\right)(B)=B^3+2tB+t\tau(B).
$$

Other versions:

• There exists also an operator $D_{\mathbf{A}}$ for the multiplicative case: $\tau(P(AB)|B) = (e^{D_A}P)(B).$ $\tau(P(AB)|B) = (e^{D_A}P)(B).$ $\tau(P(AB)|B) = (e^{D_A}P)(B).$

The multivariate case requires the space $\mathbb{C}\{X_i : i \in I\}$.

and Band Band

э

 200

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

Description of Δ_A

The operator Δ_A is a derivation for the product $(P, Q) \mapsto P$ tr (Q) .

and and

∢ 何 ▶ → ヨ ▶ → ヨ ▶

 299

э

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

Description of Δ_A

The operator Δ_A is a derivation for the product $(P, Q) \mapsto P$ tr (Q) . For all $n \in \mathbb{N}, k_0, \ldots, k_n \in \mathbb{N}$, if we set $P = X^{k_0} \text{tr}(X^{k_1}) \cdots \text{tr}(X^{k_n})$, we have

$$
\Delta_A P = \sum_{i=0}^n X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(\Delta_A(X^{k_i})) \cdots \operatorname{tr}(X^{k_n}).
$$

and in

in a minimum man

Description of Δ_A

The operator Δ_A is a derivation for the product $(P, Q) \mapsto P$ tr (Q) . For all $n \in \mathbb{N}, k_0, \ldots, k_n \in \mathbb{N}$, if we set $P = X^{k_0} \text{tr}(X^{k_1}) \cdots \text{tr}(X^{k_n})$, we have

$$
\Delta_A P = \sum_{i=0}^n X^{k_0} \operatorname{tr}(X^{k_1}) \cdots \operatorname{tr}(\Delta_A(X^{k_i})) \cdots \operatorname{tr}(X^{k_n}).
$$

It suffices to describe $\Delta_A(X^n)$ for all $n \in \mathbb{N}$.

 $-10⁻¹⁰$

医阿里氏阿里氏

[The algebra](#page-8-0) $\mathbb{C}\{X\}$ [Free convolution operators](#page-15-0)

Description of Δ_A

Let $n \in \mathbb{N}$.

$$
\Delta_A(X^n) = \sum_{1 \leq k_1 < \ldots < k_m \leq n} \kappa_m(A) \cdot \overbrace{X \cdots X}^{k_1-1} \text{tr}(\overbrace{X \cdots X}^{k_2-k_1-1} \cdots \text{tr}(\overbrace{X \cdots X}^{k_m-k_{m-1}-1} \overbrace{X \cdots X}^{n-k_m},
$$

where $\kappa_m(A)$ ($m \ge 1$) are the free cumulants of A.

and and

 $\mathcal{A} \oplus \mathcal{B}$ \mathcal{B} $\mathcal{A} \oplus \mathcal{B}$ $\mathcal{A} \oplus \mathcal{B}$

 QQ

э

An example: the semi-circular case

Let $t > 0$ and S_t be a semi-circular variable of variance t. The free cumulants of S_t are $\kappa_1(S_t) = 0$, $\kappa_2(S_t) = t$ and $\kappa_n(\mathcal{S}_t) = 0$ for all $n > 2$. We have $\Delta_{S_t} X^3 = 2tX + t \operatorname{tr}(X),$ and $(\Delta_{\mathcal{S}_t})^2 X^3 = \Delta_{\mathcal{S}_t} (2tX + t \operatorname{tr}(X)) = 0.$ Thus,

$$
e^{\Delta_{S_t}}(X^3) = X^3 + \Delta_{S_t}X^3 + 0 = X^3 + 2tX + t \operatorname{tr}(X).
$$

Using the theorem, we have, for all $B\in\mathcal{A}$ free from $\mathcal{S}_t,$

$$
\tau\left((S_t+B)^3|B\right)=(e^{\Delta_{S_t}}(X^3))(B)=B^3+2tB+t\tau(B).
$$

NORTH AT A

[Another characterization](#page-23-0) [The large-](#page-26-0)N limit

Free multiplicative Brownian motion

The (right) free unitary Brownian motion $(U_t)_{t>0}$ is defined to be the solution of the following free stochastic differential equation

$$
\begin{cases}\nU_0 = 1, \\
dU_t = i dS_t U_t - \frac{1}{2} U_t dt.\n\end{cases}
$$

where \mathcal{S}_t is a free semicircular process.

A . . 3 . . 3 .

つくへ

Free multiplicative Brownian motion

The (right) free unitary Brownian motion $(U_t)_{t>0}$ is defined to be the solution of the following free stochastic differential equation

$$
\begin{cases}\nU_0 = 1, \\
dU_t = i dS_t U_t - \frac{1}{2} U_t dt.\n\end{cases}
$$

where \mathcal{S}_t is a free semicircular process. Similarly, the (right) free circular multiplicative Brownian motion $(G_t)_{t\geq0}$ is the solution of the free stochastic differential equation

$$
\left\{\begin{array}{rcl}\nG_0 &=& 1, \\
dG_t &=& dC_tG_t.\n\end{array}\right.
$$

where \mathcal{C}_t is a free circular process.

A & Y B & Y B &

[Another characterization](#page-22-0) [The large-](#page-26-0)N limit

Free Hall transform

We denote by $L^2(U_t, \tau)$ and $L^2_{\text{hol}}(G_t, \tau)$ the Hilbert completion of the algebra generated respectively by U_t and U_t^{-1} , and by G_t and G_t^{-1} (for the norm $\|\cdot\|_2: A \mapsto \tau(A^*A)^{1/2}$).

Theorem (Biane 1997)

Let $t > 0$. There exists a Hilbert space isomorphism \mathcal{F}_t between $L^2(U_t, \tau)$ and $L^2_{\text{hol}}(G_t, \tau)$, called the free Hall transform.

in a minimum man

Free Hall transform

We denote by $L^2(U_t, \tau)$ and $L^2_{\text{hol}}(G_t, \tau)$ the Hilbert completion of the algebra generated respectively by U_t and U_t^{-1} , and by G_t and G_t^{-1} (for the norm $\|\cdot\|_2: A \mapsto \tau(A^*A)^{1/2}$).

Theorem (Biane 1997)

Let $t > 0$. There exists a Hilbert space isomorphism \mathcal{F}_t between $L^2(U_t, \tau)$ and $L^2_{\text{hol}}(G_t, \tau)$, called the free Hall transform.

Theorem (C 2013)

Let $t > 0$. For all $P \in \mathbb{C}[X]$, $\mathcal{F}_t(P(U_t)) = (e^{D_{U_t}}P)(G_t)$. Moreover, if U_t and G_t are free, for all $P \in \mathbb{C}{X}$,

$$
\mathcal{F}_t\left(P(U_t)\right)=\tau\left(P(U_tG_t)\Big|G_t\right).
$$

イロメ イ母メ イヨメ イヨメ

 QQ

Ξ

[Another characterization](#page-22-0) [The large-](#page-27-0)N limit

Multiplicative Brownian motions

The (right) Brownian motion ($U_t^{(N)}$ $\binom{N}{t} t \geq 0$ on $U(N)$ is defined to be the solution of the following stochastic differential equation

$$
\begin{cases}\nU_0^{(N)} = 1, \\
dU_t^{(N)} = i dH_t U_t^{(N)} - \frac{1}{2} U_t^{(N)} dt.\n\end{cases}
$$

where H_t is a Hermitian Brownian motion in $M_N(\mathbb{C})$.

NORTH AT A

つくへ

Multiplicative Brownian motions

The (right) Brownian motion ($U_t^{(N)}$ $\binom{N}{t} t \geq 0$ on $U(N)$ is defined to be the solution of the following stochastic differential equation

$$
\begin{cases}\nU_0^{(N)} = 1, \\
dU_t^{(N)} = i dH_t U_t^{(N)} - \frac{1}{2} U_t^{(N)} dt.\n\end{cases}
$$

where H_t is a Hermitian Brownian motion in $M_N(\mathbb{C})$. Similarly, the (right) Brownian motion ($G_t^{(N)}$ $(\epsilon_t^{(N)})_{t\geq 0}$ on $GL_N(\mathbb{C})$ is the solution of the stochastic differential equation

$$
\begin{cases}\nG_0^{(N)} = 1, \\
dG_t^{(N)} = dZ_t G_t^{(N)}.\n\end{cases}
$$

where Z_t is a complex Brownian motion in $M_N(\mathbb{C})$.

[Another characterization](#page-22-0) [The large-](#page-26-0)N limit

The classical Segal-Bargmann-Hall transform

We denote by ρ_t and μ_t the respective laws of $\mathit{U}^{(N)}_t$ and $\mathit{G}^{(N)}_t$ $t^{(N)}$

and in

医骨盆 医骨盆

 QQ

Ξ

The classical Segal-Bargmann-Hall transform

We denote by ρ_t and μ_t the respective laws of $\mathit{U}^{(N)}_t$ and $\mathit{G}^{(N)}_t$ $t^{(N)}$

Theorem (Hall 1994)

Let $t>0$. The linear map $B_t:f\mapsto e^{\frac{t}{2}\Delta_{U(N)}}f$ is an isomorphism of Hilbert spaces between $L^2(\rho_t)$ and $L^2_{\rm hol}(\mu_t)$.

The classical Segal-Bargmann-Hall transform

We denote by ρ_t and μ_t the respective laws of $\mathit{U}^{(N)}_t$ and $\mathit{G}^{(N)}_t$ $t^{(N)}$

Theorem (Hall 1994)

Let $t>0$. The linear map $B_t:f\mapsto e^{\frac{t}{2}\Delta_{U(N)}}f$ is an isomorphism of Hilbert spaces between $L^2(\rho_t)$ and $L^2_{\rm hol}(\mu_t)$.

We consider $B_t^{(N)}$ $t_t^{(N)}: L^2(\rho_t)\otimes M_N(\mathbb{C})\to L^2_{\text{hol}}(\mu_t)\otimes M_N(\mathbb{C}).$ The $\mathbb{C}\{X\}$ -calculus is adapted in this framework: for all $P \in \mathbb{C}\{X\}$,

$$
P=\Big(U\mapsto P(U)\Big)\in L^2(\rho_t)\otimes M_N(\mathbb{C}).
$$

[Another characterization](#page-22-0) [The large-](#page-26-0)N limit

The large-N limit

For all
$$
P \in \mathbb{C}\{X\}
$$
, $B_t^{(N)}(P) = e^{\frac{t}{2}\Delta_{U(N)}}P$ and $\mathcal{G}_t(P) = e^{D_{U_t}}P$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Þ

 299

[Another characterization](#page-22-0) [The large-](#page-26-0)N limit

The large-N limit

For all $P \in \mathbb{C}\{X\}$, $B_t^{(N)}$ $t_t^{(N)}(P) = e^{\frac{t}{2}\Delta_{U(N)}}P$ and $\mathcal{G}_t(P) = e^{D_{U_t}}P$. But the Laplace operator $\Delta_{U(N)}$ satisfies

$$
\frac{t}{2}\Delta_{U(N)}=D_{U_t}+O(1/N^2)
$$

when acting on the functions given by the $\mathbb{C}\{X\}$ -calculus.

and in

∢ 何 ▶ → ヨ ▶ → ヨ ▶

[Another characterization](#page-22-0) [The large-](#page-26-0)N limit

The large-N limit

For all $P \in \mathbb{C}\{X\}$, $B_t^{(N)}$ $t_t^{(N)}(P) = e^{\frac{t}{2}\Delta_{U(N)}}P$ and $\mathcal{G}_t(P) = e^{D_{U_t}}P$. But the Laplace operator $\Delta_{U(N)}$ satisfies

$$
\frac{t}{2}\Delta_{U(N)}=D_{U_t}+O(1/N^2)
$$

when acting on the functions given by the $\mathbb{C}\{X\}$ -calculus.

Theorem (C, Driver-Hall-Kemp 2013) Let $t > 0$. For all $P \in \mathbb{C}[X, X^{-1}]$, we have $\begin{array}{c} \n \big\downarrow \n \end{array}$ $B_t^{(N)}$ $\mathcal{C}_t^{(N)}(P) - \mathcal{G}_t(P)$ 2 $L^2_{\rm hol}(\mu_t)\!\otimes\! M_N(\mathbb C)$ $= O(1/N^2)$.

∢ロト ∢母ト ∢ヨト ∢ヨト

[Another characterization](#page-22-0) [The large-](#page-26-0)N limit

References

- Philippe Biane. Free Brownian motion, free stochastic calculus and random matrices. In Free probability theory, (Waterloo ON, 1995), 1997.
- Philippe Biane. Processes with free increments. Mathematische Zeitschrift, 227(1):143–174, January 1998.
- G. Cébron. Free Convolution Operators and Free Hall Transform. arXiv:1304.1713, 2013.
- Bruce K. Driver, Brian C. Hall, and Todd Kemp. The Large-N Limit of the Segal–Bargmann Transform on \mathbb{U}_N . arXiv:1305.2406, 2013.
- Brian C. Hall. The Segal-Bargmann "Coherent State" Transform for Compact Lie Groups. Journal of Functional Analysis, 122(1):103–151, 1994.
- **o** related work:

Todd Kemp. arXiv:1306.2140 and arXi[v:1](#page-33-0)[30](#page-34-0)[6.](#page-33-0)[603](#page-34-0)[3](#page-25-0)