
Time reversal of free Stochastic Differential
Equations and applications of non-microstates free

entropy to von Neumann algebras .

Yoann Dabrowski
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Overview

1 Summary of applications to non-microstates free entropy

● Reminder on microstates free entropy and its applications to
von Neumann algebras

● Reminder on non-microstates free entropy and applications
● New applications and motivation

2 Time reversal of free diffusions.

● Background on the classical case.
● Reversed free Brownian Motion and SDEs.
● An application in free Probability.
● Alternative formulas and bimodular consequences.

3 Ideas of Proofs of our applications : ”weakly coarse and
mixing Wasserstein rigidity”.
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1.1 Voiculescu’s microstates Free Entropy

● SnR tracial states on the universal C∗ free product
C([−R,R])∗n ⊃ lC⟨X1, ...,Xn⟩ non-commutative polynomials

Basis of *-weak topology

Vε,K(τ) = {σ ∈ SnR ∣ ∀m monomials of degree less than K

∣τ (m(X1, . . . ,Xn)) − σ (m(X1, . . . ,Xn)) ∣ < ε}

● For an n-tuple of hermitian matrices
M = (M1, . . . ,Mn) ∈ (HR

N )n (i.e. ∣∣Mi ∣∣ ≤ R) one gets τM ∈ SnR :

τM(P) = 1

N
Tr(P(M1, ...,Mn)), ∀P ∈ lC⟨X1, ...,Xn⟩.

ΓR(τ, ε,K ,N) = {M ∈ (HR
N )n ∣ τM ∈ Vε,K(τ)}.

● Microstates free Entropy : τ ∈ SnR

χR(τ) = lim
K→∞,ε→0

lim sup
N→∞

( 1

N2
log (Leb(ΓR(τ, ε,K ,N))) + n

2
log N)
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1.1 Applications of Microstates Free Entropy

● (X1, ...,Xn) s.a. in (M = W ∗(X1, ...,Xn), τ)
χ(X1, ...,Xn) = χR(τ) > −∞ implies properties of M :

- M does not have property Γ (Voiculescu) : i.e. every sequence
Zm, ∣∣Zm∣∣M ≤ C , such that ∣∣[Zm,X ]∣∣2 → 0 ∀X ∈ M is trivial,
i.e. ∣∣Zm − τ(Zm)∣∣2 → 0. (Especially, M non-amenable factor.)

- M is prime (Ge) : M is not a tensor product M ≃ A⊗B of
two II1 factors A,B.

- M has no Cartan subalgebra (Voiculescu) : There is no
maximal abelian subalgebra A ⊂ M such that its normalizer
NM(A) = {u ∈ U(M),uAu∗ ⊂ A} generates M:
(NM(A))′′ = M.

- not thin (Ge, Popa) etc.
● Goal: extend those applications to non-microstates free

entropy (relative to B or free mutual information) using
progresses in Popa’s Deformation/Rigidity Theory (that
provided alternative proofs and much more for free Groups
factors L(IFn) recently, e.g. strong solidity)
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1.2 Reminder on Voiculescu’s non-microstates free entropy

In general, it is hard to check χ(X1, ...,Xn) >∞ (or even
δ0(X1, ...,Xn) > 1).
Non-microstates free entropy χ∗ : Alternative formula
using free stochastic differential equations and free Fisher’s
information and expected to be equal (χ ≤ χ∗ known by a
result of [Biane-Capitaine-Guionnet], and equality if n = 1).
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1.2 Reminder on Voiculescu’s non-microstates free entropy

Reminder of definition : Start by considering
X1, ...,Xn ∈ (M = W ∗(X1, ...,Xn), τ) finite von Neumann
algebra, X1, ...,Xn algebraically free self-adjoints and define
the free difference quotient ∂i ∶ C = lC⟨X1, ...,Xn⟩→ C ⊗ C
the unique derivation with :

∂i(Xj) = 1⊗ 1δi=j

Look at ∂i ∶ L2(M, τ)→ L2(M, τ)⊗ L2(M, τ)
Define ξi = ∂∗i 1⊗ 1 ∈ L2(M, τ) conjugate variables, if they
exist. This is the free analogue of the score function.

Free Fisher information is defined as ∞ if they don’t exist
and otherwise:

Φ∗(X1, ...,Xn) =
n

∑
i=1

∣∣ξi ∣∣22.
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1.2 Reminder on Voiculescu’s non-microstates free entropy

Consider
Xi ,t = Xi ,0 + Si ,t ,

Si ,t free Brownian motion, and ξi ,t conjugate variables for
X1,t , ...,Xn,t , then non-microstates free entropy is defined as :

χ∗(X1, ...,Xn) =
1

2 ∫
∞

0
( n

1 + t
−Φ∗(X1,t , ...,Xn,t))dt

+ n

2
log(2πe),

Explication for this formula (or its Orstein-Uhlenbeck variant):
“relative entropy of the process considered backwards in time
and using Girsanov formula for the density”.
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1.2 Known applications of non-microstates free entropy
and free Fisher information

● [D2008] If χ∗(X1, ...,Xn) > −∞, W ∗(X1, ...,Xn) is a factor.

● [D2008]If Φ∗(X1, ...,Xn) <∞, W ∗(X1, ...,Xn) doesn’t have
property Γ.

● Recent results in a joint work with Adrian Ioana :

Theorem (Ioana, D. 2012)

Let (M = W ∗(X1, ...,Xn), τ). Assume that either

Φ∗(X1, ...,Xn) <∞ and n ⩾ 3, or

ξi = ∂∗i (1⊗ 1), ∂∗i (1⊗ ξi) exists and belongs to M, ∀i ∈ {1, ...,n},
n ≥ 2.

Then, M is prime and does not have property Γ.
Actually M is a non-L2-rigid II1 factor in the sense of Jesse
Peterson (which implies M is prime and does not have property Γ
[Peterson 2006]).
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1.2 Applications of non-microstates free entropy.

The main example of X1, ...,Xn, with
ξi = ∂∗i (1⊗ 1), ∂∗i (1⊗ ξi) ∈ M is Xi = Yi + Si ,t , Yi and Si ,t

free. In this case, we can conclude more (without assuming
X1, ...,Xn Rω-embeddable as for the corresponding microstate
free entropy result):

Theorem (Ioana, D. 2012)

Let (M, τ) be a tracial von Neumann algebra and X1, ...,Xn ∈ M
be n ⩾ 2 self-adjoint elements. Let {S1, ...,Sn} ∈ L(Fn) be the
canonical semicircular family and ε > 0. Denote by Mε ⊂ M ∗ L(Fn)
the von Neumann subalgebra generated by X1 + εS1, ...,Xn + εSn.
Then Mε is a non-L2-rigid II1 factor that does not have a Cartan
subalgebra.
(The conclusion also holds for S1, ...,Sn replaced by Y1, ...,Yn with
ξi = ∂∗Yi

(1⊗ 1), ∂∗Yi
(1⊗ ξi) ∈ M and free from X1, ...,Xn /∈ lC)
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1.2 Applications of non-microstates free entropy.

Theorem (Ioana, D. 2012)

Let (M = W ∗(X1, ...,Xn), τ) and ∂i ∶ M → L2(M)⊗̄L2(M) the free
difference quotient. Assume ξi = ∂∗i (1⊗ 1) exists, ξi ∈ D(∂̄) and
∂̄i(ξj) ∈ (M⊗̄Mop) ⊂ L2(M⊗̄Mop) ≅ L2(M)⊗̄L2(M) (Lipschitz
conjugate variable), for all 1 ⩽ i , j ⩽ n.
Then M is a II1 factor which does not have a Cartan subalgebra.
Moreover, M⊗̄Q does not have a Cartan subalgebra, for any II1
factor Q.

● The assumption Lipschitz conjugate variable is the one under
which [D.2010] shows (using ideas of [Shlyakhtenko-2007])
that if, moreover, M is Rω embeddable, then
δ0(X1, ...,Xn) = n.

● The result M ⊗Q has no Cartan subalgebra is not known by
microstates free entropy techniques, but known for M = L(IFn)
by [Popa-Ozawa 2007,Popa-Vaes 2011].
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1.2 Reminder on non-microstates mutual information

Let A1, ...,An ⊂ (M = W ∗(A1, ...,An), τ) be algebraically free
subalgebras and define the unique derivation
δi ∶ A = Alg(A1, ...,An)→ A⊗A :

δi(aj) = (aj ⊗ 1 − 1⊗ aj)δi=j , aj ∈ Aj .

Look at δi ∶ L2(M, τ)→ L2(M, τ)⊗ L2(M, τ)
Define Ji = δ∗i 1⊗ 1 ∈ L2(M, τ) the liberation gradients, if
they exist and :

ϕ∗(A1, ...,An) =
n

∑
i=1

∣∣Ji ∣∣22.

Using Ui ,t , n free unitary Brownian motions, i.e. solving the
SDE : Ui ,t = 1 − 1

2 ∫
t

0 Ui ,sds + i ∫ t
0 dSi ,sUi ,s , and using the

liberation process (Ui ,sAiU
∗
i ,s) ,we define mutual information

i∗(A1, ...,An) =
1

2 ∫
∞

0
ϕ∗(U1,sA1U∗

1,s , ...,Un,sAnU∗
n,s)ds.
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1.2 Applications of non-microstates mutual information.

Theorem (Ioana, D. 2012)

Let (M = Wj(A1, ...,An), τ) tracial n ⩾ 2 generated A1, ...,An ≠ C1
with ϕ∗(A1; ...; An) <∞ such that A1 is diffuse, and A2 is a
non-amenable II1 factor.
Then M is a non L2-rigid II1 factor. Thus, M is prime, does not
have property Γ nor property (T ).

Theorem (Ioana, D. 2012)

Let A1, ...,An ⊂ (M1, τ1) be diffuse von Neumann subalgebras free
from u1, ...,un unitary elements, for some n ⩾ 2. Denote by
N = W ∗(u1A1u∗1 , ...,unAnu∗n) .
Assume that A1 is a non-amenable II1 factor and that u2 /∈ Cu1.
Then N does not have a Cartan subalgebra.

This complements results of [Hiai, Miyamoto,Ueda] by microstates
techniques when A1, ...,An are amenable.
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1.2 Ideas behind recent Applications of non-microstates
free entropy and mutual information.

● Build αt ∶ M → M̃ ⊃ M deformations, i.e. trace preserving
∗-homomorphisms with ∣∣αt(x) − x ∣∣2 →t→0 0 solving a free
SDE and use Popa’s Deformation/Rigidity Theory (mainly
spectral gap rigidity)

● If M̃ = M ∗ L(IF∞) (e.g. in the case of Lipschitz conjugate
variable [D2010]) one can use [Ioana 2012] to prove absence
of Cartan subalgebras (first force αt(M) ≺M̃ M and get a
contradiction with some non-amenability in M)

● If L2(M̃)⊖ L2(M) is a direct sum of coarse M −M bimodule
L2(M)⊗ L2(M) (or weaker, weakly contained in the coarse
and mixing), then one can use idea’s of [Peterson 2006] and
get primness results.

● Pb: Obtaining those dilations is really hard and require at
least finite Fisher information (or closable derivations), a finite
entropy assumption seems out of reach.
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1.3 New Approach for New Results

● New idea : look at non-trace preserving ∗-homomorphism
(e.g. X = X0 ↦ Xt = X0 + St as in definition of free entropy)
and exploit the flip homomorphism in
W ∗(X0,St) ∗W ∗(Xt) W ∗(X0,St).

● New problem : Control W ∗(Xt) ⊂ W ∗(X0,St). One expects
ideally W ∗(X0,St) = W ∗(Xt) ∗ L(IF∞) to exploit [Ioana 2012]
and get absence of Cartan subalgebra results.

● But at this stage, one can only control
L2(W ∗(X0,St))⊖ L2(W ∗(Xt)) as W ∗(Xt)-bimodule and use
idea’s of [Peterson 2006] to get primeness results.
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1.3 New Non-Γ Results

Define following [Connes-Shlyakhtenko]:

δ⋆(X1, ...,Xn) = n − lim sup
t→0

tΦ∗(X1 + S1,t , ...,Xn + Sn,t).

Theorem

For any Zm ∈ W ∗(X1, ...,Xn) with ∣∣Zm∣∣ ≤ 1 for all m, and
lim supm→∞ ∣∣[Zm,Xi ]∣∣2 = 0, i=1,...,n. then if δ⋆(X1, ...,Xn) is
close to n :

lim sup
m→∞

∣∣Zm − τ(Zm))∣∣2 ≤ 46(n − δ∗(X1, ...,Xn)
n − 1

)1/8

Especially, if δ⋆(X1, ...,Xn) = n (e.g. if χ∗(X1, ...,Xn) > −∞), then
W ∗(X1, ...,Xn) is a factor without property Γ.
Moreover if W ∗(X1, ...,Xn) is a factor and δ⋆(X1, ...,Xn) is close
to n, then W ∗(X1, ...,Xn) does not have property Γ.
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1.3 New Non-Γ set Results

One can also prove that if

lim inf
t→0

t sup
i

(∣∣∂∗Xi,t
1⊗ 1)∣∣2 + ∣∣∂∗Xi,t

(1⊗ ∂∗Xi,t
1⊗ 1))∣∣) = 0,

then X1, ...,Xn is a non-Γ set for M in the sense of [Peterson
2004], i.e., ∃c > 0∀Z ∈ L2(M) ∶

∣∣Z − τ(Z)∣∣2 ≤ c
n

∑
i=1

∣∣[Z ,Xi ]∣∣2.
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1.3 New Primness Results: finite entropy case

Theorem

Assume δ⋆(X1, ...,Xn) = n and lC⟨X1, ...,Xn⟩ contain a non-Γ set
for M = W ∗(X1, ...,Xn) (or even only a non-amenability set) then
M is a prime II1 factor.

Theorem

Assume i∗(A1, ...,An) <∞ and A1,A2 diffuse, A1 non-amenable
then M = W ∗(A1, ...,An) is a prime II1 factor without property Γ.

- Note that if we knew that
χ∗(X1, ...,Xn) ≤ −i∗(W ∗(X1), ...,W ∗(Xn)) +∑n

i=1 χ(Xi) this
would imply primness as soon as χ∗(X1, ...,Xn) > −∞ and n ≥ 3.
- Knowing that
χorb(W ∗(X1), ...,W ∗(Xn)) ≤ −i∗(W ∗(X1), ...,W ∗(Xn)) and
χ(X1, ...,Xn) = χorb(W ∗(X1), ...,W ∗(Xn)) +∑n

i=1 χ(Xi)[HMU],
one recovers Ge’s result for n ≥ 3
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2.1 Background on Classical Time reversal

Consider a solution on [0,T ] of a classical Markovian SDE :

Xt = X0 + ∫
t

0
b(s,X (s))ds + ∫

t

0
σ(s,X (s))dBs .

● Problem: When is Yt = XT−t also a diffusion ? (i.e. solve the
same kind of SDE)

● Original Motivation (Nelson): Model Quantum Mechanics
(which is reversible) in Stochastic Mechanics. [Nelson ’67]
found that formally, there should be a correction of the drift
by appropriate score function, i.e. Yt should satisfy :

Yt = Y0 + ∫
t

0
b(T − s,Y (s)))ds + ∫

t

0
σ(T − s,X (s))dBs ,

with the new drift :

bj(T − s, y) = ∑i ∇i((σσ∗)jips)
ps

(y) − bj(T − s, y),

where pt is the density with respect to Lebesgue measure of
(Y1,t , ...,Yn,t).
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2.1 Background on Classical Time reversal

Consider a solution on [0,T ] of a classical Markovian SDE :

Xt = X0 + ∫
t

0
b(s,X (s))ds + ∫

t

0
σ(s,X (s))dBs .

● Mathematical Work of [Anderson ’82][Föllmer ’86],[Pardoux,
Haussmann],[Pardoux],[Millet,Nualart,Sanz ’89][Jacod]

● Definitive answer in [Millet,Nualart,Sanz ’89] : The reversed
process satisfy a martingale problem as soon as the formula
for the reversed drift exist.

● More interesting for us, [Pardoux] gave under stronger
conditions an explicit formula for the brownian motion driving
the time reversed process. (Enlargement of filtration
method) :

Bt = BT−t −BT − ∫
T

T−t

∑i ∇i(σips)
ps

(Xs)ds.

● One can check this is a Brownian motion by a Levy Theorem
manageable in the free case.
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2.2 Time Reversal of free SDEs.

Consider a strong solution on [0,T ] of a free (Markovian) SDE :

Xi ,t = Xi ,0 + ∫
t

0
Vi(s,X (s))ds + ∫

t

0
Qi(s,Xs)#dSs .

● Using [Biane,Speicher], this can be defined and solved for
regular (in C = lC⟨X1, ...,Xn⟩) Vi ,Qi . A strong solution means
Xt ∈ W ∗(X0,Ss , s ≤ t). Recall (a⊗ b)#S = aSb.

● Same Problem: When does Yt = XT−t solve a free SDE ?

● Using Ito formula, one can rewrite the equation with
derivations δi ∶ C → C ⊗ C., and ∆Q,V ∶ C → C, there is a
∗-homomorphism αt(X ) = Xt such that for any P ∈ C :

αt(P) = P + ∫
t

0
dsαs(∆Q,V (P)) + ∫

t

0
αs ⊗ αs(δ(P))#dSs .
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2.2 Reversed free Brownian Motion.

More precisely, for any P ∈ C, if τs = τ ○ αs :

αt(P) = P + ∫
t

0
dsαs(∆τs

Q,V (P)) + ∫
t

0
αs ⊗ αs(δ(P))#dSs .

● Explicitly, we have : δj(P) = ∑i ∂i(P)#Qi ,j , ∆τ
Q,V (P) =

∑i ∂i(P)#Vi +∑i ,k,l m○1⊗τ⊗1((∂k⊗1)∂l(P)#(Qk,i⊗Ql ,i)),
We will assume ∆τs

Q,V has the form (Wj ,s ∈ C):

∆τs
Q,V (P) = ∑j δj(P)#Wj ,s +∑i m ○ 1⊗ τs ⊗ 1(δi ⊗ 1δi(P)).

● We can consider δi ,s defined on Alg(X1,s , ...,Xn,s), for P ∈ C,
by

δi ,s(P(X1,s , ...,Xn,s)) = (αs⊗αs)δi(P) ∈ L2(W ∗(Xs)⊗W ∗(Xs)).

We will assume ξi ,s ∶= δ∗i ,s1⊗ 1 exists s > 0 and is in M and
supplementary assumptions, proved for liberation processes
and free brownian motion by Voiculescu, and that we can also
check when Qij = 1⊗ 1δi=j , Vi = DiV ,V ∈ C.
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2.2 Reversed free Brownian Motion.

Assumption (C):

1 s ∈ [0,T )↦ ξs = ξT−s is left continuous with right limits when
seen as valued in L2(M)n.

2 ∃C > 0, ∣∣ξi ,s ∣∣ < C/
√

T − s, s < T
3 ∃D ≥ 0, α > 0∀t < s < T ,

∣∣EW ∗(X1,T−t ,...,X i,T−t)(ξs,i) − ξt,i ∣∣2 ≤ D(s − t)α.

4 For any P ∈ C, for any s ≤ T , there exists paths
(K s

t (P),Ls
t(P))t∈[0,s] ∈ C 1([0, s],C 2(X1, ...,Xn))2 such that

K s
s (P) = Ls

s(P) = P and for t ≤ s

∂K s
t (P)
∂t

+∆τt
Q,V (K s

t (P)) = 0,

∂Ls
t(P)
∂t

−∆τT−t
Q,V (Ls

t(P)) = 0.

5 +Extra technical assumptions
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2.2 Reversed free Brownian Motion.

Theorem

Under assumption (C), S i ,t ∶= Si ,T−t − Si ,T + ∫ t
0 dsξi ,s , t ∈ [0,T ] is

a free brownian motion adapted to the filtration
F s = W ∗(B, αT−t(P),P ∈ C, t ∈ [0, s],S i ,t , t ∈ [0, s]).
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2.2 Reversed free Brownian Motion.

Key Idea of Proof: one uses a free Paul Levy’s Thm
[Biane-Capitaine-Guionnet] characterizing free Brownian
motion.

Theorem (Biane-Capitaine-Guionnet)

Let Bs be an increasing filtration of von Neumann algebras in
(M, τ), Zs = (Z 1

s , ...,Z
m
s ), s ∈ IR+ an m-tuple of self-adjoint

processes adapted to this filtration Z0 = 0 and :

1 EBs (Zt) = Zs

2 Zt − Zs = Ut,s +Vt,s with τ(∣Ut,s ∣4) ≤ K(t − s)3/2 and
τ(∣Vt,s ∣2) ≤ K(t − s)2

3 τ(Z k
t AZ l

tC) = τ(Z k
s AZ l

sB) + (t − s)1{k=l}τ(A)τ(C) + o(t − s) for
any A,C ∈ Bs .

Then Z is a free Brownian motion adapted to Bs .
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2.2 Reversed free Brownian Motion.

Theorem

Under assumption (C), S i ,t ∶= Si ,T−t − Si ,T + ∫ t
0 dsξi ,s , t ∈ [0,T ] is

a free brownian motion adapted to the filtration
F s = W ∗(B, αT−t(P),P ∈ C, t ∈ [0, s],S i ,t , t ∈ [0, s]).

Key Idea : one uses a free Paul Levy’s Thm
[Biane-Capitaine-Guionnet] characterizing free Brownian
motion.

To check the martingale property, one uses the PDE solution
K s
t chosen so that:

αT−s(X ) = KT−s
0 (X ) + ∫

T−s

0
(αu ⊗ αu)(δ(KT−s

u (X )))#dSu.

This reduces the martingale property to the adjoint definition
of ξi ,s .

The other estimates are easy.
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2.2 Reversed free SDE.

Theorem

Under assumption (C), if S i ,t ∶= Si ,T−t − Si ,T + ∫ t
0 dsξi ,s , then for

any P ∈ C αt(P) ∶= αT−t(P) satisfy the following free SDE :

αt(X ) =α0(X ) − ∫
t

0
ds[αs(∆τT−s

Q,V (X )) +∆sαs(X )]

+ ∫
t

0
αs ⊗ αs(δ(X ))#dS s ,

where ∆s = δ∗T−sδT−s , s < T .

One mainly needs the following identity for some processes
Ys ∈ W ∗(αT−s(C)) ∩D(∆s):

∫
v

u
δs(Ys)#dS s + ∫

T−u

T−v
δT−s(YT−s)#dSs = ∫

v

u
∆s(Ys)ds.

Actually for Y ∈ D(∆) generator of the form :

E(f ) = ∫ T
0 ∣∣δs f (s)∣∣22ds.
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2.3 An application in free probability

● Consider the special case of liberation process of 2 projections
p,q, qt = q, pt = utpu∗t with ut = 1 − 1

2 ∫
t

0 usds + i ∫ t
0 dStut so

that :

pt = p + ∫
t

0
(τ(p) − ps)ds + i ∫

t

0
[dSs ,ps]

● If p̃t = pT−t , then our result states :

p̃t = p̃0 + ∫
t

0
(τ(p) − p̃s − [p̃s ,Ji ,s])ds + i ∫

t

0
[dSs , p̃s],

where Ji ,s is the liberation gradient computed at time s.
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2.3 An application in free probability

At the end of [Bercovici,Collins,Dykema,Li,Timotin 2008] and
in the clarification of a gap in a proof in [Collins,Kemp 2012],
if RT = pT ∧ q, τ(p), τ(q) ≤ 1/2, the authors are interested in
computing the derivative of FT (s) = τ(RTpRT − RT )2.
For s ≥ T , forward Ito calculus applies to get the right
derivative [Collins,Kemp 2012]

F ′
T ,r(T ) = 2τ(RT )(1 − τ(p)) ≥ 0.

Forward Ito Calculus don’t say anything about the left
derivative (this was the original main gap), but the backward
equation does :

F ′
T ,l(T ) = −2τ(RT )(1 − τ(p)) ≤ 0.

Thus (if I didn’t make a sign mistake to get my derivative) FT

is differentiable at T only if τ(RT ) = 0.
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2.4 Alternative formulas and bimodularity properties

Theorem

Assume assumption (C).

1 For any P ∈ Clet us write Rt
P(X u) = αT−u(Lt

u(X )), then :

αt(P) = ∫
t

u
δv(Rt

P(X v))#dSv+Rt
P(X u)−∫

t

u
dv∆v(Rt

P(X v)).

2 Let us write Qt
P(u) = EW ∗(αT−u(C))(αT−t(P)),u < t then

v ↦ 1[u,t)(v)QP(v , t) is in D(E) and for any

Z ∈ D(E), au,bu ∈ W ∗(X u) we have :

(Pt −Qt
P(u) − ∫

t

u
δs(Qt

P(s))#dS s) ⊥ au ∫
T

u
δs(Zs)#dS sbu.

3 Fix t. For almost all u ∈ [t,T ]. The Mu = W ∗(X u) bimodule
generated by Pt −Eu(Pt) for Pt ∈ Mt , is weakly contained into
the coarse bimodule L2(Mt)⊗ L2(Mt) and mixing.

Yoann Dabrowski Time Reversal of Free SDEs



2.4 Remarks on bimodularity properties

First recall the following :

Definition (Peterson 2006,Peterson-Sinclair 2009)

Let (M, τ) be a tracial von Neumann algebra. We say that an
M-M bimodule H is mixing if for any sequence an ∈ (M)1 such
that an → 0, weakly, we have

sup
x∈(M)1

∣⟨anξx , η⟩∣→ 0 and sup
x∈(M)1

∣⟨xξan, η⟩∣→ 0, as n →∞,∀ξ, η ∈H.
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2.4 Remarks on bimodularity properties

Those bimodularity properties will be exactly what is needed
for primness results starting from finite non-microstates
entropy.

Note that, since we don’t know that Pt −QP(u, t) is a
stochastic integral, the second formula is not enough to prove
the statement about the bimodularity property.

The trick is to see

Pt−QP(u, t) = ∫
t

u
δv(RP,t(X v))#dSv−∫

t

u
dv(1−Eu)∆v(RP,t(X v)).

And use the fact that ∆v = δ∗v δv also make appear a coarse
bimodule, as the stochastic integral (which is also an adjoint
operator valued in a coarse bimodule in Malliavin calculus
sense).
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2.4 Remarks on our Alternative formulas

For Xt = X0 + St , the second statement is really interesting.
By Voiculescu’s result, the conjugate variable at time t is :
ξi ,t = EW ∗(Xt)(1

t Sit) = Xt
t − 1

t EW ∗(Xt)(X0) so that

QXi
(u,T ) = Xi ,u − uξi ,u and thus ∫ T

u ∣∣δs(ξi ,s)∣∣22ds <∞.
Actually, the proof also gives for t > u:

∣∣ξi ,u ∣∣22 ≥ ∣∣ξi ,T ∣∣22 + ∫
T

u
∣∣δs(ξi ,s)∣∣22ds.

If Pt −QP(u, t) were stochastic integrals, we would have
equality, proving an hold conjecture of Voiculescu about
(absolute) continuity of Fisher information along free
Brownian motion.
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Overview

1 Summary of applications to non-microstates free entropy

● Reminder on microstates free entropy and its applications to
von Neumann algebras

● Reminder on non-microstates free entropy and applications
● New applications and motivation

2 Time reversal of free diffusions.

● Background on the classical case.
● Reversed free Brownian Motion and SDEs.
● An application in Free Probability.
● Alternative formulas and bimodular consequences.

3 Ideas of Proofs of our applications : ”weakly coarse and
mixing Wasserstein rigidity”.
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3 Ideas of Proofs of our applications : ”weakly coarse and
mixing Wasserstein rigidity”.

● Instead of a dilation αt ∶ M = W ∗(X1, ...,Xn)→ M̃ available
only in case of Finite Fisher information (or starting with any
other closable derivation), we have now only the building
blocks W ∗(X ,St) ∗W ∗(X1+S1,t ,...Xn+Sn,t W ∗(X ,St)
We think of this as a coupling as those appearing for the
definition of Wasserstein distance, and we obtained and will
consider couplings with extra control on bimodularity
properties.

● We need to (slightly) generalize the results of [Peterson 2006]
and [Ioana D. 2012] in this setting, with finite entropy playing
the role of a quantitative estimation of the way the free
difference quotient can be approximated by closable
derivations.
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3 Ideas of Proofs of our applications.

Definition

A weakly coarse and mixing Wasserstein coupling (wCMW
coupling) of M1 and M2 is a von Neumann algebra (M, τ) with
two trace preserving (unital) ∗ homomorphisms
ι1 ∶ (M1, τ1)→ (M, τ), with expectation E1 = Eι1(M),
ι2 ∶ (M2, τ2)→ (M, τ) such that the submodule

K(ι1, ι2) ∶= Span{ι1(x)(ι2(y) − E1(ι2(y)))ι1(z); x , z ∈ M1, y ∈ M2}
L2

is a mixing and weakly contained in the coarse bimodule
L2(ι1(M1))⊗ L2(ι1(M1)) as ι1(M1) − ι1(M1) bimodule, and
symmetric statements in changing M1,M2.

Lemma

If N1 is a wCMW coupling for M1 −M2 and N2 is a wCMW
coupling for M2 −M3, then so is N1 ∗ι2(M2) N2 for M1 −M3.
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3 Ideas of Proofs of our applications : ”weakly coarse and
mixing Wasserstein rigidity”.

Definition

A densely defined derivation δ ∶ D(δ)→H on M is said to have a
weakly coarse and mixing Wasserstein dilation if there exists for
any t ∈ (0,1) a weakly coarse and mixing Wasserstein coupling Mt

for M and itself with embeddings ιt1 and ιt2 and if moreover there
are 0 < c < C <∞ such that for any P in D(δ) :

lim sup
t→0

1√
t
∣∣ιt1(P) − Eιt2(M)(ιt1(P))∣∣2 ≤ C ∣∣δ(P)∣∣2,

lim inf
t→0

1√
t
∣∣ιt1(P) − Eιt2(M)(ιt1(P))∣∣2 ≥ c ∣∣δ(P)∣∣2.

and symmetrically changing 1 and 2.
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3 Ideas of Proofs of our applications : ”weakly coarse and
mixing Wasserstein rigidity”.

● Using that

P(X0) − EW ∗(X+St)P(X0) − δ(P)(Xt)#St

= ∫
t

0
δv(Rt

P(X v) − δ(P)(Xt))#dSv − ∫
t

0
dv(1 − Eu)∆v(Rt

P(X v)).

and ∫ t
0 ∣∣ξv ∣∣2dv ≤

√
t
√
∫ t

0 ∣∣ξv ∣∣22dv = o(
√

t) when
χ∗(X1, ...,Xn) > −∞. One can see that
Mt = W ∗(X ,St) ∗W ∗(X1+S1,t ,...Xn+Sn,t) W ∗(X ,St) gives a
wCMW dilation of the free difference quotient in this case.
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3 Ideas of Proofs of our applications : ”weakly coarse and
mixing Wasserstein rigidity”.

Note that we can win some results usually given by symmetry by a
free product with amalgamation trick.

Lemma

If δ has a wCMW-dilation, then it has a wCMW-dilation (αt , βt)
such that moreover, for any P ∈ D(δ),

lim inf
t→0

1√
t
∣∣αt(P) − βt(P)∣∣2 ≥ c∥δ(P)∥2,

lim sup
t→0

1√
t
∣∣αt(P) − βt(P)∣∣2 ≤ C∥δ(P)∥2.

● We need to (slightly) generalize the results of [Peterson 2006]
and [Ioana D. 2012] in this setting, with finite entropy giving
a quantitative estimate on the way the free difference quotient
can be approximated by closable derivations.
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3 A variant of Peterson L2-Rigidity : ”weakly coarse and
mixing Wasserstein rigidity”.

Definition

An inclusion of finite von Neumann algebras (Q ⊂ M, τ) is said to
be wCMW-rigid if for any densely defined derivation δ ∶ D(δ)→H
having a wMCW-dilation there is (maybe) another wCMW-dilation
such that supx∈(Q)1

∣∣ιt1(x) − ιt2(x)∣∣2 →t→0 0 ((Q)1 unit ball of Q).

Theorem (Variant of Peterson 2006)

If N is a non-amenable II1 factor which is non-prime or has
property Γ then N ⊂ N is wCMW-rigid.

Theorem (Variant of Ioana-D 2012)

Let M be a II1 factor. Assume that there exists an unbounded
derivation δ ∶ M0 →H having a wCMW-dilation relative to B such
that M0 contains a non-Γ set.
Then M is not wCMW-rigid. Thus, M is a prime non-Γ factor.
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Conclusion

1 WIP: Most of those results have a generalization relative to a
subalgebra B (time reversal, applications to free entropy
relative to B and a completely positive map η).

2 Main Problem : Do we have
W ∗(X ,St) = W ∗(X + St) ∗ L(IF∞) ? (or something close to
get absence of Cartan subalgebras result using [Ioana 2012] as
in [Ioana-D 2012])

3 Especially, do we have δiξj(X + St) ∈ M ⊗Mop ? or at least in
all Lp(M ⊗Mop) (which is really likely equivalent to all higher
derivatives in L2) ?

4 Do we have for T ≥ t :

∣∣ξi(X + St)∣∣22 = ∣∣ξi(X + ST )∣∣22 + ∫
T

t
∣∣δs(ξi(X + Ss))∣∣22ds?

Thank you for your attention.
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Theorem (Variant of Peterson 2006, Th 3.3)

Let Q ⊂ M be a von Neumann subalgebra with M finite. Assume
that, for any projection p ∈ Q ′ ∩M, Qp is non-amenable, then
Q ′ ∩M ⊂ M is wCMW-rigid. More generally, for any derivation δ
on M, if there is a wCMW-dilation, then there is another
wCMW-dilation of δ converging uniformly on (Q ′ ∩Mω)1.

Theorem (Variant of Peterson 2006, Th 3.5)

If Q ⊂ M is a von Neumann subalgebra such that Q is diffuse and
if the inclusion Q ⊂ M is wCMW-rigid, then W ∗(NM(Q)) ⊂ M is
wCMW-rigid. More generally, any free ultrafilter ω, if Q ⊂ Mω is a
von Neumann subalgebra such that Q is diffuse, for any derivation
δ if there is a wCMW-dilation αt , βt , such that αt − βt converges
uniformly on Q, then there is another dilation of δ converging
uniformly on (W ∗(NMω(Q) ∩M))1.
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