Quantum symmetric states on universal free product C*-algebras

Ken Dykema,¹ Claus Köstler,² John Williams¹

¹Department of Mathematics Texas A&M University College Station, TX, USA.

²School of Mathematical Sciences University College Cork Cork, Ireland

Fields Institute Free Probability Workshop, July 2013

Definition

A sequence of (classical) random variables x_1, x_2, \ldots is said to be *exchangeable* if

$$\mathbb{E}(x_{i(1)}x_{i(2)}\cdots x_{i(n)}) = \mathbb{E}(x_{\sigma(i(1))}x_{\sigma(i(2))}\cdots x_{\sigma(i(n))})$$

for every $n \in \mathbf{N}$, $i(1), \ldots, i(n) \in \mathbf{N}$ and every permutation σ of \mathbf{N} .

Definition

A sequence of (classical) random variables x_1, x_2, \ldots is said to be *exchangeable* if

$$\mathbb{E}(x_{i(1)}x_{i(2)}\cdots x_{i(n)}) = \mathbb{E}(x_{\sigma(i(1))}x_{\sigma(i(2))}\cdots x_{\sigma(i(n))})$$

for every $n \in \mathbf{N}$, $i(1), \ldots, i(n) \in \mathbf{N}$ and every permutation σ of \mathbf{N} .

That is, if the joint distribution of $x_1, x_2 \dots$ is invariant under re-orderings.

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Definition

The tail σ -algebra is the intersection of the σ -algebras generated by $\{x_N, x_{N+1}, \ldots\}$ as N goes to ∞ .

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Definition

The tail σ -algebra is the intersection of the σ -algebras generated by $\{x_N, x_{N+1}, \ldots\}$ as N goes to ∞ .

Thus, the expectation \mathbb{E} can be seen as an integral (w.r.t. a probability measure on the tail algebra) — that is, as a sort of convex combination — of expectations with respect to which the random variables x_1, x_2, \ldots are independent and identically distributed (i.i.d.).

Dykema (TAMU)

Symmetric states

Størmer extended this result to the realm of C*-algebras.

Definition

Consider the minimal tensor product $B = \bigotimes_{1}^{\infty} A$ of a C*-algebra A with itself infinitely many times. A state on B is said to be *symmetric* if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Symmetric states

Størmer extended this result to the realm of C*-algebras.

Definition

Consider the minimal tensor product $B = \bigotimes_{1}^{\infty} A$ of a C*-algebra A with itself infinitely many times. A state on B is said to be *symmetric* if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Note that the set of SS(A) of symmetric states on B is a closed, convex set in the set S(B) of all states on B.

Symmetric states

Størmer extended this result to the realm of C*-algebras.

Definition

Consider the minimal tensor product $B = \bigotimes_{1}^{\infty} A$ of a C*-algebra A with itself infinitely many times. A state on B is said to be *symmetric* if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Note that the set of SS(A) of symmetric states on B is a closed, convex set in the set S(B) of all states on B.

Theorem [Størmer, 1969]

The extreme points of SS(A) are the infinite tensor product states, i.e. those of the form $\otimes_1^{\infty} \phi$ for $\phi \in S(A)$ a state of A. Moreover, SS(A) is a Choquet simplex, so every symmetric state on B is an integral w.r.t. a *unique* probability measure of infinite tensor product states.

Dykema (TAMU)

The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group $A_s(n)$

 $A_s(n)$ is the universal unital C*–algebra generated by a family of projections $(u_{i,j})_{1\leq i,j\leq n}$ subject to the relations

$$\forall i \sum_{j} u_{i,j} = 1 \text{ and } \forall j \sum_{i} u_{i,j} = 1.$$
 (1)

It is a compact quantum group (with comultiplication, counit and antipode).

The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group $A_s(n)$

 $A_s(n)$ is the universal unital C*–algebra generated by a family of projections $(u_{i,j})_{1\leq i,j\leq n}$ subject to the relations

$$\forall i \sum_{j} u_{i,j} = 1 \text{ and } \forall j \sum_{i} u_{i,j} = 1.$$
 (1)

It is a compact quantum group (with comultiplication, counit and antipode).

Abelianization of $\overline{A_s(n)}$

The universal unital C^{*}-algebra generated by *commuting* projections $\tilde{u}_{i,j}$ satisfying the analogous relations (1) is isomorphic to $C(S_n)$, the continuous functions of the permutation group S_n , with $\tilde{u}_{i,j}$ the characterisitc set of the permutations sending j to i. Thus, $C(S_n)$ is a quotient of $A_s(n)$ by a *-homomorphism sending $u_{i,j}$ to $\tilde{u}_{i,j}$.

Invariance under quantum permutations

In a C*-noncommutative probability space (A, ϕ) , the joint distribution of family $x_1, \ldots, x_n \in A$ is *invariant under quantum permtuations* if the natural coaction of $A_s(n)$ leaves the distribution unchanged. Concretely, this amounts to:

$$\phi(x_{i(1)}\cdots x_{i(k)}) 1 = \sum_{1 \le j(1),\dots,j(k) \le n} u_{i(1),j(1)}\cdots u_{i(k),j(k)}\phi(x_{j(1)}\cdots x_{j(k)}) \in \mathbf{C} 1 \subseteq A_s(n).$$

Invariance under quantum permutations

In a C*-noncommutative probability space (A, ϕ) , the joint distribution of family $x_1, \ldots, x_n \in A$ is *invariant under quantum permtuations* if the natural coaction of $A_s(n)$ leaves the distribution unchanged. Concretely, this amounts to:

$$\phi(x_{i(1)}\cdots x_{i(k)}) 1 = \sum_{1 \le j(1),\dots,j(k) \le n} u_{i(1),j(1)}\cdots u_{i(k),j(k)}\phi(x_{j(1)}\cdots x_{j(k)}) \\ \in \mathbf{C}1 \subseteq A_s(n)$$

Invariance under quantum permutations implies invariance under usual permuations

by taking the quotient from $A_s(n)$ onto $C(S_n)$.

Dykema (TAMU)

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^{\infty}$ is *quantum exchangeable* if for every n, the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^{\infty}$ is *quantum exchangeable* if for every n, the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

The tail algebra of the sequence is

$$\mathcal{T} = \bigcap_{N=1}^{\infty} W^*(\{x_N, x_{N+1}, \ldots\}).$$

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^{\infty}$ is *quantum exchangeable* if for every n, the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

The tail algebra of the sequence is

$$\mathcal{T} = \bigcap_{N=1}^{\infty} W^*(\{x_N, x_{N+1}, \ldots\}).$$

Proposition [Köstler '10] (existence of conditional expectation)

Let $(x_i)_{i=1}^{\infty}$ be a quantum exchangeable sequence in a W*-noncommutative probability space (\mathcal{M}, ϕ) where ϕ is faithful and suppose \mathcal{M} is generated by the x_i . Then there is a unique faithful, ϕ -preserving conditional expectation E from \mathcal{M} onto \mathcal{T} .

Dykema (TAMU)

Quantum exchangeable \Leftrightarrow free with amalgamation over tail algebra

Theorem [Köstler, Speicher '09]

 $(x_i)_{i=1}^{\infty}$ is a quantum exchangeable sequence if and only if the random variables are free with respect to the conditional expectation E (i.e., with amalgamation over the tail algebra).

Quantum exchangeable \Leftrightarrow free with amalgamation over tail algebra

Theorem [Köstler, Speicher '09]

 $(x_i)_{i=1}^{\infty}$ is a quantum exchangeable sequence if and only if the random variables are free with respect to the conditional expectation E (i.e., with amalgamation over the tail algebra).

Theorem [D., Köstler]

Given any countably generated von Neumann algebra \mathcal{A} and any faithful state ψ on \mathcal{A} , there is a W^{*}-noncommutative probability space (\mathcal{M}, ϕ) with ϕ faithful and with a sequence $(x_i)_{i=1}^{\infty}$ of random variables that is quantum exchangeable with respect to ϕ , and so that their tail algebra \mathcal{T} is a copy of \mathcal{A} so that $\phi \upharpoonright_{\mathcal{T}}$ is equal to ψ .

Generalize in the direction of C*-algebras, like Størmer did

Instead of considering individual random variables, we consider a unital C^* -algebra A and a state ψ on the universal unital free product C*-algebra $\mathfrak{A} = *_1^{\infty} A$, with corresponding embeddings $\lambda_i : A \to \mathfrak{A}$, $(i \ge 1)$.

Definition

A state ψ on \mathfrak{A} is *quantum symmetric* if the *-homomorphisms λ_i are quantum exchangeable with respect to ψ , in the sense that, for all $n \in \mathbb{N}$, $a_1, \ldots, a_k \in A$ and $1 \leq i(1), \ldots, i(k) \leq n$,

$$\psi(\lambda_{i(1)}(a_1)\cdots\lambda_{i(k)}(a_k))1 = \sum_{1 \le j(1),\dots,j(k) \le n} u_{i(1),j(1)}\cdots u_{i(k),j(k)}\psi(\lambda_{j(1)}(a_1)\cdots\lambda_{j(k)}(a_k))$$

$$\in \mathbf{C}1 \subseteq A_s(n).$$

Quantum symmetric states yield freeness with amalgamation over the tail algebra

Notation

Let QSS(A) denote the set of quantum symmetric states on $\mathfrak{A} = *_1^{\infty} A$. It is a closed, convex subset of the set of all states on \mathfrak{A} .

Quantum symmetric states yield freeness with amalgamation over the tail algebra

Notation

Let QSS(A) denote the set of quantum symmetric states on $\mathfrak{A} = *_1^{\infty} A$. It is a closed, convex subset of the set of all states on \mathfrak{A} .

Proposition

Let $\psi \in QSS(A)$. Let $\pi_{\psi} : \mathfrak{A} \to B(L^2(\mathfrak{A}, \psi))$ be the GNS representation, let $\mathcal{M}_{\psi} = W^*(\pi_{\psi}(\mathfrak{A}))$ and denote by $\hat{\psi}$ the GNS vector state $\langle \cdot \hat{1}, \hat{1} \rangle$ on \mathcal{M}_{ψ} . Consider the *tail algebra* $\mathcal{T}_{\psi} = \bigcap_{N=1}^{\infty} W^*(\bigcup_{i=N}^{\infty} \pi_{\psi} \circ \lambda_i(A))$. Then there is a $\hat{\psi}$ -preserving conditional expectation E_{ψ} from \mathcal{M}_{ψ} onto \mathcal{T}_{ψ} .

Quantum symmetric states yield freeness with amalgamation over the tail algebra

Notation

Let QSS(A) denote the set of quantum symmetric states on $\mathfrak{A} = *_1^{\infty} A$. It is a closed, convex subset of the set of all states on \mathfrak{A} .

Proposition

Let $\psi \in QSS(A)$. Let $\pi_{\psi} : \mathfrak{A} \to B(L^2(\mathfrak{A}, \psi))$ be the GNS representation, let $\mathcal{M}_{\psi} = W^*(\pi_{\psi}(\mathfrak{A}))$ and denote by $\hat{\psi}$ the GNS vector state $\langle \cdot \hat{1}, \hat{1} \rangle$ on \mathcal{M}_{ψ} . Consider the *tail algebra* $\mathcal{T}_{\psi} = \bigcap_{N=1}^{\infty} W^*(\bigcup_{i=N}^{\infty} \pi_{\psi} \circ \lambda_i(A))$. Then there is a $\hat{\psi}$ -preserving conditional expectation E_{ψ} from \mathcal{M}_{ψ} onto \mathcal{T}_{ψ} .

Theorem

The subalgebras $\pi_{\psi} \circ \lambda_i(A)$ for $i \ge 1$ are free with respect to the conditional expectation E_{ψ} onto the tail algebra.

Dykema (TAMU)

Conversely, freeness with amalgamation leads to quantum symmetric states

Recall $\mathfrak{A} = *_1^{\infty} A$.

Theorem

Let (B, ϕ) be a C*-noncommutative probability space and suppose $D \subseteq B$ is a unital C*-subalgebra with a conditional expectation $E: B \to D$ and let ρ be a state on B such that $\rho \circ E = \rho$. If $\pi: \mathfrak{A} \to B$ is a *-homomorphism such that the states $\rho \circ \pi \circ \lambda_i$ of Aare the same for all i and the algebras $(\pi \circ \lambda_i)_{i=1}^{\infty}$ are free with respect to E, then $\psi = \rho \circ \pi \in QSS(A)$.

Remarks

- We don't require faithfulness of ψ on \mathfrak{A} , nor of $\hat{\psi}$ on \mathcal{M}_{ψ} , nor of E_{ψ} on \mathcal{M}_{ψ} .
- Only classical exchangeability (not quantum exchangebility) is required for existence of a ψ -preserving conditional expectation $E_{\psi}: \mathcal{M}_{\psi} \to \mathcal{T}_{\psi}$ onto the tail algebra.
- Our proof are similar to those in [Köstler '10] and [Köstler, Speichter '09].
- Also Stephen Curran ['09] considered quantum exchangeability for sequences of *-homomorphisms of *-algebras and proved freeness with amalgamation; he did require faithfulness of a state, and used different ideas for his proofs.

Goals

To investigate QSS(A) as a compact, convex subset of $S(\mathfrak{A})$, to characterize its extreme points and to study certain convex subsets:

- the tracial quantum symmetric states $TQSS(A) = QSS(A) \cap TS(\mathfrak{A})$
- the central quantum symmetric states $\operatorname{ZQSS}(A) = \{ \psi \in \operatorname{QSS}(A) \mid \mathcal{T}_{\psi} \subseteq Z(\mathcal{M}_{\psi}) \}$
- the tracial central quantum symmetric states $\operatorname{ZTQSS}(A) = \operatorname{ZQSS}(A) \cap \operatorname{TQSS}(A)$.

There is a bijection $\mathcal{V}(A) \iff QSS(A)$

where $\mathcal{V}(A)$ is the set of all quintuples $(\mathcal{B},\mathcal{D},E,\sigma,\rho)$ where

- $1_{\mathcal{B}} \in \mathcal{D} \subseteq \mathcal{B}$ is a von Neumann subalgebra and $E : \mathcal{B} \to \mathcal{D}$ is a normal conditional expectation
- $\sigma: A \to \mathcal{B}$ is a unital *-homomorphism
- ρ is a normal state on $\mathcal D$ so that the state $\rho\circ E$ of $\mathcal B$ has faithful GNS rep
- $\mathcal{B} = W^*(\sigma(A) \cup \mathcal{D})$
- \mathcal{D} is the smallest unital von Neumann subalgebra of \mathcal{B} such that $E(d_0\sigma(a_1)d_1\cdots\sigma(a_n)d_n) \in \mathcal{D}$ for all $a_1,\ldots,a_n \in A$ and all $d_0,\ldots,d_n \in \mathcal{D}$.

There is a bijection $\mathcal{V}(A) \iff QSS(A)$

where $\mathcal{V}(A)$ is the set of all quintuples $(\mathcal{B},\mathcal{D},E,\sigma,\rho)$ where

- $1_{\mathcal{B}} \in \mathcal{D} \subseteq \mathcal{B}$ is a von Neumann subalgebra and $E : \mathcal{B} \to \mathcal{D}$ is a normal conditional expectation
- $\sigma: A \to \mathcal{B}$ is a unital *-homomorphism
- ρ is a normal state on $\mathcal D$ so that the state $\rho\circ E$ of $\mathcal B$ has faithful GNS rep
- $\mathcal{B} = W^*(\sigma(A) \cup \mathcal{D})$
- \mathcal{D} is the smallest unital von Neumann subalgebra of \mathcal{B} such that $E(d_0\sigma(a_1)d_1\cdots\sigma(a_n)d_n) \in \mathcal{D}$ for all $a_1,\ldots,a_n \in A$ and all $d_0,\ldots,d_n \in \mathcal{D}$.

The bijection takes $(\mathcal{B}, \mathcal{D}, \mathcal{E}, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}-free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_1^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_1^{\infty} \sigma)$ on $\mathfrak{A} = *_1^{\infty} A$.

The correspondence $\mathcal{V}(A) \to \mathrm{QSS}(A)$

The bijection takes $(\mathcal{B}, \mathcal{D}, \mathcal{E}, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}-free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_{1}^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_{1}^{\infty} \sigma)$ on $\mathfrak{A} = *_{1}^{\infty} A$.

Under the bijection:									
	from $(\mathcal{B}, \mathcal{D}, \mathcal{E}, \sigma, \rho)$	$\mid \mathcal{D}$	\mathcal{M}	$*_1^{\infty}\sigma$	F	$\rho \circ F$			
	from GNS rep of ψ	\mathcal{T}_{ψ}	\mathcal{M}_ψ	π_ψ	E_{ψ}	$\hat{\psi}$			

The correspondence $\mathcal{V}(A) \to \mathrm{QSS}(A)$

The bijection takes $(\mathcal{B}, \mathcal{D}, \mathcal{E}, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}-free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_1^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_1^{\infty} \sigma)$ on $\mathfrak{A} = *_1^{\infty} A$.

Under the bijection:									
	from $(\mathcal{B}, \mathcal{D}, \mathcal{E}, \sigma, \rho)$	$\mid \mathcal{D}$	\mathcal{M}	$*_1^{\infty}\sigma$	F	$\rho \circ F$			
	from GNS rep of ψ	\mathcal{T}_{ψ}	\mathcal{M}_ψ	π_ψ	E_{ψ}	$\hat{\psi}$			

Technically, we need to let $\mathcal{V}(A)$ be the set of equivalence classes of quintuples, up to a natural notion of equivalence, and to avoid set theoretic difficulties we need to (and we can) restrict to \mathcal{B} that are represented on some specific Hilbert space.

Dykema (TAMU)

Quantum Symmetric States

Extreme quantum symmetric states

Let $\partial_e(QSS(A))$ be the set of extreme points of QSS(A).

Theorem

Let $\psi \in QSS(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Then $\psi \in \partial_e(QSS(A))$ if and only if ρ is a pure state on \mathcal{D} .

Extreme quantum symmetric states

Let $\partial_e(QSS(A))$ be the set of extreme points of QSS(A).

Theorem

Let $\psi \in QSS(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Then $\psi \in \partial_e(QSS(A))$ if and only if ρ is a pure state on \mathcal{D} .

A very special form

A pure state ρ on a von Neumann algebra \mathcal{D} is always of the form $\mathcal{D} = B(\mathcal{H}) \oplus \mathcal{N}$ and $\rho(a \oplus x) = \langle a\xi, \xi \rangle$ for a unit vector $\xi \in \mathcal{H}$.

Extreme quantum symmetric states

Let $\partial_e(QSS(A))$ be the set of extreme points of QSS(A).

Theorem

Let $\psi \in QSS(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Then $\psi \in \partial_e(QSS(A))$ if and only if ρ is a pure state on \mathcal{D} .

A very special form

A pure state ρ on a von Neumann algebra \mathcal{D} is always of the form $\mathcal{D} = B(\mathcal{H}) \oplus \mathcal{N}$ and $\rho(a \oplus x) = \langle a\xi, \xi \rangle$ for a unit vector $\xi \in \mathcal{H}$.

Examples of extreme quantum symmetric states

- free product states $\psi = *_1^{\infty} \phi$ for $\phi \in S(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(QSS(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = \mathbf{C} \oplus L^{\infty}([0, 1]).$

Let $\operatorname{TQSS}(A)$ be the set of all $\psi \in \operatorname{QSS}(A)$ that are traces on $\mathfrak{A} = *_1^{\infty} A$ and let $\partial_e(\operatorname{TQSS}(A))$ be the set of extreme points of $\operatorname{TQSS}(A)$.

Theorem

Let $\psi \in \mathrm{TQSS}(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Let $R(E) = \{\tau \in TS(\mathcal{D}) \mid \tau \circ E \in TS(\mathcal{B})\}$. Then $\psi \in \partial_e(\mathrm{TQSS}(A))$ if and only if ρ is an extreme point of R(E).

Let $\operatorname{TQSS}(A)$ be the set of all $\psi \in \operatorname{QSS}(A)$ that are traces on $\mathfrak{A} = *_1^{\infty} A$ and let $\partial_e(\operatorname{TQSS}(A))$ be the set of extreme points of $\operatorname{TQSS}(A)$.

Theorem

Let $\psi \in \mathrm{TQSS}(A)$ correspond to $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$. Let $R(E) = \{\tau \in TS(\mathcal{D}) \mid \tau \circ E \in TS(\mathcal{B})\}$. Then $\psi \in \partial_e(\mathrm{TQSS}(A))$ if and only if ρ is an extreme point of R(E).

Corollary

If either \mathcal{D} or \mathcal{B} is a factor, then $\psi \in \partial_e(\mathrm{TQSS}(A))$.

Examples of extreme tracial quantum symmetric states

Corollary

If either \mathcal{D} or \mathcal{B} is a factor, then $\psi \in \partial_e(\mathrm{TQSS}(A))$.

Corollary

If either \mathcal{D} or \mathcal{B} is a factor, then $\psi \in \partial_e(\mathrm{TQSS}(A))$.

Some examples of extreme tracial quantum symmetric states

- free product traces $\psi = *_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\mathrm{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = M_2(\mathbf{C})$,

Corollary

If either \mathcal{D} or \mathcal{B} is a factor, then $\psi \in \partial_e(\mathrm{TQSS}(A))$.

Some examples of extreme tracial quantum symmetric states

- free product traces $\psi = *_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\mathrm{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = M_2(\mathbf{C})$, so tail algebras can be noncommutative also when $A = \mathbf{C} \oplus \mathbf{C}$.

Corollary

If either \mathcal{D} or \mathcal{B} is a factor, then $\psi \in \partial_e(\mathrm{TQSS}(A))$.

Some examples of extreme tracial quantum symmetric states

- free product traces $\psi = *_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\mathrm{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = M_2(\mathbf{C})$, so tail algebras can be noncommutative also when $A = \mathbf{C} \oplus \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\mathrm{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = \mathbf{C} \oplus \mathbf{C}$ and $\mathcal{B} = M_2(\mathbf{C}) \oplus M_2(\mathbf{C})$,

Corollary

If either \mathcal{D} or \mathcal{B} is a factor, then $\psi \in \partial_e(\mathrm{TQSS}(A))$.

Some examples of extreme tracial quantum symmetric states

- free product traces $\psi = *_1^{\infty} \tau$ for $\tau \in TS(A)$; these correspond to $\mathcal{D} = \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\mathrm{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = M_2(\mathbf{C})$, so tail algebras can be noncommutative also when $A = \mathbf{C} \oplus \mathbf{C}$.
- we construct an example $\psi \in \partial_e(\mathrm{TQSS}(\mathbf{C} \oplus \mathbf{C}))$ with $\mathcal{D} = \mathbf{C} \oplus \mathbf{C}$ and $\mathcal{B} = M_2(\mathbf{C}) \oplus M_2(\mathbf{C})$, so extreme tracial quantum symmetric states can occur when neither \mathcal{B} nor \mathcal{D} is a factor.

Central quantum symmetric states

 $\operatorname{ZQSS}(A) =$ the set of all $\psi \in \operatorname{QSS}(A)$ whose tail algebra \mathcal{T}_{ψ} lies in the center of \mathcal{M}_{ψ} .

 $ZTQSS(A) = ZQSS(A) \cap TQSS(A)$, the tracial central quantum symmetric states.

Central quantum symmetric states

 $\operatorname{ZQSS}(A) =$ the set of all $\psi \in \operatorname{QSS}(A)$ whose tail algebra \mathcal{T}_{ψ} lies in the center of \mathcal{M}_{ψ} .

 $ZTQSS(A) = ZQSS(A) \cap TQSS(A)$, the tracial central quantum symmetric states.

Theorem

Both ZQSS(A) and ZTQSS(A) are compact, convex subsets of QSS(A) and both are Choquet simplices. Their extreme points are, respectively, the free product states and the free product traces:

$$\partial_e(\operatorname{ZQSS}(A)) = \{ *_1^\infty \phi \mid \phi \in S(A) \},\\ \partial_e(\operatorname{ZTQSS}(A)) = \{ *_1^\infty \tau \mid \tau \in TS(A) \}.$$

The previous result is in the spirit of Størmer's result; it says that each central quantum symmetric state ψ can be written as an integral

$$\psi = \int_{S(A)} (*_1^{\infty} \phi) \, d\mu(\phi)$$

of free product states for a *unique* Borel probability measure μ on S(A), and in the case that ψ is a trace, $\operatorname{supp}(\mu) \subseteq TS(A)$.

The previous result is in the spirit of Størmer's result; it says that each central quantum symmetric state ψ can be written as an integral

$$\psi = \int_{S(A)} (*_1^{\infty} \phi) \, d\mu(\phi)$$

of free product states for a *unique* Borel probability measure μ on S(A), and in the case that ψ is a trace, $\operatorname{supp}(\mu) \subseteq TS(A)$.

Open problem

Is TQSS(A) a Choquet simplex?

Proof that ZQSS(A) is closed and that $\partial_e(ZQSS(A)) = \{*_1^{\infty}\phi \mid \phi \in S(A)\}.$

Step 1

Note that $\phi\mapsto *_1^\infty \phi$ is a homeomorphism from S(A) into $\partial_e(\mathrm{QSS}(A)).$

Step 2

Show $\operatorname{ZQSS}(A) \subseteq \operatorname{\overline{conv}}\{*_1^\infty \phi \mid \phi \in S(A)\}.$

If $\psi \in \operatorname{ZQSS}(A)$ comes from $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, then \mathcal{D} lies in the center of \mathcal{B} , so ρ is a state on $\mathcal{D} \cong C(X)$ and is approximately a convex combination of point masses. Using a result from [D., Köstler], each (point mass) $\circ E \circ *_1^{\infty} \sigma : \mathfrak{A} \to \mathbf{C}$ is a free product state of the form $*_1^{\infty} \phi$.

Step 3

Show $\operatorname{ZQSS}(A) \supseteq \operatorname{\overline{conv}} \{ *_1^{\infty} \phi \mid \phi \in S(A) \}.$

It is easy to see $\operatorname{ZQSS}(A) \supseteq \operatorname{conv} \{ *_1^{\infty} \phi \mid \phi \in S(A) \}$. But even if $\psi_i \in \operatorname{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of ψ ?

Step 3

Show $\operatorname{ZQSS}(A) \supseteq \operatorname{\overline{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

It is easy to see $\operatorname{ZQSS}(A) \supseteq \operatorname{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}$. But even if $\psi_i \in \operatorname{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of ψ ?

We don't answer this general question. Instead, since $\{*_1^{\infty}\phi \mid \phi \in S(A)\}$ is compact, for every $\psi \in \overline{\operatorname{conv}}\{*_1^{\infty}\phi \mid \phi \in S(A)\}$ there is a *Borel* probability measure μ on S(A) such that $\psi(x) = \int_{S(A)} (*_1^{\infty}\phi)(x) d\mu(\phi).$

Step 3

Show $\operatorname{ZQSS}(A) \supseteq \operatorname{\overline{conv}} \{ *_1^{\infty} \phi \mid \phi \in S(A) \}.$

It is easy to see $\operatorname{ZQSS}(A) \supseteq \operatorname{conv}\{*_1^{\infty}\phi \mid \phi \in S(A)\}$. But even if $\psi_i \in \operatorname{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of ψ ?

We don't answer this general question. Instead, since $\{*_1^{\infty}\phi \mid \phi \in S(A)\}$ is compact, for every $\psi \in \overline{\operatorname{conv}}\{*_1^{\infty}\phi \mid \phi \in S(A)\}$ there is a *Borel* probability measure μ on S(A) such that $\psi(x) = \int_{S(A)} (*_1^{\infty}\phi)(x) d\mu(\phi)$. Now we perform an amalgamated free product over C(S(A)) and use a technical convergence result from [Abadie, D. '09] to realize ψ in a way that makes clear that the tail algebra is in the center.

Step 3

Show $\operatorname{ZQSS}(A) \supseteq \operatorname{\overline{conv}} \{ *_1^{\infty} \phi \mid \phi \in S(A) \}.$

It is easy to see $\operatorname{ZQSS}(A) \supseteq \operatorname{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}$. But even if $\psi_i \in \operatorname{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of ψ ?

We don't answer this general question. Instead, since $\{*_1^\infty\phi\mid\phi\in S(A)\}$ is compact, for every $\psi\in\overline{\mathrm{conv}}\{*_1^\infty\phi\mid\phi\in S(A)\}$ there is a *Borel* probability measure μ on S(A) such that $\psi(x)=\int_{S(A)}(*_1^\infty\phi)(x)\,d\mu(\phi)$. Now we perform an amalgamated free product over C(S(A)) and use a technical convergence result from [Abadie, D. '09] to realize ψ in a way that makes clear that the tail algebra is in the center.

These three steps show $\operatorname{ZQSS}(A)$ is compact, convex and $\partial_e(\operatorname{ZQSS}(A)) = \{ *_1^{\infty} \phi \mid \phi \in S(A) \}.$

Step 3

Show $\operatorname{ZQSS}(A) \supseteq \operatorname{\overline{conv}}\{*_1^{\infty} \phi \mid \phi \in S(A)\}.$

It is easy to see $\operatorname{ZQSS}(A) \supseteq \operatorname{conv}\{*_1^\infty \phi \mid \phi \in S(A)\}$. But even if $\psi_i \in \operatorname{QSS}(A)$ and $\psi_i \to \psi$ and we understand the tail algebras of each ψ_i , how do we understand the tail algebra of ψ ?

We don't answer this general question. Instead, since $\{*_1^\infty\phi\mid\phi\in S(A)\}$ is compact, for every $\psi\in\overline{\mathrm{conv}}\{*_1^\infty\phi\mid\phi\in S(A)\}$ there is a *Borel* probability measure μ on S(A) such that $\psi(x)=\int_{S(A)}(*_1^\infty\phi)(x)\,d\mu(\phi)$. Now we perform an amalgamated free product over C(S(A)) and use a technical convergence result from [Abadie, D. '09] to realize ψ in a way that makes clear that the tail algebra is in the center.

Proof that ZQSS(A) is a Choquet simplex.

As remarked earlier, since $\partial_e(\operatorname{ZQSS}(A)) = \{*_1^\infty \phi \mid \phi \in S(A)\}\)$ is compact, for every $\psi \in \operatorname{ZQSS}(A)$ there is a Borel probability measure μ on S(A) so that

$$\psi(x) = \int_{S(A)} (*_1^{\infty} \phi)(x) \, d\mu(\phi)$$

for every $x \in \mathfrak{A} = *_1^{\infty} A$. Suppose ν is another such measure. We must show $\mu = \nu$.

Proof that ZQSS(A) is a Choquet simplex.

As remarked earlier, since $\partial_e(\operatorname{ZQSS}(A)) = \{*_1^\infty \phi \mid \phi \in S(A)\}\)$ is compact, for every $\psi \in \operatorname{ZQSS}(A)$ there is a Borel probability measure μ on S(A) so that

$$\psi(x) = \int_{S(A)} (*_1^{\infty} \phi)(x) \, d\mu(\phi)$$

for every $x \in \mathfrak{A} = *_1^{\infty} A$. Suppose ν is another such measure. We must show $\mu = \nu$.

If $\lambda_i : A \to *_1^{\infty} A$ is the embedding to the *i*-th copy, then $(*_1^{\infty} \phi)(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \prod_1^k \phi(a_j)$, so

$$\int_{S(A)} \prod_{1}^{k} \phi(a_j) \, d\mu(\phi) = \psi(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \int_{S(A)} \prod_{1}^{k} \phi(a_j) \, d\nu(\phi).$$

Proof that ZQSS(A) is a Choquet simplex.

As remarked earlier, since $\partial_e(\operatorname{ZQSS}(A)) = \{*_1^\infty \phi \mid \phi \in S(A)\}\)$ is compact, for every $\psi \in \operatorname{ZQSS}(A)$ there is a Borel probability measure μ on S(A) so that

$$\psi(x) = \int_{S(A)} (*_1^{\infty} \phi)(x) \, d\mu(\phi)$$

for every $x\in\mathfrak{A}=\ast_1^\infty A.$ Suppose ν is another such measure. We must show $\mu=\nu.$

If $\lambda_i : A \to *_1^{\infty} A$ is the embedding to the *i*-th copy, then $(*_1^{\infty} \phi)(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \prod_1^k \phi(a_j)$, so

$$\int_{S(A)} \prod_{1}^{k} \phi(a_j) \, d\mu(\phi) = \psi(\lambda_1(a_1) \cdots \lambda_k(a_k)) = \int_{S(A)} \prod_{1}^{k} \phi(a_j) \, d\nu(\phi).$$

Thus, the linear functionals $\int \cdot d\mu$ and $\int \cdot d\mu$ agree on the closed subalgebra of C(S(A)) generated by the evaluations $\phi \mapsto \phi(a)$, $(a \in A)$. By Stone–Weierstrass $\mu = \nu$. QED

Dykema (TAMU)

Proof that $\operatorname{ZTQSS}(A)$ is a Choquet simplex and $\partial_e(\operatorname{ZTQSS}(A)) = \{*_1^{\infty} \tau \mid \tau \in TS(A)\}.$

Recall $\operatorname{ZTQSS}(A) = \operatorname{ZQSS}(A) \cap TS(\mathfrak{A})$. Suppose $\psi \in \operatorname{ZTQSS}(A)$ and μ is the (unique) Borel measure on S(A) such that $\psi = \int_{S(A)} (*_1^{\infty} \phi) d\mu(\phi)$. It will suffice to show $\operatorname{supp}(\mu) \subseteq TS(A)$.

Proof that $\operatorname{ZTQSS}(A)$ is a Choquet simplex and $\partial_e(\operatorname{ZTQSS}(A)) = \{*_1^{\infty} \tau \mid \tau \in TS(A)\}.$

Recall $\operatorname{ZTQSS}(A) = \operatorname{ZQSS}(A) \cap TS(\mathfrak{A})$. Suppose $\psi \in \operatorname{ZTQSS}(A)$ and μ is the (unique) Borel measure on S(A) such that $\psi = \int_{S(A)} (*_1^{\infty} \phi) d\mu(\phi)$. It will suffice to show $\operatorname{supp}(\mu) \subseteq TS(A)$.

Let $a \in A ||a|| \leq 1$ and let ω denote the push-forward measure of μ under the map $S(A) \to [0,1]^2$ given by $\phi \mapsto (\phi(a^*a), \phi(aa^*))$. It will suffice to show that the support of ω lies in the diagonal.

Recall $|a| = (a^*a)^{1/2}$ and $|a^*| = (aa^*)^{1/2}$. Let $x = \lambda_1(|a|)\lambda_2(a)$ and $y = \lambda_1(|a^*|)\lambda_2(a^*)$. Then for all $\phi \in S(A)$,

$$\begin{aligned} (*_1^{\infty}\phi)(x^*x) &= \phi(a^*a)^2, \qquad (*_1^{\infty}\phi)(xx^*) = \phi(a^*a)\phi(aa^*), \\ (*_1^{\infty}\phi)(y^*y) &= \phi(aa^*)^2, \qquad (*_1^{\infty}\phi)(yy^*) = \phi(a^*a)\phi(aa^*). \end{aligned}$$

Recall $|a| = (a^*a)^{1/2}$ and $|a^*| = (aa^*)^{1/2}$. Let $x = \lambda_1(|a|)\lambda_2(a)$ and $y = \lambda_1(|a^*|)\lambda_2(a^*)$. Then for all $\phi \in S(A)$,

$$\begin{aligned} (*_1^{\infty}\phi)(x^*x) &= \phi(a^*a)^2, \qquad (*_1^{\infty}\phi)(xx^*) = \phi(a^*a)\phi(aa^*), \\ (*_1^{\infty}\phi)(y^*y) &= \phi(aa^*)^2, \qquad (*_1^{\infty}\phi)(yy^*) = \phi(a^*a)\phi(aa^*). \end{aligned}$$

Thus, we have

$$\begin{split} &\int_{[0,1]^2} s^2 \, d\omega(s,t) = \psi(x^*x) = \psi(xx^*) = \int_{[0,1]^2} st \, d\omega(s,t), \\ &\int_{[0,1]^2} t^2 \, d\omega(s,t) = \psi(y^*y) = \psi(yy^*) = \int_{[0,1]^2} st \, d\omega(s,t). \end{split}$$

From these identities, we get $\int (s-t)^2 d\omega(s,t) = 0$ and we conclude that the support of ω lies in the diagonal of $[0,1]^2$.

Recall $|a| = (a^*a)^{1/2}$ and $|a^*| = (aa^*)^{1/2}$. Let $x = \lambda_1(|a|)\lambda_2(a)$ and $y = \lambda_1(|a^*|)\lambda_2(a^*)$. Then for all $\phi \in S(A)$,

$$\begin{aligned} (*_1^{\infty}\phi)(x^*x) &= \phi(a^*a)^2, \qquad (*_1^{\infty}\phi)(xx^*) = \phi(a^*a)\phi(aa^*), \\ (*_1^{\infty}\phi)(y^*y) &= \phi(aa^*)^2, \qquad (*_1^{\infty}\phi)(yy^*) = \phi(a^*a)\phi(aa^*). \end{aligned}$$

Thus, we have

$$\begin{split} &\int_{[0,1]^2} s^2 \, d\omega(s,t) = \psi(x^*x) = \psi(xx^*) = \int_{[0,1]^2} st \, d\omega(s,t), \\ &\int_{[0,1]^2} t^2 \, d\omega(s,t) = \psi(y^*y) = \psi(yy^*) = \int_{[0,1]^2} st \, d\omega(s,t). \end{split}$$

From these identities, we get $\int (s-t)^2 d\omega(s,t) = 0$ and we conclude that the support of ω lies in the diagonal of $[0,1]^2$. QED

[dF37] B. de Finetti, "La prevision: ses lois logiques, ses sources subjectives," *Ann. Inst. H. Poincaré* (1937).

[St69] E. Størmer, "Symmetric states of infinite tensor products of C*-algebras," *J. Funct. Anal.* (1969).

[W98] S. Wang, "Quantum symmetry groups of finite spaces," *Comm. Math. Phys.* (1998).

[KSp09] C. Köstler, R. Speicher, "A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation," *Comm. Math. Phys.* (2009).

[C09] S. Curran, "Quantum exchangeable sequences of algebras," *Indiana Univ. Math. J.* (2009).

[AD09] B. Abadie, K. Dykema, "Unique ergodicity of free shifts and some other automorphisms of C*-algebras," *J. Operator Theory* 61 (2009).

[DK] K. Dykema, C. Köstler, "Tail algebras of quantum exchangeable random variables," *Proc. Amer. Math. Soc.* (to appear), arXiv 1202.4749.

[DKW] K. Dykema, C. Köstler, J. Williams, "Quantum symmetric states on universal free product C*-algebras," arXiv:1305.7293.

[AD09] B. Abadie, K. Dykema, "Unique ergodicity of free shifts and some other automorphisms of C*-algebras," *J. Operator Theory* 61 (2009).

[DK] K. Dykema, C. Köstler, "Tail algebras of quantum exchangeable random variables," *Proc. Amer. Math. Soc.* (to appear), arXiv 1202.4749.

[DKW] K. Dykema, C. Köstler, J. Williams, "Quantum symmetric states on universal free product C*-algebras," arXiv:1305.7293. *** Thanks for listening! ***