Time reversal of free Stochastic Differential Equations and applications of non-microstates free entropy to von Neumann algebras .

Yoann Dabrowski

Université Lyon 1 - Institut Camille Jordan

Fields Institute, Toronto, July 2013

 Ω

Overview

1 Summary of applications to non-microstates free entropy

- Reminder on microstates free entropy and its applications to von Neumann algebras
- Reminder on non-microstates free entropy and applications
- New applications and motivation
- **2** Time reversal of free diffusions.
	- Background on the classical case.
	- Reversed free Brownian Motion and SDEs.
	- An application in free Probability.
	- Alternative formulas and bimodular consequences.
- **3** Ideas of Proofs of our applications : "weakly coarse and mixing Wasserstein rigidity".

1.1 Voiculescu's microstates Free Entropy

- S_R^n tracial states on the universal C^* free product $C([-R, R])^{n} \supset \mathbb{C}(X_1, ..., X_n)$ non-commutative polynomials
- Basis of *-weak topology

 $V_{\epsilon,K}(\tau) = \{ \sigma \in \mathcal{S}_R^n | \forall m \text{ monomials of degree less than } K \}$ $|\tau(m(X_1,...,X_n)) - \sigma(m(X_1,...,X_n))| < \epsilon$

- For an *n*-tuple of hermitian matrices $M = (M_1, \ldots, M_n) \in (H_N^R)^n$ (i.e. $\|M_i\| \le R$) one gets $\tau_M \in \mathcal{S}_R^n$: $\tau_M(P) = \frac{1}{\Lambda}$ $\frac{\cdot}{N}Tr(P(M_1,...,M_n)), \forall P \in \mathbb{C}\langle X_1,...,X_n\rangle.$
- $\Gamma_R(\tau, \epsilon, K, N) = \{ M \in (H_N^R)^n \mid \tau_M \in V_{\epsilon, K}(\tau) \}.$
- Microstates free Entropy : $\tau \in \mathcal{S}^n_R$

$$
\chi_R(\tau) = \lim_{K \to \infty, \epsilon \to 0} \limsup_{N \to \infty} \left(\frac{1}{N^2} \log \left(\text{Leb}(\Gamma_R(\tau, \epsilon, K, N)) \right) + \frac{n}{2} \log N \right)
$$

1.1 Applications of Microstates Free Entropy

- $(X_1, ..., X_n)$ s.a. in $(M = W^*(X_1, ..., X_n), \tau)$
	- $\chi(X_1, ..., X_n) = \chi_R(\tau) > -\infty$ implies properties of M :
- M does not have property Γ (Voiculescu) : i.e. every sequence Z_m , $||Z_m||_M \leq C$, such that $||[Z_m, X]||_2 \to 0 \ \forall X \in M$ is trivial, i.e. $||Z_m - \tau(Z_m)||_2 \rightarrow 0$. (Especially, M non-amenable factor.)
- M is prime (Ge) : M is not a tensor product $M \simeq A \otimes B$ of two II_1 factors A, B .
- M has no Cartan subalgebra (Voiculescu) : There is no maximal abelian subalgebra $A \subset M$ such that its normalizer $\mathcal{N}_{M}(A) = \{u \in \mathcal{U}(M), uAu^* \subset A\}$ generates M: $(N_M(A))'' = M$.
- not thin (Ge, Popa) etc.
- • Goal: extend those applications to non-microstates free factors $L(\mathbb{F}_n)$ $L(\mathbb{F}_n)$ recently, e.g. strong solid[ity](#page-2-0)), \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} 299

1.1 Applications of Microstates Free Entropy

- $(X_1, ..., X_n)$ s.a. in $(M = W^*(X_1, ..., X_n), \tau)$
	- $\chi(X_1, ..., X_n) = \chi_R(\tau) > -\infty$ implies properties of M :
- M does not have property Γ (Voiculescu) : i.e. every sequence Z_m , $||Z_m||_M \leq C$, such that $||[Z_m, X]||_2 \to 0 \ \forall X \in M$ is trivial, i.e. $||Z_m - \tau(Z_m)||_2 \rightarrow 0$. (Especially, M non-amenable factor.)
- M is prime (Ge) : M is not a tensor product $M \simeq A \otimes B$ of two II_1 factors A, B .
- M has no Cartan subalgebra (Voiculescu) : There is no maximal abelian subalgebra $A \subset M$ such that its normalizer $\mathcal{N}_M(A) = \{u \in \mathcal{U}(M), uAu^* \subset A\}$ generates M: $(N_M(A))'' = M$.
- not thin (Ge, Popa) etc.
- • Goal: extend those applications to non-microstates free entropy (relative to B or free mutual information) using progresses in Popa's Deformation/Rigidity Theory (that provided alternative proofs and much more for free Groups factors $L(\mathbb{F}_n)$ $L(\mathbb{F}_n)$ recently, e.g. strong solid[ity](#page-3-0)). 299
- In general, it is hard to check $\chi(X_1, ..., X_n) > \infty$ (or even $\delta_0(X_1, ..., X_n) > 1$.
- **Non-microstates free entropy** χ^* . Alternative formula using free stochastic differential equations and free Fisher's information and expected to be equal $(\chi \leq \chi^*$ known by a result of [Biane-Capitaine-Guionnet], and equality if $n = 1$).

1.2 Reminder on Voiculescu's non-microstates free entropy

• Reminder of definition : Start by considering $X_1, ..., X_n \in (M = W^*(X_1, ..., X_n), \tau)$ finite von Neumann algebra, $X_1, ..., X_n$ algebraically free self-adjoints and define the free difference quotient $\partial_i: \mathcal{C} = \mathbb{C}\langle X_1,...,X_n\rangle \to \mathcal{C}\otimes \mathcal{C}$ the unique derivation with :

$$
\partial_i(X_j)=1\otimes 1\delta_{i=j}
$$

Look at $\partial_i: L^2(M,\tau) \to L^2(M,\tau) \otimes L^2(M,\tau)$

- Define $\xi_i = \partial_i^* 1 \otimes 1 \in L^2(M, \tau)$ conjugate variables, if they exist. This is the free analogue of the score function.
- Free Fisher information is defined as ∞ if they don't exist and otherwise:

$$
\Phi^*(X_1,...,X_n)=\sum_{i=1}^n||\xi_i||_2^2.
$$

つくへ

• Consider

$$
X_{i,t}=X_{i,0}+S_{i,t},
$$

 $\mathcal{S}_{i,t}$ free Brownian motion, and $\xi_{i,t}$ conjugate variables for $X_{1,t},...,X_{n,t},$ then non-microstates free entropy is defined as :

$$
\chi^*(X_1, ..., X_n) = \frac{1}{2} \int_0^\infty \left(\frac{n}{1+t} - \Phi^*(X_{1,t}, ..., X_{n,t}) \right) dt + \frac{n}{2} \log(2\pi e),
$$

Explication for this formula (or its Orstein-Uhlenbeck variant): "relative entropy of the process considered backwards in time and using Girsanov formula for the density".

1.2 Known applications of non-microstates free entropy and free Fisher information

- [D2008] If $\chi^*(X_1, ..., X_n) > -\infty$, $W^*(X_1, ..., X_n)$ is a factor.
- [D2008]If $\Phi^*(X_1, ..., X_n) < \infty$, $W^*(X_1, ..., X_n)$ doesn't have property Γ.
- Recent results in a joint work with Adrian Ioana :

-
-

1.2 Known applications of non-microstates free entropy and free Fisher information

- [D2008] If $\chi^*(X_1, ..., X_n) > -\infty$, $W^*(X_1, ..., X_n)$ is a factor.
- [D2008]If $\Phi^*(X_1, ..., X_n) < \infty$, $W^*(X_1, ..., X_n)$ doesn't have property Γ.
- Recent results in a joint work with Adrian Ioana :

Theorem (Ioana, D. 2012)

Let $(M = W^*(X_1, ..., X_n), \tau)$. Assume that either

- $\Phi^*(X_1, ..., X_n) < \infty$ and $n \ge 3$, or
- $\xi_i = \partial_i^*(1 \otimes 1), \partial_i^*(1 \otimes \xi_i)$ exists and belongs to M, $\forall i \in \{1, ..., n\},$ $n > 2$.

Then, M is prime and does not have property Γ. Actually M is a non-L 2 -rigid II $_1$ factor in the sense of Jesse Peterson (which implies M is prime and does not have property Γ [Peterson 2006]).

1.2 Applications of non-microstates free entropy.

• The main example of $X_1, ..., X_n$, with $\xi_i = \partial_i^*(1 \otimes 1), \partial_i^*(1 \otimes \xi_i) \in M$ is $X_i = Y_i + S_{i,t}$, Y_i and $S_{i,t}$ free. In this case, we can conclude more (without assuming $X_1,...,X_n$ R^ω -embeddable as for the corresponding microstate free entropy result):

Theorem (Ioana, D. 2012)

Let (M, τ) be a tracial von Neumann algebra and $X_1, ..., X_n \in M$ be $n \geq 2$ self-adjoint elements. Let $\{S_1, ..., S_n\} \in L(\mathbb{F}_n)$ be the canonical semicircular family and $\varepsilon > 0$. Denote by $M_{\varepsilon} \subset M * L(\mathbb{F}_n)$ the von Neumann subalgebra generated by $X_1 + \varepsilon S_1, ..., X_n + \varepsilon S_n$. Then M_{ε} is a non-L²-rigid II_1 factor that does not have a Cartan subalgebra.

(The conclusion also holds for $S_1, ..., S_n$ replaced by $Y_1, ..., Y_n$ with ξ_i = $\partial_{Y_i}^*(1 \otimes 1), \partial_{Y_i}^*(1 \otimes \xi_i)$ $\in M$ and free from $X_1,...,X_n \notin \mathcal{I})$

→ イ冊 ▶ → ヨ ▶ → ヨ ▶ →

1.2 Applications of non-microstates free entropy.

Theorem (Ioana, D. 2012)

Let $(M = W^*(X_1, ..., X_n), \tau)$ and $\partial_i : M \to L^2(M) \bar{\otimes} L^2(M)$ the free difference quotient. Assume $\xi_i = \partial_i^*(1 \otimes 1)$ exists, $\xi_i \in D(\bar{\partial})$ and $\bar{\partial}_{i}(\xi_{j})\in (M\bar{\otimes}M^{op})\subset L^{2}(M\bar{\otimes}M^{op})\cong L^{2}(M)\bar{\otimes}L^{2}(M)\,\,(Lipschitz)$ conjugate variable), for all $1 \le i, j \le n$. Then M is a II_1 factor which does not have a Cartan subalgebra. Moreover, M⊗Q does not have a Cartan subalgebra, for any II_1 factor Q.

- The assumption Lipschitz conjugate variable is the one under which [D.2010] shows (using ideas of [Shlyakhtenko-2007]) that if, moreover, M is R^ω embeddable, then $\delta_0(X_1, ..., X_n) = n$.
- The result $M \otimes Q$ has no Cartan subalgebra is not known by microstates free entropy techniques, but known for $M = L(\mathbb{F}_n)$ by [Popa-Ozawa 2007,Popa-Vaes 2011][.](#page-10-0)

1.2 Reminder on non-microstates mutual information

Let $A_1, ..., A_n \subset (M = W^*(A_1, ..., A_n), \tau)$ be algebraically free subalgebras and define the unique derivation $\delta_i: A = Alg(A_1, ..., A_n) \rightarrow A \otimes A$:

$$
\delta_i(a_j)=(a_j\otimes 1-1\otimes a_j)\delta_{i=j},a_j\in A_j.
$$

Look at $\delta_i: L^2(M,\tau) \to L^2(M,\tau) \otimes L^2(M,\tau)$

Define $\mathcal{J}_i = \delta_i^* 1 \otimes 1 \in L^2(M, \tau)$ the **liberation gradients**, if they exist and :

$$
\varphi^*(A_1, ..., A_n) = \sum_{i=1}^n ||\mathcal{J}_i||_2^2.
$$

Using $U_{i,t}$, n free unitary Brownian motions, i.e. solving the SDE : $U_{i,t} = 1 - \frac{1}{2} \int_0^t U_{i,s} ds + i \int_0^t$ $\int_0^t dS_{i,s} U_{i,s}$, and using the liberation process $(\mathit{U}_{i,s}\mathit{A}_i\mathit{U}_{i,s}^*)$,we define mutual information

$$
i^*(A_1, ..., A_n) = \frac{1}{2} \int_0^\infty \varphi^*(U_{1,s} A_1 U_{1,s}^*, ..., U_{n,s} A_n U_{n,s}^*) ds.
$$

 Ω

1.2 Applications of non-microstates mutual information.

Theorem (Ioana, D. 2012)

Let $(M = Wj(A_1, ..., A_n), \tau)$ tracial $n \geq 2$ generated $A_1, ..., A_n \neq \mathbb{C}1$ with $\varphi^*(A_1;...;A_n)<\infty$ such that A_1 is diffuse, and A_2 is a non-amenable II_1 factor. Then M is a non L^2 -rigid II_1 factor. Thus, M is prime, does not have property Γ nor property (T) .

Theorem (Ioana, D. 2012)

Let $A_1, ..., A_n \in (M_1, \tau_1)$ be diffuse von Neumann subalgebras free from $u_1, ..., u_n$ unitary elements, for some $n \ge 2$. Denote by $N = W^*(u_1 A_1 u_1^*, ..., u_n A_n u_n^*)$. Assume that A₁ is a non-amenable II₁ factor and that u₂ $\notin \mathbb{C}$ u₁. Then N does not have a Cartan subalgebra.

This complements results of [Hiai, Miyamoto,Ueda] by microstates techniques when $A_1, ..., A_n$ are amenable.

1.2 Ideas behind recent Applications of non-microstates free entropy and mutual information.

- Build $\alpha_t : M \to \tilde{M} \supset M$ deformations, i.e. trace preserving ∗-homomorphisms with $||\alpha_t(x) - x||_2 \rightarrow_{t\rightarrow 0} 0$ solving a free SDE and use Popa's Deformation/Rigidity Theory (mainly spectral gap rigidity)
- If $\tilde{M} = M * L(\mathbb{F}_{\infty})$ (e.g. in the case of Lipschitz conjugate variable [D2010]) one can use [Ioana 2012] to prove absence of Cartan subalgebras (first force $\alpha_t(M) \prec_{\tilde{M}} M$ and get a contradiction with some non-amenability in M)
- If $L^2(\tilde{M}) \ominus L^2(M)$ is a direct sum of coarse $M M$ bimodule $L^2(M) \otimes L^2(M)$ (or weaker, weakly contained in the coarse and mixing), then one can use idea's of [Peterson 2006] and get primness results.
- Pb: Obtaining those dilations is really hard and require at least finite Fisher information (or closable derivations), a finite entropy assumption seems out of reach[.](#page-13-0)

1.3 New Approach for New Results

- New idea : look at non-trace preserving *-homomorphism (e.g. $X = X_0 \rightarrow X_t = X_0 + S_t$ as in definition of free entropy) and exploit the flip homomorphism in $W^*(X_0, S_t) *_{W^*(X_t)} W^*(X_0, S_t).$
- New problem : Control $W^{*}(X_t) \subset W^{*}(X_0, S_t)$. One expects ideally $W^*(X_0, S_t) = W^*(X_t) * L(\mathbb{F}_{\infty})$ to exploit [Ioana 2012] and get absence of Cartan subalgebra results.
- But at this stage, one can only control $L^2(W^*(X_0, S_t)) \ominus L^2(W^*(X_t))$ as $W^*(X_t)$ -bimodule and use idea's of [Peterson 2006] to get primeness results.

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

1.3 New Non-Γ Results

Define following [Connes-Shlyakhtenko]:

$$
\delta^*(X_1,...,X_n) = n - \limsup_{t \to 0} t\Phi^*(X_1 + S_{1,t},...,X_n + S_{n,t}).
$$

Theorem

For any $Z_m \in W^*(X_1,...,X_n)$ with $||Z_m|| \leq 1$ for all m, and $\limsup_{m\to\infty}||[Z_m,X_i]||_2=0, \ i{=}1,...,n.$ then if $\delta^\star(X_1,...,X_n)$ is close to n :

$$
\limsup_{m\to\infty}||Z_m-\tau(Z_m))||_2\leq 46\left(\frac{n-\delta^*(X_1,...,X_n)}{n-1}\right)^{1/8}
$$

Especially, if $\delta^*(X_1,...,X_n)$ = n (e.g. if $\chi^*(X_1,...,X_n)$ > $-\infty$), then $W^*(X_1,...,X_n)$ is a factor without property Γ . Moreover if $W^*(X_1,...,X_n)$ is a factor and $\delta^*(X_1,...,X_n)$ is close to n, then $W^*(X_1,...,X_n)$ does not have property Γ .

 QQ

One can also prove that if

$$
\liminf_{t\to 0} t \sup_i \Big(||\partial_{X_{i,t}}^* 1 \otimes 1)||^2 + ||\partial_{X_{i,t}}^* (1 \otimes \partial_{X_{i,t}}^* 1 \otimes 1))|| \Big) = 0,
$$

then $X_1, ..., X_n$ is a non-Γ set for M in the sense of [Peterson 2004], i.e., $\exists c > 0 \forall Z \in L^2(M):$

$$
||Z - \tau(Z)||_2 \leq c \sum_{i=1}^n ||[Z, X_i]||_2.
$$

つくへ

1.3 New Primness Results: finite entropy case

Theorem

Assume $\delta^{\star}(X_1,...,X_n)$ = n and $\mathfrak{C}(X_1,...,X_n)$ contain a non- Γ set for $M = W^*(X_1, ..., X_n)$ (or even only a non-amenability set) then M is a prime II_1 factor.

Theorem

Assume $i^*(A_1,...,A_n)<\infty$ and A_1,A_2 diffuse, A_1 non-amenable then $M = W^*(A_1, ..., A_n)$ is a prime II_1 factor without property Γ .

- Note that if we knew that $\chi^*(X_1, ..., X_n) \le -i^* (W^*(X_1), ..., W^*(X_n)) + \sum_{i=1}^n \chi(X_i)$ this would imply primness as soon as $\chi^*(X_1,...,X_n) > -\infty$ and $n \ge 3$. - Knowing that $\chi_{\textit{orb}}(W^{*}(X_{1}),... ,W^{*}(X_{n})) \leq -i^{*}(W^{*}(X_{1}),...,W^{*}(X_{n}))$ and $\chi(X_1, ..., X_n) = \chi_{orb}(W^*(X_1), ..., W^*(X_n)) + \sum_{i=1}^n \chi(X_i)[\text{HMU}],$ one recovers Ge's result for $n > 3$

Overview

1 Summary of applications to non-microstates free entropy

- Reminder on microstates free entropy and its applications to von Neumann algebras
- Reminder on non-microstates free entropy and applications
- New applications and motivation
- **2** Time reversal of free diffusions.
	- Background on the classical case.
	- Reversed free Brownian Motion and SDEs.
	- An application in Free Probability.
	- Alternative formulas and bimodular consequences.
- **3** Ideas of Proofs of applications : "weakly coarse and mixing Wasserstein rigidity".

2.1 Background on Classical Time reversal

Consider a solution on $[0, T]$ of a classical Markovian SDE :

$$
X_t=X_0+\int_0^t b(s,X(s))ds+\int_0^t \sigma(s,X(s))dB_s.
$$

- Problem: When is $Y_t = X_{T-t}$ also a diffusion ? (i.e. solve the same kind of SDE)
- Original Motivation (Nelson): Model Quantum Mechanics (which is reversible) in Stochastic Mechanics. [Nelson '67] found that formally, there should be a correction of the drift by appropriate score function, i.e. Y_t should satisfy :

$$
Y_t=Y_0+\int_0^t\overline{b}(\mathcal{T}-s,Y(s)))ds+\int_0^t\sigma(\mathcal{T}-s,X(s))d\overline{B}_s,
$$

with the new drift :

$$
\overline{b}_j(T-s,y)=\frac{\sum_i \nabla_i((\sigma\sigma^*)_j;\rho_s)}{\rho_s}(y)-b_j(T-s,y),
$$

where ρ_t is the density with respect to Lebesgue measure of $(Y_{1,t},..., Y_{n,t}).$

 Ω

2.1 Background on Classical Time reversal

Consider a solution on $[0, T]$ of a classical Markovian SDE :

$$
X_t=X_0+\int_0^t b(s,X(s))ds+\int_0^t \sigma(s,X(s))dB_s.
$$

- Mathematical Work of [Anderson '82][Föllmer '86], [Pardoux, Haussmann],[Pardoux],[Millet,Nualart,Sanz '89][Jacod]
- Definitive answer in [Millet, Nualart, Sanz '89] : The reversed process satisfy a martingale problem as soon as the formula for the reversed drift exist.
- More interesting for us, [Pardoux] gave under stronger conditions an explicit formula for the brownian motion driving the time reversed process. (Enlargement of filtration method) :

$$
\overline{B}_t = B_{T-t} - B_T - \int_{T-t}^T \frac{\sum_i \nabla_i(\sigma_i p_s)}{p_s}(X_s) ds.
$$

• One can check this is a Brownian moti[on](#page-20-0) [by](#page-22-0) [a L](#page-21-0)[e](#page-22-0)[vy](#page-0-0) [T](#page-46-0)[he](#page-0-0)[or](#page-46-0)[em](#page-0-0) manageable in the free case [Time Reversal of Free SDEs](#page-0-0)

 Ω

2.2 Time Reversal of free SDEs.

Consider a strong solution on $[0, T]$ of a free (Markovian) SDE :

$$
X_{i,t} = X_{i,0} + \int_0^t V_i(s,X(s))ds + \int_0^t Q_i(s,X_s) \# dS_s.
$$

- Using [Biane, Speicher], this can be defined and solved for regular (in $\mathcal{C} = \mathbb{C}\langle X_1,...,X_n\rangle)$ $V_i, Q_i.$ A strong solution means $X_t \in W^*(X_0, S_s, s \leq t)$. Recall $(a \otimes b) \# S = aSb$.
- Same Problem: When does $Y_t = X_{T-t}$ solve a free SDE ?
- Using Ito formula, one can rewrite the equation with derivations $\delta_i:\mathcal{C}\to\mathcal{C}\otimes\mathcal{C}$, and $\Delta_{Q,V}:\mathcal{C}\to\mathcal{C}$, there is a $*$ -homomorphism $α_t(X) = X_t$ such that for any $P ∈ C$:

$$
\alpha_t(P) = P + \int_0^t ds \alpha_s(\Delta_{Q,V}(P)) + \int_0^t \alpha_s \otimes \alpha_s(\delta(P)) \# dS_s.
$$

2.2 Reversed free Brownian Motion.

More precisely, for any $P \in \mathcal{C}$, if $\tau_s = \tau \circ \alpha_s$:

$$
\alpha_t(P) = P + \int_0^t ds \alpha_s(\Delta_{Q,V}^{\tau_s}(P)) + \int_0^t \alpha_s \otimes \alpha_s(\delta(P)) \# dS_s.
$$

- Explicitly, we have : $\delta_j(P) = \sum_i \partial_i(P) \# Q_{i,j}, \ \Delta_{Q,V}^{\tau}(P) =$ $\sum_i \partial_i(P) \# V_i + \sum_{i,k,l} m \circ 1 \otimes \tau \otimes 1((\partial_k \otimes 1)\partial_l(P) \# (Q_{k,i} \otimes Q_{l,i})),$ We will assume $\Delta_{Q,V}^{\tau_{S}^{+}}$ has the form $(W_{j,s} \in \mathcal{C})$: $\Delta_{Q,V}^{\tau_s}(P) = \sum_j \delta_j(P) \# W_{j,s} + \sum_i m \circ 1 \otimes \tau_s \otimes 1(\delta_i \otimes 1 \delta_i(P)).$
- \bullet We can consider $\delta_{i,s}$ defined on $Alg(X_{1,s},...,X_{n,s})$, for $P\in\mathcal{C}$, by

$$
\delta_{i,s}(P(X_{1,s},...,X_{n,s}))=(\alpha_s\otimes\alpha_s)\delta_i(P)\in L^2(W^*(X_s)\otimes W^*(X_s)).
$$

We will assume $\xi_{i,\boldsymbol{s}} \coloneqq \delta_{i,\boldsymbol{s}}^* 1 \otimes 1$ exists $\boldsymbol{s} > 0$ and is in M and supplementary assumptions, proved for liberation processes and free brownian motion by Voiculescu, and that we can also check when Q_{ij} = 1 \otimes 1 $\delta_{i=j}$, $\;$ V_i = D_i V , V \in \mathcal{C} \mathcal{C} \mathcal{C} . Ω

2.2 Reversed free Brownian Motion.

Assumption (C):

- **D** $s \in [0, T) \mapsto \xi_s = \xi_{T-s}$ is left continuous with right limits when seen as valued in $L^2(M)^n$.
- **2** $\exists C > 0, ||\xi_{i,s}|| < C/$ √ $T - s, s < T$
- \bigcirc $\exists D \geq 0, \alpha > 0 \forall t < s < T$,

$$
||E_{W^*(X_{1,T-t},...,X_{i,T-t})}(\overline{\xi}_{s,i})-\overline{\xi}_{t,i}||_2\leq D(s-t)^{\alpha}.
$$

• For any
$$
P \in \mathcal{C}
$$
, for any $s \leq T$, there exists paths $(K_t^s(P), L_t^s(P))_{t \in [0, s]} \in C^1([0, s], C^2(X_1, \ldots, X_n))^2$ such that $K_s^s(P) = L_s^s(P) = P$ and for $t \leq s$

$$
\frac{\partial K_t^s(P)}{\partial t} + \Delta_{Q,V}^{\tau_t}(K_t^s(P)) = 0,
$$

$$
\frac{\partial L_t^s(P)}{\partial t}-\Delta_{Q,V}^{\tau_{T-t}}(L_t^s(P))=0.
$$

 \bullet + Extra technical assumptions

Theorem

Under assumption (C), $\overline{S}_{i,t}$:= $S_{i, \tau-t}$ - $S_{i, \tau}$ + \int_0^t $\int_0^t ds \xi_{i,s}, t \in [0, T]$ is a free brownian motion adapted to the filtration $F_s = W^*(B, \alpha_{T-t}(P), P \in C, t \in [0, s], S_{i,t}, t \in [0, s]).$

2.2 Reversed free Brownian Motion.

Key Idea of Proof: one uses a free Paul Levy's Thm [Biane-Capitaine-Guionnet] characterizing free Brownian motion.

Theorem (Biane-Capitaine-Guionnet)

Let B_s be an increasing filtration of von Neumann algebras in (M, τ) , $Z_s = (Z_s^1, ..., Z_s^m)$, $s \in \mathbb{R}_+$ an m-tuple of self-adjoint processes adapted to this filtration $Z_0 = 0$ and :

$$
E_{B_s}(Z_t)=Z_s
$$

2
$$
Z_t - Z_s = U_{t,s} + V_{t,s}
$$
 with $\tau(|U_{t,s}|^4) \le K(t-s)^{3/2}$ and $\tau(|V_{t,s}|^2) \le K(t-s)^2$

3 $\tau(Z_t^k A Z_t^l C) = \tau(Z_s^k A Z_s^l B) + (t - s) 1_{\{k = l\}} \tau(A) \tau(C) + o(t - s)$ for any $A, C \in B_s$.

Then Z is a free Brownian motion adapted to B_s .

2.2 Reversed free Brownian Motion.

Theorem

Under assumption (C), $\overline{S}_{i,t}$:= $S_{i, \tau-t}$ - $S_{i, \tau}$ + \int_0^t $\int_0^t ds \xi_{i,s}, t \in [0, T]$ is a free brownian motion adapted to the filtration $F_s = W^*(B, \alpha_{T-t}(P), P \in C, t \in [0, s], S_{i,t}, t \in [0, s]).$

- Key Idea : one uses a free Paul Levy's Thm [Biane-Capitaine-Guionnet] characterizing free Brownian motion.
- To check the martingale property, one uses the PDE solution K_t^s chosen so that:

$$
\alpha_{T-s}(X)=K_0^{T-s}(X)+\int_0^{T-s}(\alpha_u\otimes\alpha_u)(\delta(K_u^{T-s}(X)))\#dS_u.
$$

This reduces the martingale property to the adjoint definition of $\xi_{i,s}$.

• The other estimates are easy.

つくへ

2.2 Reversed free SDE.

Theorem

Under assumption (C), if $\overline{S}_{i,t} = S_{i,T-t} - S_{i,T} + \int_0^t$ $\int_{0}^{t} ds \xi_{i,s}$, then for any $P \in \mathcal{C}$ $\overline{\alpha_t}(P) := \alpha_{T-t}(P)$ satisfy the following free SDE :

$$
\overline{\alpha}_t(X) = \overline{\alpha}_0(X) - \int_0^t ds [\overline{\alpha}_s(\Delta_{Q,V}^{\tau_{T-s}}(X)) + \Delta_s \overline{\alpha}_s(X)] + \int_0^t \overline{\alpha}_s \otimes \overline{\alpha}_s(\delta(X)) \# d\overline{S}_s,
$$

where $\Delta_s = \delta_{T-s}^* \delta_{T-s}, s < T$.

One mainly needs the following identity for some processes $Y_s \in W^*(\alpha_{\mathcal{T}-s}(\mathcal{C})) \cap D(\Delta_s)$:

$$
\int_u^v \overline{\delta}_s(Y_s) \# d\overline{S}_s + \int_{T-v}^{T-u} \overline{\delta}_{T-s}(Y_{T-s}) \# dS_s = \int_u^v \Delta_s(Y_s) ds.
$$

Actually for $Y \in D(\Delta)$ generator of the form : $\mathcal{E}(f) = \int_0^T$ \int_0^1 $\|\overline{\delta_s}f(s)\|_2^2 ds$.

2.3 An application in free probability

• Consider the special case of liberation process of 2 projections *p*, *q*, *q*_t = *q*, *p*_t = *u*_t*pu*_t^{*} with *u*_t = 1 - $\frac{1}{2} \int_0^t$ $\int_0^t u_s ds + i \int_0^t$ $\int_0^t dS_t u_t$ so that :

$$
p_t = p + \int_0^t (\tau(p) - p_s) ds + i \int_0^t [dS_s, p_s]
$$

• If $\tilde{p}_t = p_{T-t}$, then our result states :

$$
\tilde{p}_t = \tilde{p}_0 + \int_0^t \bigl(\tau(p) - \tilde{p}_s - \bigl[\tilde{p}_s, \mathcal{J}_{i,s}\bigr]\bigr) ds + i \int_0^t \bigl[dS_s, \tilde{p}_s\bigr],
$$

where $\mathcal{J}_{i,s}$ is the liberation gradient computed at time $s.$

2.3 An application in free probability

At the end of [Bercovici,Collins,Dykema,Li,Timotin 2008] and in the clarification of a gap in a proof in [Collins,Kemp 2012], if $R_T = p_T \wedge q$, $\tau(p)$, $\tau(q) \leq 1/2$, the authors are interested in computing the derivative of $F_T(s) = \tau (R_T p R_T - R_T)^2$. For $s \geq T$, forward Ito calculus applies to get the right derivative [Collins,Kemp 2012]

$$
F'_{T,r}(T)=2\tau(R_T)(1-\tau(p))\geq 0.
$$

• Forward Ito Calculus don't say anything about the left

$$
F'_{T,I}(T) = -2\tau(R_T)(1-\tau(p)) \le 0.
$$

2.3 An application in free probability

At the end of [Bercovici,Collins,Dykema,Li,Timotin 2008] and in the clarification of a gap in a proof in [Collins,Kemp 2012], if $R_T = p_T \wedge q$, $\tau(p)$, $\tau(q) \leq 1/2$, the authors are interested in computing the derivative of $F_T(s) = \tau (R_T p R_T - R_T)^2$. For $s \geq T$, forward Ito calculus applies to get the right derivative [Collins,Kemp 2012]

$$
F'_{T,r}(T) = 2\tau(R_T)(1-\tau(p)) \ge 0.
$$

• Forward Ito Calculus don't say anything about the left derivative (this was the original main gap), but the backward equation does :

$$
F'_{T,I}(T) = -2\tau(R_T)(1-\tau(p)) \leq 0.
$$

Thus (if I didn't make a sign mistake to get my derivative) F_T is differentiable at T only if $\tau(R_T) = 0$.

2.4 Alternative formulas and bimodularity properties

Theorem

Assume assumption (C).

D For any P \in Clet us write $R_P^t(\overline{X}_u) = \alpha_{T-u}(L_u^t(X))$, then :

$$
\overline{\alpha_t}(P) = \int_u^t \delta_v(R_P^t(\overline{X}_v)) \# d\overline{S}_v + R_P^t(\overline{X}_u) - \int_u^t dv \Delta_v(R_P^t(\overline{X}_v)) \Big|
$$

2 Let us write $Q_P^t(u) = E_{W^*(\alpha_{T-u}(C))}(\alpha_{T-t}(P)), u < t$ then $v \mapsto 1_{[u,t)}(v)Q_P(v,t)$ is in $D(\mathcal{E})$ and for any $Z \in D(\mathcal{E}),$ $a_u, b_u \in W^*(X_u)$ we have :

$$
(P_t-Q_P^t(u)-\int_u^t\overline{\delta}_s(Q_P^t(s))+d\overline{S}_s)\perp\overline{a}_u\int_u^{\overline{T}}\overline{\delta}_s(Z_s)+d\overline{S}_s\overline{b}_u.
$$

 $\bullet\hskip-2pt{\sf P}$ Fix t. For almost all $u\in[t,\hskip-2pt{T}\hskip-2pt{\rm]\hskip-2pt.}$. The $M_u=W^*(X_u)$ bimodule generated by P_t – $E_u(P_t)$ for P_t \in M_t , is weakly contained into thecoarse bi[m](#page-31-0)odule $L^2(M_t) \otimes L^2(M_t)$ [an](#page-31-0)d m[ixi](#page-32-0)[n](#page-33-0)[g.](#page-0-0)

First recall the following :

Definition (Peterson 2006,Peterson-Sinclair 2009)

Let (M, τ) be a tracial von Neumann algebra. We say that an M-M bimodule H is mixing if for any sequence $a_n \in (M)_1$ such that $a_n \rightarrow 0$, weakly, we have

 $\sup \; |\langle a_n \xi x, \eta \rangle| \to 0$ and $\; \sup \; |\langle x \xi a_n, \eta \rangle| \to 0, \; \text{ as } \; n \to \infty, \forall \xi, \eta \in \mathcal{H}.$ $x \in (M)_1$ $x \in (M)_1$

2.4 Remarks on bimodularity properties

- Those bimodularity properties will be exactly what is needed for primness results starting from finite non-microstates entropy.
- Note that, since we don't know that $P_t Q_P(u,t)$ is a stochastic integral, the second formula is not enough to prove the statement about the bimodularity property.
- **•** The trick is to see

$$
P_t-Q_P(u,t)=\int_u^t \delta_v(R_{P,t}(\overline{X}_v))\#d\overline{S}_v-\int_u^t dv(1-E_u)\Delta_v(R_{P,t}(\overline{X}_v))
$$

And use the fact that $\Delta_{\rm v}$ = $\delta_{\rm v}^*\delta_{\rm v}$ also make appear a coarse bimodule, as the stochastic integral (which is also an adjoint operator valued in a coarse bimodule in Malliavin calculus sense).

2.4 Remarks on our Alternative formulas

For $X_t = X_0 + S_t$, the second statement is really interesting. By Voiculescu's result, the conjugate variable at time t is : $\xi_{i,t} = E_{W^{*}(X_t)}(\frac{1}{t})$ $\frac{1}{t}S_{i_t}$ = $\frac{X_t}{t} - \frac{1}{t}$ $\frac{1}{t}E_{W^*(X_t)}(X_0)$ so that $Q_{X_i}(u, T) = X_{i,u} - u\xi_{i,u}$ and thus \int_u^T $\int_{u}^{l} ||\delta_{s}(\xi_{i,s})||_{2}^{2} ds < \infty.$ Actually, the proof also gives for $t > u$.

$$
||\xi_{i,u}||_2^2 \geq ||\xi_{i,T}||_2^2 + \int_u^T ||\delta_s(\xi_{i,s})||_2^2 ds.
$$

If $P_t - Q_P(u, t)$ were stochastic integrals, we would have equality, proving an hold conjecture of Voiculescu about (absolute) continuity of Fisher information along free Brownian motion.

Overview

• Summary of applications to non-microstates free entropy

- Reminder on microstates free entropy and its applications to von Neumann algebras
- Reminder on non-microstates free entropy and applications
- New applications and motivation
- **2** Time reversal of free diffusions.
	- Background on the classical case.
	- Reversed free Brownian Motion and SDEs.
	- An application in Free Probability.
	- Alternative formulas and bimodular consequences.
- **3** Ideas of Proofs of our applications : "weakly coarse and mixing Wasserstein rigidity".

- \bullet Instead of a dilation $\alpha_t : M = W^*(X_1,...,X_n) \to \tilde{M}$ available only in case of Finite Fisher information (or starting with any other closable derivation), we have now only the building blocks $W^*(X, S_t) *_{W^*(X_1 + S_{1,t}, \ldots, X_n + S_{n,t}} W^*(X, S_t)$ We think of this as a coupling as those appearing for the definition of Wasserstein distance, and we obtained and will consider couplings with extra control on bimodularity properties.
- We need to (slightly) generalize the results of [Peterson 2006] and [Ioana D. 2012] in this setting, with finite entropy playing the role of a quantitative estimation of the way the free difference quotient can be approximated by closable derivations.

3 Ideas of Proofs of our applications.

Definition

A weakly coarse and mixing Wasserstein coupling (wCMW coupling) of M_1 and M_2 is a von Neumann algebra (M, τ) with two trace preserving $(unital) * homomorphisms$ $\iota_1: (M_1, \tau_1) \to (M, \tau)$, with expectation $E_1 = E_{\iota_1(M)}$, ι_2 : $(M_2, \tau_2) \rightarrow (M, \tau)$ such that the submodule

$$
\mathcal{K}(\iota_1, \iota_2) \coloneqq \overline{Span\{\iota_1(x)(\iota_2(y) - E_1(\iota_2(y)))\iota_1(z); x, z \in M_1, y \in M_2\}}^1
$$

2

 2990

is a mixing and weakly contained in the coarse bimodule $L^2(\iota_1(M_1)) \otimes L^2(\iota_1(M_1))$ as $\iota_1(M_1) - \iota_1(M_1)$ bimodule, and symmetric statements in changing M_1, M_2 .

Lemma

If N₁ is a wCMW coupling for $M_1 - M_2$ and N₂ is a wCMW coupling for $M_2 - M_3$, then so is $N_1 *_{10(M_2)} N_2$ for $M_1 - M_3$.

Definition

A densely defined derivation $\delta: D(\delta) \to \mathcal{H}$ on M is said to have a weakly coarse and mixing Wasserstein dilation if there exists for any $t \in (0, 1)$ a weakly coarse and mixing Wasserstein coupling M_t for M and itself with embeddings ι_1^t and ι_2^t and if moreover there are $0 < c < C < \infty$ such that for any P in $D(\delta)$:

$$
\limsup_{t\to 0}\frac{1}{\sqrt{t}}||\iota_1^t(P)-E_{\iota_2^t(M)}(\iota_1^t(P))||_2\leq C||\delta(P)||_2,
$$

$$
\liminf_{t\to 0}\frac{1}{\sqrt{t}}||\iota_1^t(P)-E_{\iota_2^t(M)}(\iota_1^t(P))||_2\geq c||\delta(P)||_2.
$$

and symmetrically changing 1 and 2.

● Using that

$$
P(X_0) - E_{W^*(X+S_t)}P(X_0) - \delta(P)(X_t) \# \overline{S_t}
$$

=
$$
\int_0^t \delta_v (R_P^t(\overline{X}_v) - \delta(P)(X_t)) \# d\overline{S}_v - \int_0^t dv (1 - E_u) \Delta_v (R_P^t(\overline{X}_v)).
$$

and
$$
\int_0^t ||\xi_v||_2 dv \leq \sqrt{t} \sqrt{\int_0^t ||\xi_v||_2^2} dv = o(\sqrt{t})
$$
 when $\chi^*(X_1, \ldots, X_n) > -\infty$. One can see that $M_t = W^*(X, S_t) *_{W^*(X_1 + S_{1,t}, \ldots, X_n + S_{n,t})} W^*(X, S_t)$ gives a wCMW dilation of the free difference quotient in this case.

 QQ

Note that we can win some results usually given by symmetry by a free product with amalgamation trick.

Lemma

If δ has a wCMW-dilation, then it has a wCMW-dilation (α_t,β_t) such that moreover, for any $P \in D(\delta)$,

$$
\liminf_{t\to 0} \frac{1}{\sqrt{t}} ||\alpha_t(P) - \beta_t(P)||_2 \ge c ||\delta(P)||_2,
$$

$$
\limsup_{t\to 0} \frac{1}{\sqrt{t}} ||\alpha_t(P) - \beta_t(P)||_2 \le C ||\delta(P)||_2.
$$

• We need to (slightly) generalize the results of [Peterson 2006] and [Ioana D. 2012] in this setting, with finite entropy giving a quantitative estimate on the way the free difference quotient can be approximated by closable deriva[tio](#page-40-0)[ns.](#page-42-0)

 QQ

3 A variant of Peterson L^2 -Rigidity : "weakly coarse and mixing Wasserstein rigidity".

Definition

An inclusion of finite von Neumann algebras ($Q \subset M, \tau$) is said to be wCMW-rigid if for any densely defined derivation $\delta : D(\delta) \rightarrow H$ having a wMCW-dilation there is (maybe) another wCMW-dilation such that $\sup_{x \in (Q)_1} ||t_1^t(x) - t_2^t(x)||_2 \rightarrow_{t \rightarrow 0} 0 \text{ } ((Q)_1 \text{ unit ball of } Q).$

3 A variant of Peterson L^2 -Rigidity : "weakly coarse and mixing Wasserstein rigidity".

Definition

An inclusion of finite von Neumann algebras ($Q \subset M, \tau$) is said to be wCMW-rigid if for any densely defined derivation $\delta : D(\delta) \rightarrow H$ having a wMCW-dilation there is (maybe) another wCMW-dilation such that $\sup_{x \in (Q)_1} ||t_1^t(x) - t_2^t(x)||_2 \rightarrow_{t \rightarrow 0} 0 \text{ } ((Q)_1 \text{ unit ball of } Q).$

Theorem (Variant of Peterson 2006)

If N is a non-amenable II_1 factor which is non-prime or has property $Γ$ then $N ⊂ N$ is wCMW-rigid.

Theorem (Variant of Ioana-D 2012)

Let M be a II_1 factor. Assume that there exists an unbounded derivation $\delta : M_0 \rightarrow H$ having a wCMW-dilation relative to B such that M_0 contains a non- Γ set. Then M is not wCMW-rigid. Thus, M is a [pri](#page-42-0)[me](#page-44-0)[n](#page-42-0)[o](#page-43-0)[n-](#page-44-0)[Γ](#page-0-0) [fa](#page-46-0)[cto](#page-0-0)[r.](#page-46-0)

Conclusion

- **1** WIP: Most of those results have a generalization relative to a subalgebra B (time reversal, applications to free entropy relative to B and a completely positive map η).
- **2** Main Problem : Do we have $W^*(X, S_t) = W^*(X + S_t) * L(\mathbb{F}_{\infty})$? (or something close to get absence of Cartan subalgebras result using [Ioana 2012] as in [Ioana-D 2012])
- **3** Especially, do we have $\delta_i \xi_i (X + S_t) \in M \otimes M^{op}$? or at least in all $L^p(M\otimes M^{op})$ (which is really likely equivalent to all higher derivatives in L^2) ?
- \bigcirc Do we have for $T \geq t$:

$$
\|\xi_i(X+S_t)\|_2^2 = \|\xi_i(X+S_T)\|_2^2 + \int_t^T \|\delta_s(\xi_i(X+S_s))\|_2^2 ds?
$$

Conclusion

- **1** WIP: Most of those results have a generalization relative to a subalgebra B (time reversal, applications to free entropy relative to B and a completely positive map η).
- ² Main Problem : Do we have $W^*(X, S_t) = W^*(X + S_t) * L(\mathbb{F}_{\infty})$? (or something close to get absence of Cartan subalgebras result using [Ioana 2012] as in [Ioana-D 2012])
- **3** Especially, do we have $\delta_i \xi_i (X + S_t) \in M \otimes M^{op}$? or at least in all $L^p(M\otimes M^{op})$ (which is really likely equivalent to all higher derivatives in L^2) ?
- \bigcirc Do we have for $T \geq t$:

$$
\|\xi_i(X+S_t)\|_2^2 = \|\xi_i(X+S_T)\|_2^2 + \int_t^T \|\delta_s(\xi_i(X+S_s))\|_2^2 ds?
$$

Thank you for your attention.

Theorem (Variant of Peterson 2006, Th 3.3)

Let $Q \subset M$ be a von Neumann subalgebra with M finite. Assume that, for any projection $p \in Q' \cap M$, Qp is non-amenable, then $Q' \cap M \subset M$ is wCMW-rigid. More generally, for any derivation δ on M, if there is a wCMW-dilation, then there is another wCMW-dilation of δ converging uniformly on $(Q' \cap M^\omega)_1$.

Theorem (Variant of Peterson 2006, Th 3.5)

If $Q \subset M$ is a von Neumann subalgebra such that Q is diffuse and if the inclusion $Q \subset M$ is w CMW -rigid, then $W^*(N_M(Q)) \subset M$ is wCMW-rigid. More generally, any free ultrafilter ω , if $Q \subset M^\omega$ is a von Neumann subalgebra such that Q is diffuse, for any derivation δ if there is a wCMW-dilation $\alpha_{\mathbf{t}},\beta_{\mathbf{t}}$, such that $\alpha_{\mathbf{t}}$ – $\beta_{\mathbf{t}}$ converges uniformly on Q, then there is another dilation of δ converging uniformly on $(W^*(N_{M^\omega}(Q) \cap M))_1$.