Time reversal of free Stochastic Differential Equations and applications of non-microstates free entropy to von Neumann algebras .

Yoann Dabrowski

Université Lyon 1 - Institut Camille Jordan

Fields Institute, Toronto, July 2013

Overview

Summary of applications to non-microstates free entropy

- Reminder on microstates free entropy and its applications to von Neumann algebras
- Reminder on non-microstates free entropy and applications
- New applications and motivation
- Itime reversal of free diffusions.
 - Background on the classical case.
 - Reversed free Brownian Motion and SDEs.
 - An application in free Probability.
 - Alternative formulas and bimodular consequences.
- Ideas of Proofs of our applications : "weakly coarse and mixing Wasserstein rigidity".

1.1 Voiculescu's microstates Free Entropy

- Sⁿ_R tracial states on the universal C^{*} free product C([-R, R])^{*n} ⊃ C(X₁,...,X_n) non-commutative polynomials
- Basis of *-weak topology

 $V_{\epsilon,K}(\tau) = \{ \sigma \in \mathcal{S}_R^n | \forall m \text{ monomials of degree less than } K \\ |\tau(m(X_1,\ldots,X_n)) - \sigma(m(X_1,\ldots,X_n))| < \epsilon \}$

- For an *n*-tuple of hermitian matrices $M = (M_1, ..., M_n) \in (H_N^R)^n \text{ (i.e. } ||M_i|| \le R) \text{ one gets } \tau_M \in \mathcal{S}_R^n :$ $\tau_M(P) = \frac{1}{N} Tr(P(M_1, ..., M_n)), \quad \forall P \in \mathbb{C}\langle X_1, ..., X_n \rangle.$
- $\Gamma_R(\tau,\epsilon,K,N) = \{M \in (H_N^R)^n \mid \tau_M \in V_{\epsilon,K}(\tau)\}.$
- Microstates free Entropy : $\tau \in \mathcal{S}_R^n$

$$\chi_{R}(\tau) = \lim_{K \to \infty, \epsilon \to 0} \limsup_{N \to \infty} \left(\frac{1}{N^{2}} \log \left(\text{Leb}(\Gamma_{R}(\tau, \epsilon, K, N)) \right) + \frac{n}{2} \log N \right)$$

• • = • • = •

1.1 Applications of Microstates Free Entropy

- $(X_1, ..., X_n)$ s.a. in $(M = W^*(X_1, ..., X_n), \tau)$
 - $\chi(X_1,...,X_n) = \chi_R(\tau) > -\infty$ implies properties of M:
- M does not have property Γ (Voiculescu) : i.e. every sequence Z_m , $||Z_m||_M \leq C$, such that $||[Z_m, X]||_2 \rightarrow 0 \quad \forall X \in M$ is trivial, i.e. $||Z_m \tau(Z_m)||_2 \rightarrow 0$. (Especially, M non-amenable factor.)
- M is prime (Ge) : M is not a tensor product M ≃ A ⊗ B of two II₁ factors A, B.
- M has no Cartan subalgebra (Voiculescu) : There is no maximal abelian subalgebra A ⊂ M such that its normalizer *N*_M(A) = {u ∈ U(M), uAu^{*} ⊂ A} generates M: (*N*_M(A))'' = M.
- not thin (Ge, Popa) etc.
- Goal: extend those applications to non-microstates free entropy (relative to B or free mutual information) using progresses in Popa's Deformation/Rigidity Theory (that provided alternative proofs and much more for free Groups factors L(𝔽_n) recently, e.g. strong solidity), (𝔅, 𝔅, 𝔅, 𝔅, 𝔅), 𝔅

1.1 Applications of Microstates Free Entropy

- $(X_1, ..., X_n)$ s.a. in $(M = W^*(X_1, ..., X_n), \tau)$
 - $\chi(X_1,...,X_n) = \chi_R(\tau) > -\infty$ implies properties of M:
- M does not have property Γ (Voiculescu) : i.e. every sequence Z_m , $||Z_m||_M \leq C$, such that $||[Z_m, X]||_2 \rightarrow 0 \quad \forall X \in M$ is trivial, i.e. $||Z_m \tau(Z_m)||_2 \rightarrow 0$. (Especially, M non-amenable factor.)
- M is prime (Ge) : M is not a tensor product M ≃ A ⊗ B of two II₁ factors A, B.
- M has no Cartan subalgebra (Voiculescu) : There is no maximal abelian subalgebra $A \subset M$ such that its normalizer $\mathcal{N}_M(A) = \{u \in \mathcal{U}(M), uAu^* \subset A\}$ generates M: $(\mathcal{N}_M(A))'' = M$.
- not thin (Ge, Popa) etc.
- Goal: extend those applications to non-microstates free entropy (relative to B or free mutual information) using progresses in Popa's Deformation/Rigidity Theory (that provided alternative proofs and much more for free Groups factors L(F_n) recently, e.g. strong solidity), and the set of the s

- In general, it is hard to check $\chi(X_1, ..., X_n) > \infty$ (or even $\delta_0(X_1, ..., X_n) > 1$).
- Non-microstates free entropy χ^* : Alternative formula using free stochastic differential equations and free Fisher's information and expected to be equal ($\chi \le \chi^*$ known by a result of [Biane-Capitaine-Guionnet], and equality if n = 1).

1.2 Reminder on Voiculescu's non-microstates free entropy

Reminder of definition : Start by considering X₁,..., X_n ∈ (M = W*(X₁,...,X_n), τ) finite von Neumann algebra, X₁,...,X_n algebraically free self-adjoints and define the free difference quotient ∂_i : C = C(X₁,...,X_n) → C ⊗ C the unique derivation with :

$$\partial_i(X_j) = 1 \otimes 1 \delta_{i=j}$$

Look at $\partial_i : L^2(M, \tau) \to L^2(M, \tau) \otimes L^2(M, \tau)$

- Define $\xi_i = \partial_i^* 1 \otimes 1 \in L^2(M, \tau)$ conjugate variables, if they exist. This is the free analogue of the score function.
- Free Fisher information is defined as ∞ if they don't exist and otherwise:

$$\Phi^*(X_1,...,X_n) = \sum_{i=1}^n ||\xi_i||_2^2.$$

Consider

$$X_{i,t}=X_{i,0}+S_{i,t},$$

 $S_{i,t}$ free Brownian motion, and $\xi_{i,t}$ conjugate variables for $X_{1,t}, ..., X_{n,t}$, then non-microstates **free entropy** is defined as :

$$\chi^{*}(X_{1},...,X_{n}) = \frac{1}{2} \int_{0}^{\infty} \left(\frac{n}{1+t} - \Phi^{*}(X_{1,t},...,X_{n,t})\right) dt + \frac{n}{2} \log(2\pi e),$$

• Explication for this formula (or its Orstein-Uhlenbeck variant): "relative entropy of the process considered backwards in time and using Girsanov formula for the density".

1.2 Known applications of non-microstates free entropy and free Fisher information

- [D2008] If $\chi^*(X_1, ..., X_n) > -\infty$, $W^*(X_1, ..., X_n)$ is a factor.
- [D2008]If $\Phi^*(X_1, ..., X_n) < \infty$, $W^*(X_1, ..., X_n)$ doesn't have property Γ .
- Recent results in a joint work with Adrian Ioana :

Theorem (Ioana, D. 2012)

Let $(M = W^*(X_1, ..., X_n), \tau)$. Assume that either

•
$$\Phi^*(X_1,...,X_n) < \infty$$
 and $n \ge 3$, or

• $\xi_i = \partial_i^* (1 \otimes 1), \partial_i^* (1 \otimes \xi_i)$ exists and belongs to $M, \forall i \in \{1, ..., n\}, n \ge 2$.

Then, M is prime and does not have property Γ . Actually M is a non- L^2 -rigid II₁ factor in the sense of Jesse Peterson (which implies M is prime and does not have property Γ [Peterson 2006]).

1.2 Known applications of non-microstates free entropy and free Fisher information

- [D2008] If $\chi^*(X_1, ..., X_n) > -\infty$, $W^*(X_1, ..., X_n)$ is a factor.
- [D2008]If $\Phi^*(X_1,...,X_n) < \infty$, $W^*(X_1,...,X_n)$ doesn't have property Γ .
- Recent results in a joint work with Adrian loana :

Theorem (Ioana, D. 2012)

Let $(M = W^*(X_1, ..., X_n), \tau)$. Assume that either

•
$$\Phi^*(X_1,...,X_n) < \infty$$
 and $n \ge 3$, or

• $\xi_i = \partial_i^* (1 \otimes 1), \partial_i^* (1 \otimes \xi_i)$ exists and belongs to $M, \forall i \in \{1, ..., n\}, n \ge 2$.

Then, M is prime and does not have property Γ . Actually M is a non- L^2 -rigid II₁ factor in the sense of Jesse Peterson (which implies M is prime and does not have property Γ [Peterson 2006]).

1.2 Applications of non-microstates free entropy.

• The main example of $X_1, ..., X_n$, with $\xi_i = \partial_i^* (1 \otimes 1), \partial_i^* (1 \otimes \xi_i) \in M$ is $X_i = Y_i + S_{i,t}$, Y_i and $S_{i,t}$ free. In this case, we can conclude more (without assuming $X_1, ..., X_n \ R^{\omega}$ -embeddable as for the corresponding microstate free entropy result):

Theorem (Ioana, D. 2012)

Let (M, τ) be a tracial von Neumann algebra and $X_1, ..., X_n \in M$ be $n \ge 2$ self-adjoint elements. Let $\{S_1, ..., S_n\} \in L(\mathbb{F}_n)$ be the canonical semicircular family and $\varepsilon > 0$. Denote by $M_{\varepsilon} \subset M * L(\mathbb{F}_n)$ the von Neumann subalgebra generated by $X_1 + \varepsilon S_1, ..., X_n + \varepsilon S_n$. Then M_{ε} is a non-L²-rigid II₁ factor that does not have a Cartan subalgebra.

(The conclusion also holds for $S_1, ..., S_n$ replaced by $Y_1, ..., Y_n$ with $\xi_i = \partial_{Y_i}^* (1 \otimes 1), \partial_{Y_i}^* (1 \otimes \xi_i) \in M$ and free from $X_1, ..., X_n \notin \mathcal{C}$)

・ 同 ト ・ ヨ ト ・ ヨ ト …

1.2 Applications of non-microstates free entropy.

Theorem (loana, D. 2012)

Let $(M = W^*(X_1, ..., X_n), \tau)$ and $\partial_i : M \to L^2(M) \bar{\otimes} L^2(M)$ the free difference quotient. Assume $\xi_i = \partial_i^*(1 \otimes 1)$ exists, $\xi_i \in D(\bar{\partial})$ and $\bar{\partial}_i(\xi_j) \in (M \bar{\otimes} M^{op}) \subset L^2(M \bar{\otimes} M^{op}) \cong L^2(M) \bar{\otimes} L^2(M)$ (Lipschitz conjugate variable), for all $1 \leq i, j \leq n$. Then M is a II_1 factor which does not have a Cartan subalgebra. Moreover, $M \bar{\otimes} Q$ does not have a Cartan subalgebra, for any II_1 factor Q.

- The assumption Lipschitz conjugate variable is the one under which [D.2010] shows (using ideas of [Shlyakhtenko-2007]) that if, moreover, M is R^{ω} embeddable, then $\delta_0(X_1, ..., X_n) = n$.
- The result $M \otimes Q$ has no Cartan subalgebra is not known by microstates free entropy techniques, but known for $M = L(\mathbb{F}_n)$ by [Popa-Ozawa 2007,Popa-Vaes 2011].

1.2 Reminder on non-microstates mutual information

Let A₁,..., A_n ⊂ (M = W*(A₁,...,A_n), τ) be algebraically free subalgebras and define the unique derivation
 δ_i : A = Alg(A₁,...,A_n) → A ⊗ A :

$$\delta_i(a_j) = (a_j \otimes 1 - 1 \otimes a_j) \delta_{i=j}, a_j \in A_j.$$

Look at $\delta_i : L^2(M, \tau) \to L^2(M, \tau) \otimes L^2(M, \tau)$

 Define J_i = δ_i^{*}1 ⊗ 1 ∈ L²(M, τ) the liberation gradients, if they exist and :

$$\varphi^*(A_1,...,A_n) = \sum_{i=1}^n ||\mathcal{J}_i||_2^2.$$

• Using $U_{i,t}$, *n* free unitary Brownian motions, i.e. solving the SDE : $U_{i,t} = 1 - \frac{1}{2} \int_0^t U_{i,s} ds + i \int_0^t dS_{i,s} U_{i,s}$, and using the liberation process $(U_{i,s}A_iU_{i,s}^*)$, we define mutual information

$$i^{*}(A_{1},...,A_{n}) = \frac{1}{2} \int_{0}^{\infty} \varphi^{*}(U_{1,s}A_{1}U_{1,s}^{*},...,U_{n,s}A_{n}U_{n,s}^{*}) ds.$$

1.2 Applications of non-microstates mutual information.

Theorem (Ioana, D. 2012)

Let $(M = Wj(A_1, ..., A_n), \tau)$ tracial $n \ge 2$ generated $A_1, ..., A_n \ne \mathbb{C}1$ with $\varphi^*(A_1; ...; A_n) < \infty$ such that A_1 is diffuse, and A_2 is a non-amenable II_1 factor. Then M is a non L^2 -rigid II_1 factor. Thus, M is prime, does not have property Γ nor property (T).

Theorem (Ioana, D. 2012)

Let $A_1, ..., A_n \in (M_1, \tau_1)$ be diffuse von Neumann subalgebras free from $u_1, ..., u_n$ unitary elements, for some $n \ge 2$. Denote by $N = W^*(u_1A_1u_1^*, ..., u_nA_nu_n^*)$. Assume that A_1 is a non-amenable II_1 factor and that $u_2 \notin \mathbb{C}u_1$. Then N does not have a Cartan subalgebra.

This complements results of [Hiai, Miyamoto,Ueda] by microstates techniques when $A_1, ..., A_n$ are amenable.

1.2 Ideas behind recent Applications of non-microstates free entropy and mutual information.

- Build α_t : M → M̃ ⊃ M deformations, i.e. trace preserving *-homomorphisms with ||α_t(x) - x||₂ →_{t→0} 0 solving a free SDE and use Popa's Deformation/Rigidity Theory (mainly spectral gap rigidity)
- If *M̃* = M * L(𝔽_∞) (e.g. in the case of Lipschitz conjugate variable [D2010]) one can use [loana 2012] to prove absence of Cartan subalgebras (first force α_t(M) <_{M̃} M and get a contradiction with some non-amenability in M)
- If L²(M̃) ⊖ L²(M) is a direct sum of coarse M M bimodule L²(M) ⊗ L²(M) (or weaker, weakly contained in the coarse and mixing), then one can use idea's of [Peterson 2006] and get primness results.
- Pb: Obtaining those dilations is really hard and require at least finite Fisher information (or closable derivations), a finite entropy assumption seems out of reach.

1.3 New Approach for New Results

- New idea : look at non-trace preserving *-homomorphism (e.g. X = X₀ → X_t = X₀ + S_t as in definition of free entropy) and exploit the flip homomorphism in W^{*}(X₀, S_t) *_{W^{*}(X_t)} W^{*}(X₀, S_t).
- New problem : Control $W^*(X_t) \subset W^*(X_0, S_t)$. One expects ideally $W^*(X_0, S_t) = W^*(X_t) * L(\mathbb{F}_{\infty})$ to exploit [loana 2012] and get absence of Cartan subalgebra results.
- But at this stage, one can only control
 L²(W*(X₀, S_t)) ⊖ L²(W*(X_t)) as W*(X_t)-bimodule and use idea's of [Peterson 2006] to get primeness results.

• • = • • = •

1.3 New Non-F Results

Define following [Connes-Shlyakhtenko]:

$$\delta^*(X_1,...,X_n) = n - \limsup_{t\to 0} t\Phi^*(X_1 + S_{1,t},...,X_n + S_{n,t}).$$

Theorem

For any $Z_m \in W^*(X_1, ..., X_n)$ with $||Z_m|| \le 1$ for all m, and $\limsup_{m\to\infty} ||[Z_m, X_i]||_2 = 0$, i=1,...,n. then if $\delta^*(X_1, ..., X_n)$ is close to n:

$$\limsup_{m \to \infty} ||Z_m - \tau(Z_m))||_2 \le 46(\frac{n - \delta^*(X_1, ..., X_n)}{n - 1})^{1/8}$$

Especially, if $\delta^*(X_1, ..., X_n) = n$ (e.g. if $\chi^*(X_1, ..., X_n) > -\infty$), then $W^*(X_1, ..., X_n)$ is a factor without property Γ . Moreover if $W^*(X_1, ..., X_n)$ is a factor and $\delta^*(X_1, ..., X_n)$ is close to n, then $W^*(X_1, ..., X_n)$ does not have property Γ . One can also prove that if

$$\liminf_{t\to 0} t \sup_{i} \left(\left\| \partial_{X_{i,t}}^* 1 \otimes 1 \right) \right\|^2 + \left\| \partial_{X_{i,t}}^* (1 \otimes \partial_{X_{i,t}}^* 1 \otimes 1) \right) \right\| = 0,$$

then $X_1, ..., X_n$ is a non- Γ set for M in the sense of [Peterson 2004], i.e., $\exists c > 0 \forall Z \in L^2(M)$:

$$||Z - \tau(Z)||_2 \le c \sum_{i=1}^n ||[Z, X_i]||_2.$$

1.3 New Primness Results: finite entropy case

Theorem

Assume $\delta^*(X_1, ..., X_n) = n$ and $\mathbb{C}\langle X_1, ..., X_n \rangle$ contain a non- Γ set for $M = W^*(X_1, ..., X_n)$ (or even only a non-amenability set) then M is a prime II_1 factor.

Theorem

Assume $i^*(A_1, ..., A_n) < \infty$ and A_1, A_2 diffuse, A_1 non-amenable then $M = W^*(A_1, ..., A_n)$ is a prime II_1 factor without property Γ .

- Note that if we knew that $\chi^*(X_1,...,X_n) \leq -i^*(W^*(X_1),...,W^*(X_n)) + \sum_{i=1}^n \chi(X_i)$ this would imply primness as soon as $\chi^*(X_1,...,X_n) > -\infty$ and $n \geq 3$. - Knowing that

$$\begin{split} &\chi_{orb}(W^*(X_1),...,W^*(X_n)) \leq -i^*(W^*(X_1),...,W^*(X_n)) \text{ and} \\ &\chi(X_1,...,X_n) = \chi_{orb}(W^*(X_1),...,W^*(X_n)) + \sum_{i=1}^n \chi(X_i)[\mathsf{HMU}], \\ &\text{one recovers Ge's result for } n \geq 3 \end{split}$$

Overview

Summary of applications to non-microstates free entropy

- Reminder on microstates free entropy and its applications to von Neumann algebras
- Reminder on non-microstates free entropy and applications
- New applications and motivation
- Itime reversal of free diffusions.
 - Background on the classical case.
 - Reversed free Brownian Motion and SDEs.
 - An application in Free Probability.
 - Alternative formulas and bimodular consequences.
- Ideas of Proofs of applications : "weakly coarse and mixing Wasserstein rigidity".

2.1 Background on Classical Time reversal

Consider a solution on [0, T] of a classical Markovian SDE :

$$X_t = X_0 + \int_0^t b(s, X(s)) ds + \int_0^t \sigma(s, X(s)) dB_s.$$

- Problem: When is $Y_t = X_{T-t}$ also a diffusion ? (i.e. solve the same kind of SDE)
- Original Motivation (Nelson): Model Quantum Mechanics (which is reversible) in Stochastic Mechanics. [Nelson '67] found that formally, there should be a correction of the drift by appropriate score function, i.e. *Y_t* should satisfy :

$$Y_t = Y_0 + \int_0^t \overline{b}(T-s, Y(s)))ds + \int_0^t \sigma(T-s, X(s))d\overline{B}_s,$$

with the new drift :

$$\overline{b}_j(T-s,y) = \frac{\sum_i \nabla_i ((\sigma \sigma^*)_{ji} p_s)}{p_s}(y) - b_j(T-s,y),$$

where p_t is the density with respect to Lebesgue measure of $(Y_{1,t},...,Y_{n,t})$.

2.1 Background on Classical Time reversal

Consider a solution on [0, T] of a classical Markovian SDE :

$$X_t = X_0 + \int_0^t b(s, X(s)) ds + \int_0^t \sigma(s, X(s)) dB_s.$$

- Mathematical Work of [Anderson '82][Föllmer '86],[Pardoux, Haussmann],[Pardoux],[Millet,Nualart,Sanz '89][Jacod]
- Definitive answer in [Millet,Nualart,Sanz '89] : The reversed process satisfy a martingale problem as soon as the formula for the reversed drift exist.
- More interesting for us, [Pardoux] gave under stronger conditions an explicit formula for the brownian motion driving the time reversed process. (Enlargement of filtration method):

$$\overline{B}_t = B_{T-t} - B_T - \int_{T-t}^T \frac{\sum_i \nabla_i (\sigma_i p_s)}{p_s} (X_s) ds.$$

One can check this is a Brownian motion by a Levy Theorem manageable in the free case Yoann Dabrowski Time Reversal of Free SDEs

2.2 Time Reversal of free SDEs.

Consider a strong solution on [0, T] of a free (Markovian) SDE :

$$X_{i,t} = X_{i,0} + \int_0^t V_i(s, X(s)) ds + \int_0^t Q_i(s, X_s) \# dS_s.$$

- Using [Biane,Speicher], this can be defined and solved for regular (in C = C(X₁,...,X_n)) V_i, Q_i. A strong solution means X_t ∈ W^{*}(X₀, S_s, s ≤ t). Recall (a ⊗ b)#S = aSb.
- Same Problem: When does $Y_t = X_{T-t}$ solve a free SDE ?
- Using Ito formula, one can rewrite the equation with derivations $\delta_i : \mathcal{C} \to \mathcal{C} \otimes \mathcal{C}$, and $\Delta_{Q,V} : \mathcal{C} \to \mathcal{C}$, there is a *-homomorphism $\alpha_t(X) = X_t$ such that for any $P \in \mathcal{C}$:

$$\alpha_t(P) = P + \int_0^t ds \alpha_s(\Delta_{Q,V}(P)) + \int_0^t \alpha_s \otimes \alpha_s(\delta(P)) \# dS_s.$$

2.2 Reversed free Brownian Motion.

More precisely, for any $P \in C$, if $\tau_s = \tau \circ \alpha_s$:

$$\alpha_t(P) = P + \int_0^t ds \alpha_s(\Delta_{Q,V}^{\tau_s}(P)) + \int_0^t \alpha_s \otimes \alpha_s(\delta(P)) \# dS_s.$$

- Explicitly, we have : $\delta_j(P) = \sum_i \partial_i(P) \# Q_{i,j}, \Delta_{Q,V}^{\tau}(P) = \sum_i \partial_i(P) \# V_i + \sum_{i,k,l} m \circ 1 \otimes \tau \otimes 1((\partial_k \otimes 1) \partial_l(P) \# (Q_{k,i} \otimes Q_{l,i}))),$ We will assume $\Delta_{Q,V}^{\tau_s}$ has the form $(W_{j,s} \in C)$: $\Delta_{Q,V}^{\tau_s}(P) = \sum_j \delta_j(P) \# W_{j,s} + \sum_i m \circ 1 \otimes \tau_s \otimes 1(\delta_i \otimes 1\delta_i(P)).$
- We can consider $\delta_{i,s}$ defined on $Alg(X_{1,s},...,X_{n,s})$, for $P \in C$, by

$$\delta_{i,s}(P(X_{1,s},...,X_{n,s})) = (\alpha_s \otimes \alpha_s) \delta_i(P) \in L^2(W^*(X_s) \otimes W^*(X_s)).$$

We will assume $\xi_{i,s} := \delta_{i,s}^* 1 \otimes 1$ exists s > 0 and is in M and supplementary assumptions, proved for liberation processes and free brownian motion by Voiculescu, and that we can also check when $Q_{ij} = 1 \otimes 1\delta_{i=j}$, $V_i = D_i V$, $V \in C$.

2.2 Reversed free Brownian Motion.

Assumption (C):

- $s \in [0, T) \mapsto \overline{\xi}_s = \xi_{T-s}$ is left continuous with right limits when seen as valued in $L^2(M)^n$.
- $\exists C > 0, ||\overline{\xi}_{i,s}|| < C/\sqrt{T-s}, s < T$
- $\exists D \ge 0, \alpha > 0 \forall t < s < T,$

$$\|E_{W^*(X_{1,\tau-t},\ldots,\overline{X}_{i,\tau-t})}(\overline{\xi}_{s,i})-\overline{\xi}_{t,i}\|_2 \leq D(s-t)^{\alpha}.$$

• For any $P \in C$, for any $s \leq T$, there exists paths $(K_t^s(P), L_t^s(P))_{t \in [0,s]} \in C^1([0,s], C^2(X_1, ..., X_n))^2$ such that $K_s^s(P) = L_s^s(P) = P$ and for $t \leq s$

$$\frac{\partial K_t^s(P)}{\partial t} + \Delta_{Q,V}^{\tau_t}(K_t^s(P)) = 0,$$

$$\frac{\partial L_t^s(P)}{\partial t} - \Delta_{Q,V}^{\tau_{T-t}}(L_t^s(P)) = 0.$$

+Extra technical assumptions

Theorem

Under assumption (C), $\overline{S}_{i,t} \coloneqq S_{i,T-t} - S_{i,T} + \int_0^t ds \overline{\xi}_{i,s}, t \in [0, T]$ is a free brownian motion adapted to the filtration $\overline{\mathcal{F}}_s = W^*(B, \alpha_{T-t}(P), P \in \mathcal{C}, t \in [0, s], \overline{S}_{i,t}, t \in [0, s]).$

2.2 Reversed free Brownian Motion.

• Key Idea of Proof: one uses a free Paul Levy's Thm [Biane-Capitaine-Guionnet] characterizing free Brownian motion.

Theorem (Biane-Capitaine-Guionnet)

Let B_s be an increasing filtration of von Neumann algebras in (M, τ) , $Z_s = (Z_s^1, ..., Z_s^m)$, $s \in \mathbb{R}_+$ an m-tuple of self-adjoint processes adapted to this filtration $Z_0 = 0$ and :

$$\bullet E_{B_s}(Z_t) = Z_s$$

2
$$Z_t - Z_s = U_{t,s} + V_{t,s}$$
 with $\tau(|U_{t,s}|^4) \le K(t-s)^{3/2}$ and $\tau(|V_{t,s}|^2) \le K(t-s)^2$

③ $\tau(Z_t^k A Z_t^l C) = \tau(Z_s^k A Z_s^l B) + (t - s) \mathbf{1}_{\{k=l\}} \tau(A) \tau(C) + o(t - s)$ for any *A*, *C* ∈ *B*_s.

Then Z is a free Brownian motion adapted to B_s .

2.2 Reversed free Brownian Motion.

Theorem

Under assumption (C), $\overline{S}_{i,t} \coloneqq S_{i,T-t} - S_{i,T} + \int_0^t ds \overline{\xi}_{i,s}, t \in [0, T]$ is a free brownian motion adapted to the filtration $\overline{\mathcal{F}}_s = W^*(B, \alpha_{T-t}(P), P \in \mathcal{C}, t \in [0, s], \overline{S}_{i,t}, t \in [0, s]).$

- Key Idea : one uses a free Paul Levy's Thm [Biane-Capitaine-Guionnet] characterizing free Brownian motion.
- To check the martingale property, one uses the PDE solution K_t^s chosen so that:

$$\alpha_{T-s}(X) = K_0^{T-s}(X) + \int_0^{T-s} (\alpha_u \otimes \alpha_u) (\delta(K_u^{T-s}(X))) \# dS_u.$$

This reduces the martingale property to the adjoint definition of $\xi_{i,s}$.

• The other estimates are easy.

2.2 Reversed free SDE.

Theorem

Under assumption (C), if $\overline{S}_{i,t} := S_{i,T-t} - S_{i,T} + \int_0^t ds \overline{\xi}_{i,s}$, then for any $P \in C \ \overline{\alpha_t}(P) := \alpha_{T-t}(P)$ satisfy the following free SDE :

$$\overline{\alpha}_{t}(X) = \overline{\alpha}_{0}(X) - \int_{0}^{t} ds [\overline{\alpha}_{s}(\Delta_{Q,V}^{\tau_{T-s}}(X)) + \Delta_{s}\overline{\alpha}_{s}(X)] + \int_{0}^{t} \overline{\alpha}_{s} \otimes \overline{\alpha}_{s}(\delta(X)) \# d\overline{S}_{s},$$

where $\Delta_s = \delta^*_{T-s} \overline{\delta_{T-s}}$, s < T.

One mainly needs the following identity for some processes $Y_s \in W^*(\alpha_{T-s}(\mathcal{C})) \cap D(\Delta_s)$:

$$\int_{u}^{v} \overline{\delta}_{s}(Y_{s}) \# d\overline{S}_{s} + \int_{T-v}^{T-u} \overline{\delta}_{T-s}(Y_{T-s}) \# dS_{s} = \int_{u}^{v} \Delta_{s}(Y_{s}) ds.$$

Actually for $Y \in D(\Delta)$ generator of the form : $\mathcal{E}(f) = \int_0^T ||\overline{\delta_s}f(s)||_2^2 ds.$

2.3 An application in free probability

• Consider the special case of liberation process of 2 projections $p, q, q_t = q, p_t = u_t p u_t^*$ with $u_t = 1 - \frac{1}{2} \int_0^t u_s ds + i \int_0^t dS_t u_t$ so that :

$$p_t = p + \int_0^t (\tau(p) - p_s) ds + i \int_0^t [dS_s, p_s]$$

• If $\tilde{p}_t = p_{T-t}$, then our result states :

$$\tilde{p}_t = \tilde{p}_0 + \int_0^t (\tau(p) - \tilde{p}_s - [\tilde{p}_s, \mathcal{J}_{i,s}]) ds + i \int_0^t [dS_s, \tilde{p}_s],$$

where $\mathcal{J}_{i,s}$ is the liberation gradient computed at time *s*.

2.3 An application in free probability

 At the end of [Bercovici,Collins,Dykema,Li,Timotin 2008] and in the clarification of a gap in a proof in [Collins,Kemp 2012], if R_T = p_T ∧ q, τ(p), τ(q) ≤ 1/2, the authors are interested in computing the derivative of F_T(s) = τ(R_TpR_T - R_T)². For s ≥ T, forward Ito calculus applies to get the right derivative [Collins,Kemp 2012]

$$F'_{T,r}(T) = 2\tau(R_T)(1-\tau(p)) \ge 0.$$

• Forward Ito Calculus don't say anything about the left derivative (this was the original main gap), but the backward equation does :

$$F'_{T,l}(T) = -2\tau(R_T)(1-\tau(p)) \le 0.$$

Thus (if I didn't make a sign mistake to get my derivative) F_T is differentiable at T only if $\tau(R_T) = 0$.

2.3 An application in free probability

 At the end of [Bercovici,Collins,Dykema,Li,Timotin 2008] and in the clarification of a gap in a proof in [Collins,Kemp 2012], if R_T = p_T ∧ q, τ(p),τ(q) ≤ 1/2, the authors are interested in computing the derivative of F_T(s) = τ(R_TpR_T - R_T)². For s ≥ T, forward Ito calculus applies to get the right derivative [Collins,Kemp 2012]

$$F'_{T,r}(T) = 2\tau(R_T)(1-\tau(p)) \ge 0.$$

• Forward Ito Calculus don't say anything about the left derivative (this was the original main gap), but the backward equation does :

$$F'_{T,l}(T) = -2\tau(R_T)(1-\tau(p)) \leq 0.$$

Thus (if I didn't make a sign mistake to get my derivative) F_T is differentiable at T only if $\tau(R_T) = 0$.

2.4 Alternative formulas and bimodularity properties

Theorem

Assume assumption (C).

• For any $P \in C$ let us write $R_P^t(\overline{X}_u) = \alpha_{T-u}(L_u^t(X))$, then :

$$\overline{\alpha_t}(P) = \int_u^t \delta_v(R_P^t(\overline{X}_v)) \# d\overline{S}_v + R_P^t(\overline{X}_u) - \int_u^t dv \Delta_v(R_P^t(\overline{X}_v)).$$

 $\begin{array}{ll} \hline \textbf{O} & Let \ us \ write \ Q_P^t(u) = E_{W^*(\alpha_{T-u}(\mathcal{C}))}(\alpha_{T-t}(P)), u < t \ then \\ v \mapsto 1_{[u,t)}(v)Q_P(v,t) \ is \ in \ D(\mathcal{E}) \ and \ for \ any \\ Z \in D(\mathcal{E}), a_u, b_u \in W^*(\overline{X}_u) \ we \ have : \end{array}$

$$(P_t - Q_P^t(u) - \int_u^t \overline{\delta}_s(Q_P^t(s)) \# d\overline{S}_s) \perp \overline{a}_u \int_u^T \overline{\delta}_s(Z_s) \# d\overline{S}_s \overline{b}_u.$$

• Fix t. For almost all $u \in [t, T]$. The $M_u = W^*(\overline{X}_u)$ bimodule generated by $P_t - E_u(P_t)$ for $P_t \in M_t$, is weakly contained into the coarse bimodule $L^2(M_t) \otimes L^2(M_t)$ and mixing.

First recall the following :

Definition (Peterson 2006, Peterson-Sinclair 2009)

Let (M, τ) be a tracial von Neumann algebra. We say that an M-M bimodule \mathcal{H} is *mixing* if for any sequence $a_n \in (M)_1$ such that $a_n \to 0$, weakly, we have

 $\sup_{x \in (M)_1} |\langle a_n \xi x, \eta \rangle| \to 0 \text{ and } \sup_{x \in (M)_1} |\langle x \xi a_n, \eta \rangle| \to 0, \text{ as } n \to \infty, \forall \xi, \eta \in \mathcal{H}.$

2.4 Remarks on bimodularity properties

- Those bimodularity properties will be exactly what is needed for primness results starting from finite non-microstates entropy.
- Note that, since we don't know that $P_t Q_P(u, t)$ is a stochastic integral, the second formula is not enough to prove the statement about the bimodularity property.
- The trick is to see

$$P_t - Q_P(u, t) = \int_u^t \delta_v(R_{P,t}(\overline{X}_v)) \# d\overline{S}_v - \int_u^t dv(1 - E_u) \Delta_v(R_{P,t}(\overline{X}_v))$$

And use the fact that $\Delta_{\nu} = \delta_{\nu}^{*} \delta_{\nu}$ also make appear a coarse bimodule, as the stochastic integral (which is also an adjoint operator valued in a coarse bimodule in Malliavin calculus sense).

2.4 Remarks on our Alternative formulas

• For $X_t = X_0 + S_t$, the second statement is really interesting. By Voiculescu's result, the conjugate variable at time t is : $\xi_{i,t} = E_{W^*(X_t)}(\frac{1}{t}S_{i_t}) = \frac{X_t}{t} - \frac{1}{t}E_{W^*(X_t)}(X_0)$ so that $Q_{X_i}(u, T) = X_{i,u} - u\xi_{i,u}$ and thus $\int_u^T ||\delta_s(\xi_{i,s})||_2^2 ds < \infty$. Actually, the proof also gives for t > u:

$$||\xi_{i,u}||_2^2 \ge ||\xi_{i,\tau}||_2^2 + \int_u^{\tau} ||\delta_s(\xi_{i,s})||_2^2 ds.$$

If $P_t - Q_P(u, t)$ were stochastic integrals, we would have equality, proving an hold conjecture of Voiculescu about (absolute) continuity of Fisher information along free Brownian motion.

Overview

Summary of applications to non-microstates free entropy

- Reminder on microstates free entropy and its applications to von Neumann algebras
- Reminder on non-microstates free entropy and applications
- New applications and motivation
- Time reversal of free diffusions.
 - Background on the classical case.
 - Reversed free Brownian Motion and SDEs.
 - An application in Free Probability.
 - Alternative formulas and bimodular consequences.
- Ideas of Proofs of our applications : "weakly coarse and mixing Wasserstein rigidity".

- Instead of a dilation α_t : M = W*(X₁,...,X_n) → M̃ available only in case of Finite Fisher information (or starting with any other closable derivation), we have now only the building blocks W*(X, S_t) *_{W*(X1+S1,t},...X_{n+Sn,t} W*(X, S_t) We think of this as a coupling as those appearing for the definition of Wasserstein distance, and we obtained and will consider couplings with extra control on bimodularity properties.
- We need to (slightly) generalize the results of [Peterson 2006] and [loana D. 2012] in this setting, with finite entropy playing the role of a quantitative estimation of the way the free difference quotient can be approximated by closable derivations.

3 Ideas of Proofs of our applications.

Definition

A weakly coarse and mixing Wasserstein coupling (wCMW coupling) of M_1 and M_2 is a von Neumann algebra (M, τ) with two trace preserving (unital) * homomorphisms $\iota_1 : (M_1, \tau_1) \rightarrow (M, \tau)$, with expectation $E_1 = E_{\iota_1(M)}$, $\iota_2 : (M_2, \tau_2) \rightarrow (M, \tau)$ such that the submodule

$$\mathcal{K}(\iota_1,\iota_2) \coloneqq \overline{Span\{\iota_1(x)(\iota_2(y) - E_1(\iota_2(y)))\iota_1(z); x, z \in M_1, y \in M_2\}}$$

is a mixing and weakly contained in the coarse bimodule $L^2(\iota_1(M_1)) \otimes L^2(\iota_1(M_1))$ as $\iota_1(M_1) - \iota_1(M_1)$ bimodule, and symmetric statements in changing M_1, M_2 .

Lemma

If N_1 is a wCMW coupling for $M_1 - M_2$ and N_2 is a wCMW coupling for $M_2 - M_3$, then so is $N_1 *_{\iota_2(M_2)} N_2$ for $M_1 - M_3$.

Definition

A densely defined derivation $\delta: D(\delta) \to \mathcal{H}$ on M is said to have a *weakly coarse and mixing Wasserstein dilation* if there exists for any $t \in (0,1)$ a weakly coarse and mixing Wasserstein coupling M_t for M and itself with embeddings ι_1^t and ι_2^t and if moreover there are $0 < c < C < \infty$ such that for any P in $D(\delta)$:

$$\limsup_{t \to 0} \frac{1}{\sqrt{t}} \|\iota_1^t(P) - E_{\iota_2^t(M)}(\iota_1^t(P))\|_2 \le C \|\delta(P)\|_2.$$

$$\liminf_{t\to 0} \frac{1}{\sqrt{t}} \|\iota_1^t(P) - E_{\iota_2^t(M)}(\iota_1^t(P))\|_2 \ge c \|\delta(P)\|_2.$$

and symmetrically changing 1 and 2.

Using that

$$P(X_0) - E_{W^*(X+S_t)}P(X_0) - \delta(P)(X_t) \# \overline{S_t}$$

= $\int_0^t \delta_v (R_P^t(\overline{X}_v) - \delta(P)(X_t)) \# d\overline{S}_v - \int_0^t dv (1 - E_u) \Delta_v (R_P^t(\overline{X}_v))$

and
$$\int_{0}^{t} ||\xi_{v}||_{2} dv \leq \sqrt{t} \sqrt{\int_{0}^{t} ||\xi_{v}||_{2}^{2} dv} = o(\sqrt{t}) \text{ when } \\ \chi^{*}(X_{1},...,X_{n}) > -\infty. \text{ One can see that } \\ M_{t} = W^{*}(X,S_{t}) *_{W^{*}(X_{1}+S_{1,t},...,X_{n}+S_{n,t})} W^{*}(X,S_{t}) \text{ gives a } \\ \text{wCMW dilation of the free difference quotient in this case.} \end{cases}$$

Note that we can win some results usually given by symmetry by a free product with amalgamation trick.

Lemma

If δ has a wCMW-dilation, then it has a wCMW-dilation (α_t, β_t) such that moreover, for any $P \in D(\delta)$,

$$\begin{split} \liminf_{t \to 0} \frac{1}{\sqrt{t}} \|\alpha_t(P) - \beta_t(P)\|_2 &\geq c \|\delta(P)\|_2, \\ \limsup_{t \to 0} \frac{1}{\sqrt{t}} \|\alpha_t(P) - \beta_t(P)\|_2 &\leq C \|\delta(P)\|_2. \end{split}$$

• We need to (slightly) generalize the results of [Peterson 2006] and [loana D. 2012] in this setting, with finite entropy giving a quantitative estimate on the way the free difference quotient can be approximated by closable derivations.

3 A variant of Peterson L^2 -Rigidity : "weakly coarse and mixing Wasserstein rigidity".

Definition

An inclusion of finite von Neumann algebras $(Q \subset M, \tau)$ is said to be wCMW-rigid if for any densely defined derivation $\delta : D(\delta) \to \mathcal{H}$ having a wMCW-dilation there is (maybe) another wCMW-dilation such that $\sup_{x \in (Q)_1} ||\iota_1^t(x) - \iota_2^t(x)||_2 \to_{t \to 0} 0$ ((Q)₁ unit ball of Q).

Theorem (Variant of Peterson 2006)

If N is a non-amenable II₁ factor which is non-prime or has property Γ then $N \subset N$ is wCMW-rigid.

Theorem (Variant of Ioana-D 2012)

Let M be a II_1 factor. Assume that there exists an unbounded derivation $\delta : M_0 \to \mathcal{H}$ having a wCMW-dilation relative to B such that M_0 contains a non- Γ set. Then M is not wCMW-rigid. Thus, M is a prime non- Γ factor.

3 A variant of Peterson L²-Rigidity : "weakly coarse and mixing Wasserstein rigidity".

Definition

An inclusion of finite von Neumann algebras $(Q \subset M, \tau)$ is said to be wCMW-rigid if for any densely defined derivation $\delta : D(\delta) \to \mathcal{H}$ having a wMCW-dilation there is (maybe) another wCMW-dilation such that $\sup_{x \in (Q)_1} ||\iota_1^t(x) - \iota_2^t(x)||_2 \to_{t \to 0} 0$ ((Q)₁ unit ball of Q).

Theorem (Variant of Peterson 2006)

If N is a non-amenable II₁ factor which is non-prime or has property Γ then $N \subset N$ is wCMW-rigid.

Theorem (Variant of Ioana-D 2012)

Let M be a II_1 factor. Assume that there exists an unbounded derivation $\delta: M_0 \to \mathcal{H}$ having a wCMW-dilation relative to B such that M_0 contains a non- Γ set. Then M is not wCMW-rigid. Thus, M is a prime non- Γ factor.

Conclusion

- WIP: Most of those results have a generalization relative to a subalgebra B (time reversal, applications to free entropy relative to B and a completely positive map η).
- Main Problem : Do we have W*(X, S_t) = W*(X + S_t) * L(𝔽∞) ? (or something close to get absence of Cartan subalgebras result using [loana 2012] as in [loana-D 2012])
- Specially, do we have δ_iξ_j(X + S_t) ∈ M ⊗ M^{op} ? or at least in all L^p(M ⊗ M^{op}) (which is really likely equivalent to all higher derivatives in L²) ?
- Do we have for $T \ge t$:

$$\|\xi_i(X+S_t)\|_2^2 = \|\xi_i(X+S_T)\|_2^2 + \int_t^T \|\delta_s(\xi_i(X+S_s))\|_2^2 ds?$$

Thank you for your attention.

Conclusion

- WIP: Most of those results have a generalization relative to a subalgebra B (time reversal, applications to free entropy relative to B and a completely positive map η).
- Main Problem : Do we have W*(X, S_t) = W*(X + S_t) * L(𝔽∞) ? (or something close to get absence of Cartan subalgebras result using [loana 2012] as in [loana-D 2012])
- Specially, do we have δ_iξ_j(X + S_t) ∈ M ⊗ M^{op} ? or at least in all L^p(M ⊗ M^{op}) (which is really likely equivalent to all higher derivatives in L²) ?
- **(4)** Do we have for $T \ge t$:

$$\|\xi_i(X+S_t)\|_2^2 = \|\xi_i(X+S_T)\|_2^2 + \int_t^T \|\delta_s(\xi_i(X+S_s))\|_2^2 ds?$$

Thank you for your attention.

Theorem (Variant of Peterson 2006, Th 3.3)

Let $Q \subset M$ be a von Neumann subalgebra with M finite. Assume that, for any projection $p \in Q' \cap M$, Qp is non-amenable, then $Q' \cap M \subset M$ is wCMW-rigid. More generally, for any derivation δ on M, if there is a wCMW-dilation, then there is another wCMW-dilation of δ converging uniformly on $(Q' \cap M^{\omega})_1$.

Theorem (Variant of Peterson 2006, Th 3.5)

If $Q \,\subset \, M$ is a von Neumann subalgebra such that Q is diffuse and if the inclusion $Q \,\subset \, M$ is wCMW-rigid, then $W^*(N_M(Q)) \,\subset \, M$ is wCMW-rigid. More generally, any free ultrafilter ω , if $Q \,\subset \, M^{\omega}$ is a von Neumann subalgebra such that Q is diffuse, for any derivation δ if there is a wCMW-dilation α_t, β_t , such that $\alpha_t - \beta_t$ converges uniformly on Q, then there is another dilation of δ converging uniformly on $(W^*(N_{M^{\omega}}(Q) \cap M))_1$.