Quantum symmetric states on universal free product C ∗ -algebras

Ken Dykema, 1 $\,$ Claus Köstler, 2 $\,$ John Williams 1

¹Department of Mathematics Texas A&M University College Station, TX, USA.

²School of Mathematical Sciences University College Cork Cork, Ireland

Fields Institute Free Probability Workshop, July 2013

Definition

A sequence of (classical) random variables x_1, x_2, \ldots is said to be exchangeable if

$$
\mathbb{E}(x_{i(1)}x_{i(2)}\cdots x_{i(n)}) = \mathbb{E}(x_{\sigma(i(1))}x_{\sigma(i(2))}\cdots x_{\sigma(i(n))})
$$

for every $n \in \mathbb{N}$, $i(1), \ldots, i(n) \in \mathbb{N}$ and every permutation σ of \mathbb{N} .

Definition

A sequence of (classical) random variables x_1, x_2, \ldots is said to be exchangeable if

$$
\mathbb{E}(x_{i(1)}x_{i(2)}\cdots x_{i(n)}) = \mathbb{E}(x_{\sigma(i(1))}x_{\sigma(i(2))}\cdots x_{\sigma(i(n))})
$$

for every $n \in \mathbf{N}$, $i(1), \ldots, i(n) \in \mathbf{N}$ and every permutation σ of \mathbf{N} .

That is, if the joint distribution of x_1, x_2, \ldots is invariant under re-orderings.

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Definition

The tail σ -algebra is the intersection of the σ -algebras generated by $\{x_N, x_{N+1}, \ldots\}$ as N goes to ∞ .

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Definition

The tail σ -algebra is the intersection of the σ -algebras generated by $\{x_N, x_{N+1}, \ldots\}$ as N goes to ∞ .

Thus, the expectation E can be seen as an integral (w.r.t. a probability measure on the tail algebra) — that is, as a sort of convex combination — of expectations with respect to which the random variables x_1, x_2, \ldots are independent and identically distributed (i.i.d.).

Symmetric states

Størmer extended this result to the realm of C∗–algebras.

Definition

Consider the minimal tensor product $B=\bigotimes_{1}^{\infty}A$ of a C*–algebra A with itself infinitely many times. A state on B is said to be symmetric if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Symmetric states

Størmer extended this result to the realm of C∗–algebras.

Definition

Consider the minimal tensor product $B=\bigotimes_{1}^{\infty}A$ of a C*–algebra A with itself infinitely many times. A state on B is said to be symmetric if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Note that the set of $SS(A)$ of symmetric states on B is a closed, convex set in the set $S(B)$ of all states on B.

Symmetric states

Størmer extended this result to the realm of C∗–algebras.

Definition

Consider the minimal tensor product $B=\bigotimes_{1}^{\infty}A$ of a C*–algebra A with itself infinitely many times. A state on B is said to be symmetric if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Note that the set of $SS(A)$ of symmetric states on B is a closed, convex set in the set $S(B)$ of all states on B.

Theorem [Størmer, 1969]

The extreme points of $SS(A)$ are the infinite tensor product states, i.e. those of the form $\otimes_1^\infty \phi$ for $\phi \in S(A)$ a state of A . Moreover, $SS(A)$ is a Choquet simplex, so every symmetric state on B is an integral w.r.t. a unique probability measure of infinite tensor product states.

The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group $A_s(n)$

 $A_s(n)$ is the universal unital C^{*}–algebra generated by a family of projections $(u_{i,j})_{1\leq i,j\leq n}$ subject to the relations

$$
\forall i \sum_{j} u_{i,j} = 1 \quad \text{and} \quad \forall j \sum_{i} u_{i,j} = 1. \tag{1}
$$

It is a compact quantum group (with comultiplication, counit and antipode).

The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group $A_s(n)$

 $A_s(n)$ is the universal unital C^{*}–algebra generated by a family of projections $(u_{i,j})_{1\leq i,j\leq n}$ subject to the relations

$$
\forall i \sum_{j} u_{i,j} = 1 \quad \text{and} \quad \forall j \sum_{i} u_{i,j} = 1. \tag{1}
$$

It is a compact quantum group (with comultiplication, counit and antipode).

Abelianization of $\overline{A_s}(n)$

The universal unital C^* –algebra generated by *commuting* projections $\tilde{u}_{i,j}$ satisfying the analogous relations [\(1\)](#page-9-0) is isomorphic to $C(S_n)$, the continuous functions of the permutation group S_n , with $\tilde{u}_{i,j}$ the characterisitc set of the permutations sending j to i. Thus, $C(S_n)$ is a quotient of $A_s(n)$ by a ∗-homomorphism sending $u_{i,j}$ to $\tilde{u}_{i,j}$.

Invariance under quantum permutations

In a C^* -noncommutative probability space (A,ϕ) , the joint distribution of family $x_1, \ldots, x_n \in A$ is invariant under quantum permtuations if the natural coaction of $A_s(n)$ leaves the distribution unchanged. Concretely, this amounts to:

$$
\phi(x_{i(1)} \cdots x_{i(k)})1 = \sum_{1 \leq j(1), \dots, j(k) \leq n} u_{i(1), j(1)} \cdots u_{i(k), j(k)} \phi(x_{j(1)} \cdots x_{j(k)}) \in \mathbf{C}1 \subseteq A_s(n).
$$

Invariance under quantum permutations

In a C^* -noncommutative probability space (A,ϕ) , the joint distribution of family $x_1, \ldots, x_n \in A$ is invariant under quantum permtuations if the natural coaction of $A_s(n)$ leaves the distribution unchanged. Concretely, this amounts to:

$$
\phi(x_{i(1)} \cdots x_{i(k)})1 = \sum_{1 \leq j(1), \ldots, j(k) \leq n} u_{i(1), j(1)} \cdots u_{i(k), j(k)} \phi(x_{j(1)} \cdots x_{j(k)}) \in \mathbf{C}1 \subseteq A_s(n).
$$

Invariance under quantum permutations implies invariance under usual permuations

by taking the quotient from $A_s(n)$ onto $C(S_n)$.

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C[∗] -noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^\infty$ is *quantum exchangeable* if for every n , the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C[∗] -noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^\infty$ is *quantum exchangeable* if for every n , the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

The *tail algebra* of the sequence is

$$
\mathcal{T} = \bigcap_{N=1}^{\infty} W^*(\{x_N, x_{N+1}, \ldots\}).
$$

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C[∗] -noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^\infty$ is *quantum exchangeable* if for every n , the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

The *tail algebra* of the sequence is

$$
\mathcal{T} = \bigcap_{N=1}^{\infty} W^*(\{x_N, x_{N+1}, \ldots\}).
$$

Proposition [Köstler '10] (existence of conditional expectation)

Let $(x_i)_{i=1}^\infty$ be a quantum exchangeable sequence in a W * -noncommutative probability space (\mathcal{M},ϕ) where ϕ is faithful and suppose ${\cal M}$ is generated by the $x_i.$ Then there is a unique faithful, ϕ –preserving conditional expectation E from M onto T.

Dykema (TAMU) [Quantum Symmetric States](#page-0-0) Fields, 2013 7 / 27

Quantum exchangeable \Leftrightarrow free with amalgamation over tail algebra

Theorem [Köstler, Speicher '09]

 $(x_i)_{i=1}^\infty$ is a quantum exchangeable sequence if and only if the random variables are free with respect to the conditional expectation E (i.e., with amalgamation over the tail algebra).

Quantum exchangeable \Leftrightarrow free with amalgamation over tail algebra

Theorem [Köstler, Speicher '09]

 $(x_i)_{i=1}^\infty$ is a quantum exchangeable sequence if and only if the random variables are free with respect to the conditional expectation E (i.e., with amalgamation over the tail algebra).

Theorem [D., Köstler]

Given any countably generated von Neumann algebra $\mathcal A$ and any faithful state ψ on \mathcal{A} , there is a W^{*}–noncommutative probability space (\mathcal{M},ϕ) with ϕ faithful and with a sequence $(x_i)_{i=1}^\infty$ of random variables that is quantum exchangeable with respect to ϕ , and so that their tail algebra $\mathcal T$ is a copy of $\mathcal A$ so that $\phi{\restriction}_{\mathcal T}$ is equal to $\psi.$

Generalize in the direction of C[∗] -algebras, like Størmer did

Instead of considering individual random variables, we consider a unital C^* –algebra A and a state ψ on the universal unital free product C^* –algebra $\mathfrak{A}=*_1^\infty A$, with corresponding embeddings $\lambda_i: A \to \mathfrak{A}, \ (i \geq 1).$

Definition

A state ψ on $\mathfrak A$ is quantum symmetric if the $*$ –homomorphisms λ_i are quantum exchangeable with respect to ψ , in the sense that, for all $n \in \mathbb{N}$, $a_1, ..., a_k \in A$ and $1 \leq i(1), ..., i(k) \leq n$,

$$
\psi(\lambda_{i(1)}(a_1)\cdots\lambda_{i(k)}(a_k))1
$$

=
$$
\sum_{1 \leq j(1),...,j(k) \leq n} u_{i(1),j(1)}\cdots u_{i(k),j(k)} \psi(\lambda_{j(1)}(a_1)\cdots\lambda_{j(k)}(a_k))
$$

$$
\in \mathbf{C1} \subseteq A_s(n).
$$

Quantum symmetric states yield freeness with amalgamation over the tail algebra

Notation

Let $QSS(A)$ denote the set of quantum symmetric states on $\mathfrak{A}=*_\mathbb{1}^\infty A$. It is a closed, convex subset of the set of all states on $\mathfrak{A}.$

Quantum symmetric states yield freeness with amalgamation over the tail algebra

Notation

Let $QSS(A)$ denote the set of quantum symmetric states on $\mathfrak{A}=*_\mathbb{1}^\infty A$. It is a closed, convex subset of the set of all states on $\mathfrak{A}.$

Proposition

Let $\psi\in\mathrm{QSS}(A).$ Let $\pi_\psi:\mathfrak{A}\rightarrow B(L^2(\mathfrak{A},\psi))$ be the GNS representation, let $\mathcal{M}_\psi=W^*(\pi_\psi(\mathfrak{A}))$ and denote by $\hat{\psi}$ the GNS vector state $\langle \cdot \hat{1}, \hat{1} \rangle$ on \mathcal{M}_{ψ} . Consider the tail algebra $\mathcal{T}_\psi = \bigcap_{N=1}^\infty W^*(\bigcup_{i=N}^\infty \pi_\psi \circ \lambda_i(A)).$ Then there is a $\hat{\psi}$ -preserving conditional expectation E_{ψ} from \mathcal{M}_{ψ} onto \mathcal{T}_{ψ} .

Quantum symmetric states yield freeness with amalgamation over the tail algebra

Notation

Let $QSS(A)$ denote the set of quantum symmetric states on $\mathfrak{A}=*_\mathbb{1}^\infty A$. It is a closed, convex subset of the set of all states on $\mathfrak{A}.$

Proposition

Let $\psi\in\mathrm{QSS}(A).$ Let $\pi_\psi:\mathfrak{A}\rightarrow B(L^2(\mathfrak{A},\psi))$ be the GNS representation, let $\mathcal{M}_\psi=W^*(\pi_\psi(\mathfrak{A}))$ and denote by $\hat{\psi}$ the GNS vector state $\langle \cdot \hat{1}, \hat{1} \rangle$ on \mathcal{M}_{ψ} . Consider the tail algebra $\mathcal{T}_\psi = \bigcap_{N=1}^\infty W^*(\bigcup_{i=N}^\infty \pi_\psi \circ \lambda_i(A)).$ Then there is a $\hat{\psi}$ -preserving conditional expectation E_{ψ} from \mathcal{M}_{ψ} onto \mathcal{T}_{ψ} .

Theorem

The subalgebras $\pi_{\psi} \circ \lambda_i(A)$ for $i \geq 1$ are free with respect to the conditional expectation E_{ψ} onto the tail algebra.

Conversely, freeness with amalgamation leads to quantum symmetric states

Recall $\mathfrak{A} = *_{1}^{\infty} A$.

Theorem

Let (B, ϕ) be a C * -noncommutative probability space and suppose $D \subseteq B$ is a unital C^{*}–subalgebra with a conditional expectation $E : B \to D$ and let ρ be a state on B such that $\rho \circ E = \rho$. If $\pi : \mathfrak{A} \to B$ is a *-homomorphism such that the states $\rho \circ \pi \circ \lambda_i$ of A are the same for all i and the algebras $(\pi \circ \lambda_i)_{i=1}^\infty$ are free with respect to E, then $\psi = \rho \circ \pi \in \text{OSS}(A)$.

Remarks

- We don't require faithfulness of ψ on \mathfrak{A} , nor of $\tilde{\psi}$ on \mathcal{M}_{ψ} , nor of E_{ψ} on \mathcal{M}_{ψ} .
- Only classical exchangeability (not quantum exchangebility) is required for existence of a ψ -preserving conditional expectation $E_{\psi}: \mathcal{M}_{\psi} \to \mathcal{T}_{\psi}$ onto the tail algebra.
- Our proof are similar to those in [Köstler '10] and [Köstler, Speichter '09].
- Also Stephen Curran ['09] considered quantum exchangeability for sequences of ∗–homomorphisms of ∗-algebras and proved freeness with amalgamation; he did require faithfulness of a state, and used different ideas for his proofs.

Goals

To investigate $QSS(A)$ as a compact, convex subset of $S(\mathfrak{A})$, to characterize its extreme points and to study certain convex subsets:

- the tracial quantum symmetric states $TQSS(A) = QSS(A) \cap TS(\mathfrak{A})$
- the central quantum symmetric states $ZQSS(A) = \{\psi \in QSS(A) \mid \mathcal{T}_{\psi} \subseteq Z(\mathcal{M}_{\psi})\}$
- the tracial central quantum symmetric states $ZTQSS(A) = ZQSS(A) \cap TQSS(A).$

There is a bijection $V(A) \leftrightsquigarrow \text{QSS}(A)$

where $V(A)$ is the set of all quintuples $(B, \mathcal{D}, E, \sigma, \rho)$ where

- $1_B \in \mathcal{D} \subset \mathcal{B}$ is a von Neumann subalgebra and $E : \mathcal{B} \to \mathcal{D}$ is a normal conditional expectation
- $\sigma : A \rightarrow B$ is a unital *-homomorphism
- ρ is a normal state on D so that the state $\rho \circ E$ of B has faithful GNS rep
- $\mathcal{B} = W^*(\sigma(A) \cup \mathcal{D})$
- D is the smallest unital von Neumann subalgebra of B such that $E(d_0\sigma(a_1)d_1\cdots\sigma(a_n)d_n)\in\mathcal{D}$ for all $a_1,\ldots,a_n\in A$ and all $d_0, \ldots, d_n \in \mathcal{D}$.

There is a bijection $V(A) \leftrightsquigarrow \text{QSS}(A)$

where $V(A)$ is the set of all quintuples $(B, \mathcal{D}, E, \sigma, \rho)$ where

- $1_B \in \mathcal{D} \subset \mathcal{B}$ is a von Neumann subalgebra and $E : \mathcal{B} \to \mathcal{D}$ is a normal conditional expectation
- $\sigma : A \rightarrow B$ is a unital *-homomorphism
- ρ is a normal state on $\mathcal D$ so that the state $\rho \circ E$ of $\mathcal B$ has faithful GNS rep
- $\mathcal{B} = W^*(\sigma(A) \cup \mathcal{D})$
- D is the smallest unital von Neumann subalgebra of B such that $E(d_0\sigma(a_1)d_1\cdots\sigma(a_n)d_n)\in\mathcal{D}$ for all $a_1,\ldots,a_n\in A$ and all $d_0, \ldots, d_n \in \mathcal{D}$.

The bijection takes $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}–free product $(\mathcal{M},F) = (*_{\mathcal{D}})_{1}^{\infty}(\mathcal{B},E)$ with amalgamation over $\mathcal{D},$ and yields the quantum symmetric state $\rho \circ E \circ (*_1^\infty \sigma)$ on $\mathfrak{A}=*_1^\infty A$.

Description of $QSS(A)$ (2)

The correspondence $V(A) \to \text{QSS}(A)$

The bijection takes $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}-free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_{1}^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_1^{\infty} \sigma)$ on $\mathfrak{A}= *_1^{\infty} A$.

The correspondence $V(A) \to \text{QSS}(A)$

The bijection takes $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}–free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_{1}^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_1^{\infty} \sigma)$ on $\mathfrak{A}= *_1^{\infty} A$.

Technically, we need to let $V(A)$ be the set of equivalence classes of quintuples, up to a natural notion of equivalence, and to avoid set theoretic difficulties we need to (and we can) restrict to β that are represented on some specific Hilbert space.

Dykema (TAMU) [Quantum Symmetric States](#page-0-0) Fields, 2013 15 / 27

Extreme quantum symmetric states

Let $\partial_e(QSS(A))$ be the set of extreme points of $QSS(A)$.

Theorem

Let $\psi \in \text{QSS}(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Then $\psi \in \partial_e(\text{QSS}(A))$ if and only if ρ is a pure state on \mathcal{D} .

Extreme quantum symmetric states

Let $\partial_e(QSS(A))$ be the set of extreme points of $QSS(A)$.

Theorem

Let $\psi \in \text{QSS}(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Then $\psi \in \partial_e(QSS(A))$ if and only if ρ is a pure state on \mathcal{D} .

A very special form

A pure state ρ on a von Neumann algebra $\mathcal D$ is always of the form $\mathcal{D} = B(\mathcal{H}) \oplus \mathcal{N}$ and $\rho(a \oplus x) = \langle a\xi, \xi \rangle$ for a unit vector $\xi \in \mathcal{H}$.

Extreme quantum symmetric states

Let $\partial_e(QSS(A))$ be the set of extreme points of $QSS(A)$.

Theorem

Let $\psi \in \text{QSS}(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Then $\psi \in \partial_e(\text{QSS}(A))$ if and only if ρ is a pure state on \mathcal{D} .

A very special form

A pure state ρ on a von Neumann algebra $\mathcal D$ is always of the form $\mathcal{D} = B(\mathcal{H}) \oplus \mathcal{N}$ and $\rho(a \oplus x) = \langle a\xi, \xi \rangle$ for a unit vector $\xi \in \mathcal{H}$.

Examples of extreme quantum symmetric states

- free product states $\psi = \ast^\infty_1 \phi$ for $\phi \in S(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\mathrm{QSS}(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = \mathbf{C} \oplus L^{\infty}([0,1]).$

Let $\text{TQSS}(A)$ be the set of all $\psi \in \text{QSS}(A)$ that are traces on $\mathfrak{A}=*_\mathbb{I}^\infty A$ and let $\partial_e(\mathrm{TQSS}(A))$ be the set of extreme points of $TQSS(A)$.

Theorem

Let $\psi \in TQSS(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Let $R(E) = \{ \tau \in TS(\mathcal{D}) \mid \tau \circ E \in TS(\mathcal{B}) \}.$ Then $\psi \in \partial_{\epsilon}(\text{TQSS}(A))$ if and only if ρ is an extreme point of $R(E)$.

Let $\text{TQSS}(A)$ be the set of all $\psi \in \text{QSS}(A)$ that are traces on $\mathfrak{A}=*_\mathbb{I}^\infty A$ and let $\partial_e(\mathrm{TQSS}(A))$ be the set of extreme points of $TQSS(A)$.

Theorem

Let $\psi \in TQSS(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Let $R(E) = \{ \tau \in TS(\mathcal{D}) \mid \tau \circ E \in TS(\mathcal{B}) \}.$ Then $\psi \in \partial_{\epsilon}(\text{TQSS}(A))$ if and only if ρ is an extreme point of $R(E)$.

Corollary

If either D or B is a factor, then $\psi \in \partial_e(TQSS(A))$.

Examples of extreme tracial quantum symmetric states

Corollary

If either D or B is a factor, then $\psi \in \partial_e(TQSS(A))$.

If either D or B is a factor, then $\psi \in \partial_e(TQSS(A)).$

- free product traces $\psi = \ast_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(TQSS(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = M_2(\mathbf{C}),$

If either D or B is a factor, then $\psi \in \partial_e(TQSS(A)).$

- free product traces $\psi = \ast_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\text{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $D = M_2(C)$, so tail algebras can be noncommutative also when $A = C \oplus C$.

If either D or B is a factor, then $\psi \in \partial_e(TQSS(A)).$

- free product traces $\psi = \ast_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\text{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $D = M_2(C)$, so tail algebras can be noncommutative also when $A = C \oplus C$.
- we construct an example $\psi \in \partial_e(TQSS(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = \mathbf{C} \oplus \mathbf{C}$ and $\mathcal{B} = M_2(\mathbf{C}) \oplus M_2(\mathbf{C})$,

If either D or B is a factor, then $\psi \in \partial_e(TQSS(A)).$

- free product traces $\psi = \ast_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\text{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $D = M_2(C)$, so tail algebras can be noncommutative also when $A = \mathbf{C} \oplus \mathbf{C}.$
- we construct an example $\psi \in \partial_e(T\text{OSS}(\mathbf{C} \oplus \mathbf{C}))$ with $D = C \oplus C$ and $B = M_2(C) \oplus M_2(C)$, so extreme tracial quantum symmetric states can occur when neither β nor $\mathcal D$ is a factor.

Central quantum symmetric states

 $ZQSS(A)$ = the set of all $\psi \in QSS(A)$ whose tail algebra \mathcal{T}_{ψ} lies in the center of \mathcal{M}_{ψ} .

 $ZTQSS(A) = ZQSS(A) \cap TQSS(A)$, the tracial central quantum symmetric states.

Central quantum symmetric states

 $\mathrm{ZQSS}(A) =$ the set of all $\psi \in \mathrm{QSS}(A)$ whose tail algebra \mathcal{T}_ψ lies in the center of \mathcal{M}_{ψ} .

 $ZTQSS(A) = ZQSS(A) \cap TQSS(A)$, the tracial central quantum symmetric states.

Theorem

Both $ZQSS(A)$ and $ZTQSS(A)$ are compact, convex subsets of $QSS(A)$ and both are Choquet simplices. Their extreme points are, respectively, the free product states and the free product traces:

$$
\partial_e(\text{ZQSS}(A)) = \{ *_1^{\infty} \phi \mid \phi \in S(A) \},
$$

$$
\partial_e(\text{ZTQSS}(A)) = \{ *_1^{\infty} \tau \mid \tau \in TS(A) \}.
$$

The previous result is in the spirit of Størmer's result; it says that each central quantum symmetric state ψ can be written as an integral

$$
\psi = \int_{S(A)} (*_1^{\infty} \phi) d\mu(\phi)
$$

of free product states for a *unique* Borel probability measure μ on $S(A)$, and in the case that ψ is a trace, $\text{supp}(\mu) \subset TS(A)$.

The previous result is in the spirit of Størmer's result; it says that each central quantum symmetric state ψ can be written as an integral

$$
\psi = \int_{S(A)} (*_1^{\infty} \phi) d\mu(\phi)
$$

of free product states for a *unique* Borel probability measure μ on $S(A)$, and in the case that ψ is a trace, $\text{supp}(\mu) \subset TS(A)$.

Open problem

Is $TQSS(A)$ a Choquet simplex?

Proof that $ZQSS(A)$ is closed and that $\partial_e(ZQSS(A)) = \{ \ast_1^{\infty} \phi \mid \phi \in S(A) \}.$

Step 1

Note that $\phi \mapsto {\mathbf A}^\infty_1 \phi$ is a homeomorphism from $S(A)$ into $\partial_e(\text{OSS}(A)).$

Step 2

Show $\mathrm{ZQSS}(A) \subseteq \overline{\mathrm{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

If $\psi \in \text{ZQSS}(A)$ comes from $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, then $\mathcal D$ lies in the center of B, so ρ is a state on $\mathcal{D} \cong C(X)$ and is approximately a convex combination of point masses. Using a result from [D., Köstler], each (point mass) \circ $E \circ \ast_{1}^{\infty} \sigma : \mathfrak{A} \rightarrow \mathbf{C}$ is a free product state of the form $*_{1}^{\infty}\phi$.

Step 3

Show $\mathrm{ZQSS}(A) \supseteq \overline{\mathrm{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

It is easy to see $\mathrm{ZQSS}(A) \supseteq \mathrm{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}.$ But even if $\psi_i \in \text{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of $\psi?$

Step 3

Show $\mathrm{ZQSS}(A) \supseteq \overline{\mathrm{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

It is easy to see $\mathrm{ZQSS}(A) \supseteq \mathrm{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}.$ But even if $\psi_i \in \text{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of $\psi?$

We don't answer this general question. Instead, since $\{*_1^\infty\phi\mid\phi\in S(A)\}$ is compact, for every $\psi\in\overline{\mathrm{conv}}\{*_1^\infty\phi\mid\phi\in S(A)\}$ there is a *Borel* probability measure μ on $S(A)$ such that $\psi(x) = \int_{S(A)} (\ast_1^{\infty} \phi)(x) d\mu(\phi).$

Step 3

Show $\mathrm{ZQSS}(A) \supseteq \overline{\mathrm{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

It is easy to see $\mathrm{ZQSS}(A) \supseteq \mathrm{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}.$ But even if $\psi_i \in \text{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of $\psi?$

We don't answer this general question. Instead, since $\{*_1^\infty\phi\mid\phi\in S(A)\}$ is compact, for every $\psi\in\overline{\mathrm{conv}}\{*_1^\infty\phi\mid\phi\in S(A)\}$ there is a *Borel* probability measure μ on $S(A)$ such that $\psi(x) = \int_{S(A)} (\ast_1^\infty \phi)(x) \, d\mu(\phi).$ Now we perform an amalgamated free product over $C(S(A))$ and use a technical convergence result from [Abadie, D. '09] to realize ψ in a way that makes clear that the tail algebra is in the center.

Step₃

Show $\mathrm{ZQSS}(A) \supseteq \overline{\mathrm{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

It is easy to see $\mathrm{ZQSS}(A) \supseteq \mathrm{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}.$ But even if $\psi_i \in \text{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of $\psi?$

We don't answer this general question. Instead, since $\{*_1^\infty\phi\mid\phi\in S(A)\}$ is compact, for every $\psi\in\overline{\mathrm{conv}}\{*_1^\infty\phi\mid\phi\in S(A)\}$ there is a *Borel* probability measure μ on $S(A)$ such that $\psi(x) = \int_{S(A)} (\ast_1^\infty \phi)(x) \, d\mu(\phi).$ Now we perform an amalgamated free product over $C(S(A))$ and use a technical convergence result from [Abadie, D. '09] to realize ψ in a way that makes clear that the tail algebra is in the center.

These three steps show $ZQSS(A)$ is compact, convex and $\partial_e(ZQSS(A)) = \{*_1^\infty \phi \mid \phi \in S(A)\}.$

Step₃

Show $\mathrm{ZQSS}(A) \supseteq \overline{\mathrm{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

It is easy to see $\mathrm{ZQSS}(A) \supseteq \mathrm{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}.$ But even if $\psi_i \in \text{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of $\psi?$

We don't answer this general question. Instead, since $\{*_1^\infty\phi\mid\phi\in S(A)\}$ is compact, for every $\psi\in\overline{\mathrm{conv}}\{*_1^\infty\phi\mid\phi\in S(A)\}$ there is a *Borel* probability measure μ on $S(A)$ such that $\psi(x) = \int_{S(A)} (\ast_1^\infty \phi)(x) \, d\mu(\phi).$ Now we perform an amalgamated free product over $C(S(A))$ and use a technical convergence result from [Abadie, D. '09] to realize ψ in a way that makes clear that the tail algebra is in the center.

These three steps show $ZQSS(A)$ is compact, convex and $\partial_e(Z \text{QSS}(A)) = \{*_1^\infty \phi \mid \phi \in S(A) \}.$ QED

Proof that $ZQSS(A)$ is a Choquet simplex.

As remarked earlier, since $\partial_e(Z {\rm QSS}(A)) = \{ *^{\infty}_{1} \phi \mid \phi \in S(A) \}$ is compact, for every $\psi \in \text{ZQSS}(A)$ there is a Borel probability measure μ on $S(A)$ so that

$$
\psi(x) = \int_{S(A)} (\ast_1^{\infty} \phi)(x) d\mu(\phi)
$$

for every $x\in\mathfrak{A}=*_\mathrm{1}^\infty A$. Suppose ν is another such measure. We must show $\mu = \nu$.

Proof that $ZQSS(A)$ is a Choquet simplex.

As remarked earlier, since $\partial_e(Z {\rm QSS}(A)) = \{ *^{\infty}_{1} \phi \mid \phi \in S(A) \}$ is compact, for every $\psi \in \text{ZQSS}(A)$ there is a Borel probability measure μ on $S(A)$ so that

$$
\psi(x) = \int_{S(A)} (\ast_1^{\infty} \phi)(x) d\mu(\phi)
$$

for every $x\in\mathfrak{A}=*_\mathrm{1}^\infty A$. Suppose ν is another such measure. We must show $\mu = \nu$.

If $\lambda_i : A \to \ast_1^{\infty} A$ is the embedding to the *i*-th copy, then $(*_1^{\infty} \phi)(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \prod_1^k \phi(a_j)$, so

$$
\int_{S(A)} \prod_1^k \phi(a_j) d\mu(\phi) = \psi(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \int_{S(A)} \prod_1^k \phi(a_j) d\nu(\phi).
$$

Proof that $ZQSS(A)$ is a Choquet simplex.

As remarked earlier, since $\partial_e(Z {\rm QSS}(A)) = \{ *^{\infty}_{1} \phi \mid \phi \in S(A) \}$ is compact, for every $\psi \in \text{ZQSS}(A)$ there is a Borel probability measure μ on $S(A)$ so that

$$
\psi(x) = \int_{S(A)} (\ast_1^{\infty} \phi)(x) d\mu(\phi)
$$

for every $x\in\mathfrak{A}=*_\mathrm{1}^\infty A$. Suppose ν is another such measure. We must show $\mu = \nu$.

If $\lambda_i : A \to \ast_1^{\infty} A$ is the embedding to the *i*-th copy, then $(*_1^{\infty} \phi)(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \prod_1^k \phi(a_j)$, so

$$
\int_{S(A)} \prod_1^k \phi(a_j) d\mu(\phi) = \psi(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \int_{S(A)} \prod_1^k \phi(a_j) d\nu(\phi).
$$

Thus, the linear functionals $\int \cdot d\mu$ and $\int \cdot d\mu$ agree on the closed subalgebra of $C(S(A))$ generated by the evaluations $\phi \mapsto \phi(a)$, $(a \in A)$. By Stone–Weierstrass $\mu = \nu$. QED

Proof that $ZTQSS(A)$ is a Choquet simplex and $\partial_e(\text{ZTQSS}(A)) = \{*_1^{\infty} \tau \mid \tau \in TS(A) \}.$

Recall $ZTQSS(A) = ZQSS(A) \cap TS(\mathfrak{A})$. Suppose $\psi \in ZTQSS(A)$ and μ is the (unique) Borel measure on $S(A)$ such that $\psi = \int_{S(A)} (*_1^\infty \phi) d\mu(\phi)$. It will suffice to show $\mathrm{supp}(\mu) \subseteq TS(A).$

Proof that $ZTQSS(A)$ is a Choquet simplex and $\partial_e(\text{ZTQSS}(A)) = \{*_1^{\infty} \tau \mid \tau \in TS(A) \}.$

Recall $ZTQSS(A) = ZQSS(A) \cap TS(\mathfrak{A})$. Suppose $\psi \in ZTQSS(A)$ and μ is the (unique) Borel measure on $S(A)$ such that $\psi = \int_{S(A)} (*_1^\infty \phi) d\mu(\phi)$. It will suffice to show $\mathrm{supp}(\mu) \subseteq TS(A).$

Let $a \in A \|a\| \leq 1$ and let ω denote the push–forward measure of μ under the map $S(A) \to [0,1]^2$ given by $\phi \mapsto (\phi(a^*a), \phi(aa^*))$. It will suffice to show that the support of ω lies in the diagonal.

Recall $|a|=(a^*a)^{1/2}$ and $|a^*|=(aa^*)^{1/2}$. Let $x=\lambda_1(|a|)\lambda_2(a)$ and $y = \lambda_1(|a^*|)\lambda_2(a^*)$. Then for all $\phi \in S(A)$,

$$
(*_1^{\infty} \phi)(x^*x) = \phi(a^*a)^2, \qquad (*_1^{\infty} \phi)(xx^*) = \phi(a^*a)\phi(aa^*),(*_1^{\infty} \phi)(y^*y) = \phi(aa^*)^2, \qquad (*_1^{\infty} \phi)(yy^*) = \phi(a^*a)\phi(aa^*).
$$

Recall $|a|=(a^*a)^{1/2}$ and $|a^*|=(aa^*)^{1/2}$. Let $x=\lambda_1(|a|)\lambda_2(a)$ and $y = \lambda_1(|a^*|)\lambda_2(a^*)$. Then for all $\phi \in S(A)$,

$$
(*_1^{\infty} \phi)(x^*x) = \phi(a^*a)^2, \qquad (*_1^{\infty} \phi)(xx^*) = \phi(a^*a)\phi(aa^*),(*_1^{\infty} \phi)(y^*y) = \phi(aa^*)^2, \qquad (*_1^{\infty} \phi)(yy^*) = \phi(a^*a)\phi(aa^*).
$$

Thus, we have

$$
\int_{[0,1]^2} s^2 d\omega(s,t) = \psi(x^*x) = \psi(xx^*) = \int_{[0,1]^2} st d\omega(s,t),
$$

$$
\int_{[0,1]^2} t^2 d\omega(s,t) = \psi(y^*y) = \psi(yy^*) = \int_{[0,1]^2} st d\omega(s,t).
$$

From these identities, we get $\int (s-t)^2 d\omega(s,t) = 0$ and we conclude that the support of ω lies in the diagonal of $[0,1]^2.$

Recall $|a|=(a^*a)^{1/2}$ and $|a^*|=(aa^*)^{1/2}$. Let $x=\lambda_1(|a|)\lambda_2(a)$ and $y = \lambda_1(|a^*|)\lambda_2(a^*)$. Then for all $\phi \in S(A)$,

$$
(*_1^{\infty} \phi)(x^*x) = \phi(a^*a)^2, \qquad (*_1^{\infty} \phi)(xx^*) = \phi(a^*a)\phi(aa^*),(*_1^{\infty} \phi)(y^*y) = \phi(aa^*)^2, \qquad (*_1^{\infty} \phi)(yy^*) = \phi(a^*a)\phi(aa^*).
$$

Thus, we have

$$
\int_{[0,1]^2} s^2 d\omega(s,t) = \psi(x^*x) = \psi(xx^*) = \int_{[0,1]^2} st d\omega(s,t),
$$

$$
\int_{[0,1]^2} t^2 d\omega(s,t) = \psi(y^*y) = \psi(yy^*) = \int_{[0,1]^2} st d\omega(s,t).
$$

From these identities, we get $\int (s-t)^2 d\omega(s,t) = 0$ and we conclude that the support of ω lies in the diagonal of $[0, 1]^2$. . QED

[dF37] B. de Finetti, "La prevision: ses lois logiques, ses sources subjectives," Ann. Inst. H. Poincaré (1937).

[St69] E. Størmer, "Symmetric states of infinite tensor products of C*-algebras," J. Funct. Anal. (1969).

[W98] S. Wang, "Quantum symmetry groups of finite spaces," Comm. Math. Phys. (1998).

[KSp09] C. Köstler, R. Speicher, "A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation," Comm. Math. Phys. (2009).

[C09] S. Curran, "Quantum exchangeable sequences of algebras," Indiana Univ. Math. J. (2009).

[AD09] B. Abadie, K. Dykema, "Unique ergodicity of free shifts and some other automorphisms of C[∗]-algebras," J. Operator Theory 61 (2009).

[DK] K. Dykema, C. Köstler, "Tail algebras of quantum exchangeable random variables," Proc. Amer. Math. Soc. (to appear), arXiv 1202.4749.

[DKW] K. Dykema, C. Köstler, J. Williams, "Quantum symmetric states on universal free product C[∗] -algebras," arXiv:1305.7293.

[AD09] B. Abadie, K. Dykema, "Unique ergodicity of free shifts and some other automorphisms of C[∗]-algebras," J. Operator Theory 61 (2009).

[DK] K. Dykema, C. Köstler, "Tail algebras of quantum exchangeable random variables," Proc. Amer. Math. Soc. (to appear), arXiv 1202.4749.

[DKW] K. Dykema, C. Köstler, J. Williams, "Quantum symmetric states on universal free product C[∗] -algebras," arXiv:1305.7293. *** Thanks for listening! ***