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Classical Exchangeability

Definition

A sequence of (classical) random variables x1, x2, . . . is said to be
exchangeable if

E(xi(1)xi(2) · · ·xi(n)) = E(xσ(i(1))xσ(i(2)) · · ·xσ(i(n)))

for every n ∈ N, i(1), . . . , i(n) ∈ N and every permutation σ of N.

That is, if the joint distribution of x1, x2 . . . is invariant under
re-orderings.
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De Finetti’s Theorem

Theorem [de Finetti, 1937]

A sequence of random variables x1, x2, . . . is exchangeable if and only
if the random variables are conditionally independent and identically
distributed over its tail σ-algebra.

Definition

The tail σ-algebra is the intersection of the σ-algebras generated by
{xN , xN+1, . . .} as N goes to ∞.

Thus, the expectation E can be seen as an integral (w.r.t. a
probability measure on the tail algebra) — that is, as a sort of convex
combination — of expectations with respect to which the random
variables x1, x2, . . . are independent and identically distributed
(i.i.d.).
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Symmetric states

Størmer extended this result to the realm of C∗–algebras.

Definition

Consider the minimal tensor product B =
⊗∞

1 A of a C∗–algebra A
with itself infinitely many times. A state on B is said to be
symmetric if it is invariant under the action of the group S∞ by
permutations of tensor factors.

Note that the set of SS(A) of symmetric states on B is a closed,
convex set in the set S(B) of all states on B.

Theorem [Størmer, 1969]

The extreme points of SS(A) are the infinite tensor product states,
i.e. those of the form ⊗∞1 φ for φ ∈ S(A) a state of A. Moreover,
SS(A) is a Choquet simplex, so every symmetric state on B is an
integral w.r.t. a unique probability measure of infinite tensor product
states.
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The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group As(n)

As(n) is the universal unital C∗–algebra generated by a family of
projections (ui,j)1≤i,j≤n subject to the relations

∀i
∑
j

ui,j = 1 and ∀j
∑
i

ui,j = 1. (1)

It is a compact quantum group (with comultiplication, counit and
antipode).

Abelianization of As(n)

The universal unital C∗–algebra generated by commuting projections
ũi,,j satisfying the analogous relations (1) is isomorphic to C(Sn),
the continuous functions of the permutation group Sn, with ũi,j the
characterisitc set of the permutations sending j to i. Thus, C(Sn) is
a quotient of As(n) by a ∗-homomorphism sending ui,j to ũi,j .
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Fully noncommutative version of permutation invariance

Invariance under quantum permutations

In a C∗-noncommutative probability space (A, φ), the joint
distribution of family x1, . . . , xn ∈ A is invariant under quantum
permtuations if the natural coaction of As(n) leaves the distribution
unchanged. Concretely, this amounts to:

φ(xi(1) · · ·xi(k))1

=
∑

1≤j(1),...,j(k)≤n

ui(1),j(1) · · ·ui(k),j(k)φ(xj(1) · · ·xj(k))

∈ C1 ⊆ As(n).

Invariance under quantum permutations implies invariance under
usual permuations

by taking the quotient from As(n) onto C(Sn).
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Quantum exchangeable random variables and the tail
algebra

Definition [Köstler, Speicher ’09]

In a C∗-noncommutative probability space, a sequence of random
variables (xi)∞i=1 is quantum exchangeable if for every n, the joint
distribution of x1, . . . , xn is invariant under quantum permutations.

The tail algebra of the sequence is

T =
∞⋂
N=1

W ∗({xN , xN+1, . . .}).

Proposition [Köstler ’10] (existence of conditional expectation)

Let (xi)∞i=1 be a quantum exchangeable sequence in a
W∗-noncommutative probability space (M, φ) where φ is faithful and
suppose M is generated by the xi. Then there is a unique faithful,
φ–preserving conditional expectation E from M onto T .
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Quantum exchangeable ⇔ free with amalgamation over
tail algebra

Theorem [Köstler, Speicher ’09]

(xi)∞i=1 is a quantum exchangeable sequence if and only if the
random variables are free with respect to the conditional expectation
E (i.e., with amalgamation over the tail algebra).

Theorem [D., Köstler]

Given any countably generated von Neumann algebra A and any
faithful state ψ on A, there is a W∗–noncommutative probability
space (M, φ) with φ faithful and with a sequence (xi)∞i=1 of random
variables that is quantum exchangeable with respect to φ, and so
that their tail algebra T is a copy of A so that φ�T is equal to ψ.
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Change in perspective

Generalize in the direction of C∗-algebras, like Størmer did

Instead of considering individual random variables, we consider a
unital C∗–algebra A and a state ψ on the universal unital free
product C∗–algebra A = ∗∞1 A, with corresponding embeddings
λi : A→ A, (i ≥ 1).

Definition

A state ψ on A is quantum symmetric if the ∗–homomorphisms λi
are quantum exchangeable with respect to ψ, in the sense that, for
all n ∈ N, a1, . . . , ak ∈ A and 1 ≤ i(1), . . . , i(k) ≤ n,

ψ(λi(1)(a1) · · ·λi(k)(ak))1

=
∑

1≤j(1),...,j(k)≤n

ui(1),j(1) · · ·ui(k),j(k)ψ(λj(1)(a1) · · ·λj(k)(ak))

∈ C1 ⊆ As(n).

Dykema (TAMU) Quantum Symmetric States Fields, 2013 9 / 27



Quantum symmetric states yield freeness with
amalgamation over the tail algebra

Notation

Let QSS(A) denote the set of quantum symmetric states on
A = ∗∞1 A. It is a closed, convex subset of the set of all states on A.

Proposition

Let ψ ∈ QSS(A). Let πψ : A→ B(L2(A, ψ)) be the GNS

representation, let Mψ = W ∗(πψ(A)) and denote by ψ̂ the GNS
vector state 〈·1̂, 1̂〉 on Mψ. Consider the tail algebra

Tψ =
⋂∞
N=1W

∗(
⋃∞
i=N πψ ◦ λi(A)). Then there is a ψ̂-preserving

conditional expectation Eψ from Mψ onto Tψ.

Theorem

The subalgebras πψ ◦ λi(A) for i ≥ 1 are free with respect to the
conditional expectation Eψ onto the tail algebra.
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Conversely, freeness with amalgamation leads to quantum
symmetric states

Recall A = ∗∞1 A.

Theorem

Let (B,φ) be a C∗-noncommutative probability space and suppose
D ⊆ B is a unital C∗–subalgebra with a conditional expectation
E : B → D and let ρ be a state on B such that ρ ◦ E = ρ. If
π : A→ B is a ∗–homomorphism such that the states ρ ◦ π ◦ λi of A
are the same for all i and the algebras (π ◦ λi)∞i=1 are free with
respect to E, then ψ = ρ ◦ π ∈ QSS(A).
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Remarks

• We don’t require faithfulness of ψ on A, nor of ψ̂ on Mψ, nor of
Eψ on Mψ.

• Only classical exchangeability (not quantum exchangebility) is
required for existence of a ψ-preserving conditional expectation
Eψ :Mψ → Tψ onto the tail algebra.

• Our proof are similar to those in [Köstler ’10] and [Köstler,
Speichter ’09].

• Also Stephen Curran [’09] considered quantum exchangeability
for sequences of ∗–homomorphisms of ∗-algebras and proved
freeness with amalgamation; he did require faithfulness of a
state, and used different ideas for his proofs.
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Goals

To investigate QSS(A) as a compact, convex subset of S(A), to
characterize its extreme points and to study certain convex subsets:

• the tracial quantum symmetric states
TQSS(A) = QSS(A) ∩ TS(A)
• the central quantum symmetric states

ZQSS(A) = {ψ ∈ QSS(A) | Tψ ⊆ Z(Mψ)}
• the tracial central quantum symmetric states

ZTQSS(A) = ZQSS(A) ∩ TQSS(A).
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Description of QSS(A)

There is a bijection V(A)! QSS(A)

where V(A) is the set of all quintuples (B,D, E, σ, ρ) where

• 1B ∈ D ⊆ B is a von Neumann subalgebra and E : B → D is a
normal conditional expectation

• σ : A→ B is a unital ∗–homomorphism

• ρ is a normal state on D so that the state ρ ◦E of B has faithful
GNS rep

• B = W ∗(σ(A) ∪ D)
• D is the smallest unital von Neumann subalgebra of B such that
E(d0σ(a1)d1 · · ·σ(an)dn) ∈ D for all a1, . . . , an ∈ A and all
d0, . . . , dn ∈ D.

The bijection takes (B,D,E, σ, ρ) ∈ V(A), constructs the W∗–free
product (M, F ) = (∗D)∞1 (B, E) with amalgamation over D, and
yields the quantum symmetric state ρ ◦ E ◦ (∗∞1 σ) on A = ∗∞1 A.
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Description of QSS(A) (2)

The correspondence V(A)→ QSS(A)

The bijection takes (B,D,E, σ, ρ) ∈ V(A), constructs the W∗–free
product (M, F ) = (∗D)∞1 (B, E) with amalgamation over D, and
yields the quantum symmetric state ρ ◦ E ◦ (∗∞1 σ) on A = ∗∞1 A.

Under the bijection:

from (B,D,E, σ, ρ) D M ∗∞1 σ F ρ ◦ F

from GNS rep of ψ Tψ Mψ πψ Eψ ψ̂

Technically, we need to let V(A) be the set of equivalence classes of
quintuples, up to a natural notion of equivalence, and to avoid set
theoretic difficulties we need to (and we can) restrict to B that are
represented on some specific Hilbert space.
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Extreme quantum symmetric states

Let ∂e(QSS(A)) be the set of extreme points of QSS(A).

Theorem

Let ψ ∈ QSS(A) correspond to (B,D, E, σ, ρ) ∈ V(A). Then
ψ ∈ ∂e(QSS(A)) if and only if ρ is a pure state on D.

A very special form

A pure state ρ on a von Neumann algebra D is always of the form
D = B(H)⊕N and ρ(a⊕ x) = 〈aξ, ξ〉 for a unit vector ξ ∈ H.

Examples of extreme quantum symmetric states

• free product states ψ = ∗∞1 φ for φ ∈ S(A); these correspond to
D = C.

• we construct an example ψ ∈ ∂e(QSS(C⊕C)) with
D = C⊕ L∞([0, 1]).
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Extreme tracial quantum symmetric states

Let TQSS(A) be the set of all ψ ∈ QSS(A) that are traces on
A = ∗∞1 A and let ∂e(TQSS(A)) be the set of extreme points of
TQSS(A).

Theorem

Let ψ ∈ TQSS(A) correspond to (B,D, E, σ, ρ) ∈ V(A). Let
R(E) = {τ ∈ TS(D) | τ ◦ E ∈ TS(B)}. Then ψ ∈ ∂e(TQSS(A)) if
and only if ρ is an extreme point of R(E).

Corollary

If either D or B is a factor, then ψ ∈ ∂e(TQSS(A)).
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Examples of extreme tracial quantum symmetric states

Corollary

If either D or B is a factor, then ψ ∈ ∂e(TQSS(A)).

Some examples of extreme tracial quantum symmetric states

• free product traces ψ = ∗∞1 τ for τ ∈ TS(A); these correspond
to D = C.

• we construct an example ψ ∈ ∂e(TQSS(C⊕C)) with
D = M2(C),

so tail algebras can be noncommutative also when
A = C⊕C.

• we construct an example ψ ∈ ∂e(TQSS(C⊕C)) with
D = C⊕C and B = M2(C)⊕M2(C),

so extreme tracial
quantum symmetric states can occur when neither B nor D is a
factor.
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D = M2(C),

so tail algebras can be noncommutative also when
A = C⊕C.

• we construct an example ψ ∈ ∂e(TQSS(C⊕C)) with
D = C⊕C and B = M2(C)⊕M2(C),

so extreme tracial
quantum symmetric states can occur when neither B nor D is a
factor.
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Central quantum symmetric states

ZQSS(A) = the set of all ψ ∈ QSS(A) whose tail algebra Tψ lies in
the center of Mψ.

ZTQSS(A) = ZQSS(A) ∩ TQSS(A), the tracial central quantum
symmetric states.

Theorem

Both ZQSS(A) and ZTQSS(A) are compact, convex subsets of
QSS(A) and both are Choquet simplices. Their extreme points are,
respectively, the free product states and the free product traces:

∂e(ZQSS(A)) = {∗∞1 φ | φ ∈ S(A)},
∂e(ZTQSS(A)) = {∗∞1 τ | τ ∈ TS(A)}.
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The previous result is in the spirit of Størmer’s result; it says that
each central quantum symmetric state ψ can be written as an integral

ψ =
∫
S(A)

(∗∞1 φ) dµ(φ)

of free product states for a unique Borel probability measure µ on
S(A), and in the case that ψ is a trace, supp(µ) ⊆ TS(A).

Open problem

Is TQSS(A) a Choquet simplex?
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Proof that ZQSS(A) is closed and that
∂e(ZQSS(A)) = {∗∞1 φ | φ ∈ S(A)}.

Step 1

Note that φ 7→ ∗∞1 φ is a homeomorphism from S(A) into
∂e(QSS(A)).

Step 2

Show ZQSS(A) ⊆ conv{∗∞1 φ | φ ∈ S(A)}.

If ψ ∈ ZQSS(A) comes from (B,D, E, σ, ρ) ∈ V(A), then D lies in
the center of B, so ρ is a state on D ∼= C(X) and is approximately a
convex combination of point masses. Using a result from [D.,
Köstler], each (point mass) ◦ E ◦ ∗∞1 σ : A→ C is a free product
state of the form ∗∞1 φ.
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Proof (continued).

Step 3

Show ZQSS(A) ⊇ conv{∗∞1 φ | φ ∈ S(A)}.

It is easy to see ZQSS(A) ⊇ conv{∗∞1 φ | φ ∈ S(A)}. But even if
ψi ∈ QSS(A) and ψi → ψ and we understand the tail algebras of
each ψi, how do we understand the tail algebra of ψ?

We don’t answer this general question. Instead, since
{∗∞1 φ | φ ∈ S(A)} is compact, for every ψ ∈ conv{∗∞1 φ | φ ∈ S(A)}
there is a Borel probability measure µ on S(A) such that
ψ(x) =

∫
S(A)(∗

∞
1 φ)(x) dµ(φ). Now we perform an amalgamated

free product over C(S(A)) and use a technical convergence result
from [Abadie, D. ’09] to realize ψ in a way that makes clear that the
tail algebra is in the center.

These three steps show ZQSS(A) is compact, convex and
∂e(ZQSS(A)) = {∗∞1 φ | φ ∈ S(A)}. QED
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Proof that ZQSS(A) is a Choquet simplex.

As remarked earlier, since ∂e(ZQSS(A)) = {∗∞1 φ | φ ∈ S(A)} is
compact, for every ψ ∈ ZQSS(A) there is a Borel probability measure
µ on S(A) so that

ψ(x) =
∫
S(A)

(∗∞1 φ)(x) dµ(φ)

for every x ∈ A = ∗∞1 A. Suppose ν is another such measure. We
must show µ = ν.

If λi : A→ ∗∞1 A is the embedding to the i-th copy, then
(∗∞1 φ)(λ1(a1) · · ·λk(ak)) =

∏k
1 φ(aj), so∫

S(A)

k∏
1

φ(aj) dµ(φ) = ψ(λ1(a1) · · ·λk(ak)) =
∫
S(A)

k∏
1

φ(aj) dν(φ).

Thus, the linear functionals
∫
· dµ and

∫
· dµ agree on the closed

subalgebra of C(S(A)) generated by the evaluations φ 7→ φ(a),
(a ∈ A). By Stone–Weierstrass µ = ν. QED
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Proof that ZTQSS(A) is a Choquet simplex and
∂e(ZTQSS(A)) = {∗∞1 τ | τ ∈ TS(A)}.

Recall ZTQSS(A) = ZQSS(A) ∩ TS(A). Suppose ψ ∈ ZTQSS(A)
and µ is the (unique) Borel measure on S(A) such that
ψ =

∫
S(A)(∗

∞
1 φ) dµ(φ). It will suffice to show supp(µ) ⊆ TS(A).

Let a ∈ A ‖a‖ ≤ 1 and let ω denote the push–forward measure of µ
under the map S(A)→ [0, 1]2 given by φ 7→ (φ(a∗a), φ(aa∗)). It will
suffice to show that the support of ω lies in the diagonal.
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Proof (continued).

Recall |a| = (a∗a)1/2 and |a∗| = (aa∗)1/2. Let x = λ1(|a|)λ2(a) and
y = λ1(|a∗|)λ2(a∗). Then for all φ ∈ S(A),

(∗∞1 φ)(x∗x) = φ(a∗a)2, (∗∞1 φ)(xx∗) = φ(a∗a)φ(aa∗),

(∗∞1 φ)(y∗y) = φ(aa∗)2, (∗∞1 φ)(yy∗) = φ(a∗a)φ(aa∗).

Thus, we have∫
[0,1]2

s2 dω(s, t) = ψ(x∗x) = ψ(xx∗) =
∫

[0,1]2
st dω(s, t),∫

[0,1]2
t2 dω(s, t) = ψ(y∗y) = ψ(yy∗) =

∫
[0,1]2

st dω(s, t).

From these identities, we get
∫

(s− t)2 dω(s, t) = 0 and we conclude
that the support of ω lies in the diagonal of [0, 1]2. QED
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