Supports of measures in a free additive convolution semigroups

Hao-Wei Huang

Queen's University

Fields Institute free probability workshop, July 23 2013

イロン イヨン イヨン イヨン

イロト イヨト イヨト イヨト

æ

Free convolution

Given probability measures μ and ν on \mathbb{R} , $\mu \boxplus \nu$ is the distribution of X + Y, where X and Y are free selfadjoint operators with respective distributions μ and ν .

(1) マン・ション・

Function theory

 μ : Borel probability measure on \mathbb{R} .

イロン イヨン イヨン イヨン

æ

Function theory

۲

 μ : Borel probability measure on \mathbb{R} .

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-s} \; d\mu(s), \hspace{0.5cm} z \in \mathbb{C}^+,$$

Cauchy transform of $\boldsymbol{\mu}$ is one-to-one in some truncated cone

$$\Gamma_{\alpha,\beta} = \{ x + iy \in \mathbb{C}^+ : y > \alpha, \ |x| \le \beta y \}.$$

 G_{μ}^{-1} : the inverse of G_{μ} .

・ 回 と ・ ヨ と ・ ヨ と

Function theory

٥

 μ : Borel probability measure on \mathbb{R} .

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-s} \; d\mu(s), \hspace{0.5cm} z \in \mathbb{C}^+,$$

Cauchy transform of $\boldsymbol{\mu}$ is one-to-one in some truncated cone

$$\Gamma_{\alpha,\beta} = \{ x + iy \in \mathbb{C}^+ : y > \alpha, \ |x| \le \beta y \}.$$

 G_{μ}^{-1} : the inverse of G_{μ} .

• Reciprocal Cauchy transform of μ : $F_{\mu} = 1/G_{\mu}$.

▲圖▶ ★ 国▶ ★ 国▶

Function theory

 μ : Borel probability measure on \mathbb{R} .

(

$$G_\mu(z) = \int_{\mathbb{R}} rac{1}{z-s} \; d\mu(s), \hspace{0.5cm} z \in \mathbb{C}^+,$$

Cauchy transform of $\boldsymbol{\mu}$ is one-to-one in some truncated cone

$$\Gamma_{\alpha,\beta} = \{ x + iy \in \mathbb{C}^+ : y > \alpha, \ |x| \le \beta y \}.$$

 G_{μ}^{-1} : the inverse of G_{μ} .

- Reciprocal Cauchy transform of μ : $F_{\mu} = 1/G_{\mu}$.
- Voiculesce transform: $\mathcal{R}_{\mu}(z) = G_{\mu}^{-1}(z) 1/z$, $z \in \Gamma_{\alpha,\beta}$ is a linearizing transform for \boxplus , i.e.,

$$\mathcal{R}_{\mu\boxplus
u} = \mathcal{R}_{\mu} + \mathcal{R}_{
u}$$

(日) (同) (E) (E) (E)

Introduction

Subordination functions for free convolution (Biane)

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Introduction

Subordination functions for free convolution (Biane)

• μ, ν : Borel probability measures on \mathbb{R} . There exist analytic functions $\omega_1, \omega_2 : \mathbb{C}^+ \to \mathbb{C}^+$ such that

$$G_{\mu\boxplus
u}=G_{\mu}\circ\omega_1=G_{
u}\circ\omega_2.$$

(日) (同) (E) (E) (E)

Introduction

Subordination functions for free convolution (Biane)

• μ, ν : Borel probability measures on \mathbb{R} . There exist analytic functions $\omega_1, \omega_2 : \mathbb{C}^+ \to \mathbb{C}^+$ such that

$$G_{\mu\boxplus\nu} = G_{\mu} \circ \omega_1 = G_{\nu} \circ \omega_2.$$

• The functions ω_j , j=1,2, are uniquely determined and satisfy

$$\lim_{y\to+\infty}\frac{\omega_j(iy)}{iy}=1.$$

Free convolution semigroup $\{\mu^{\boxplus t} : t \ge 1\}$

Hao-Wei Huang Supports of measures in a free additive convolution semigroups

・ロン ・回と ・ヨン・

æ

 Any probability measure μ generates a discrete free convolution semigroup {μ^{⊞n} : n ∈ ℕ} of probability measures.

(4月) (4日) (4日)

- Any probability measure μ generates a discrete free convolution semigroup {μ^{⊞n} : n ∈ ℕ} of probability measures.
- This semigroup can be continuously imbedded into the free convolution semigroup {µ^{⊞t} : t ≥ 1} of probability measures.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Any probability measure μ generates a discrete free convolution semigroup {μ^{⊞n} : n ∈ ℕ} of probability measures.
- This semigroup can be continuously imbedded into the free convolution semigroup {µ^{⊞t} : t ≥ 1} of probability measures.
- This was first proposed by Bercovici and Voiculescu in their study of the free central limit theorem.

- Any probability measure μ generates a discrete free convolution semigroup {μ^{⊞n} : n ∈ ℕ} of probability measures.
- This semigroup can be continuously imbedded into the free convolution semigroup {µ^{⊞t} : t ≥ 1} of probability measures.
- This was first proposed by Bercovici and Voiculescu in their study of the free central limit theorem.
- The existence of $\{\mu^{\boxplus t} : t \ge 1\}$ was proved by Nica and Speicher for μ with compact support.

- Any probability measure μ generates a discrete free convolution semigroup {μ^{⊞n} : n ∈ ℕ} of probability measures.
- This semigroup can be continuously imbedded into the free convolution semigroup {µ^{⊞t} : t ≥ 1} of probability measures.
- This was first proposed by Bercovici and Voiculescu in their study of the free central limit theorem.
- The existence of $\{\mu^{\boxplus t} : t \ge 1\}$ was proved by Nica and Speicher for μ with compact support.
- Later, Belinschi and Bercovici gave another proof of the existence of the full generalization by using subordination result and Denjoy-Wolff points.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Fix a Borel probability measure μ and let t > 1. Consider the analytic function $H_t(z) = tz + (1 - t)F_{\mu}(z) : \mathbb{C}^+ \to \mathbb{C}^+$

- 4 同 6 4 日 6 4 日 6

Fix a Borel probability measure μ and let t > 1. Consider the analytic function $H_t(z) = tz + (1 - t)F_{\mu}(z) : \mathbb{C}^+ \to \mathbb{C}^+$

Ω_t = {z ∈ C⁺ℑH_t(z) > 0} is a simply connected domain whose boundary is a simple curve.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fix a Borel probability measure μ and let t > 1. Consider the analytic function $H_t(z) = tz + (1 - t)F_{\mu}(z) : \mathbb{C}^+ \to \mathbb{C}^+$

- Ω_t = {z ∈ C⁺ℑH_t(z) > 0} is a simply connected domain whose boundary is a simple curve.
- continuous function $\omega_t : \mathbb{C}^+ \cup \mathbb{R} \to \mathbb{C}^+ \cup \mathbb{R}$ such that $\omega_t(\mathbb{C}^+) \subset \mathbb{C}^+$, $\omega_t | \mathbb{C}^+$ is analytic, and $H_t(\omega_t(z)) = z$, $z \in \mathbb{C}^+$.

Fix a Borel probability measure μ and let t > 1. Consider the analytic function $H_t(z) = tz + (1 - t)F_{\mu}(z) : \mathbb{C}^+ \to \mathbb{C}^+$

- Ω_t = {z ∈ C⁺ℑH_t(z) > 0} is a simply connected domain whose boundary is a simple curve.
- continuous function $\omega_t : \mathbb{C}^+ \cup \mathbb{R} \to \mathbb{C}^+ \cup \mathbb{R}$ such that $\omega_t(\mathbb{C}^+) \subset \mathbb{C}^+$, $\omega_t | \mathbb{C}^+$ is analytic, and $H_t(\omega_t(z)) = z$, $z \in \mathbb{C}^+$.
- We have

$$F_{\mu^{\boxplus t}} = F_{\mu} \circ \omega_t.$$

イロト イボト イヨト イヨト 二日

Regularity properties for $\mu^{\boxplus t}$

イロン イヨン イヨン イヨン

æ

Regularity properties for $\mu^{\boxplus t}$

 Lebesgue decomposition of µ^{⊞t}: contains only absolutely continuous and atomic parts.

・ロト ・回ト ・ヨト ・ヨト

Regularity properties for $\mu^{\boxplus t}$

- Lebesgue decomposition of $\mu^{\boxplus t}$: contains only absolutely continuous and atomic parts.
- Density of $\mu^{\boxplus t}$: analytic wherever it is positive.

Regularity properties for $\mu^{\boxplus t}$

- Lebesgue decomposition of μ^{⊞t}: contains only absolutely continuous and atomic parts.
- Density of $\mu^{\boxplus t}$: analytic wherever it is positive.
- $\alpha \in \mathbb{R}$ is an atom of $\mu^{\boxplus t}$ if and only if

$$\mu(\{\alpha/t\}) > 1 - t^{-1},$$

in which case

$$\mu^{\boxplus t}(\{\alpha\}) = t\mu(\{\alpha/t\}) - 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let
$$H_t(z) = tz - (t-1)F_{\mu}(z)$$
, $z \in \mathbb{C}^+$, and let $\Omega_t = \{z \in \mathbb{C}^+ : \Im H_t(z) > 0\}$ be as before.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let
$$H_t(z) = tz - (t-1)F_{\mu}(z)$$
, $z \in \mathbb{C}^+$, and let $\Omega_t = \{z \in \mathbb{C}^+ : \Im H_t(z) > 0\}$ be as before.

Theorem

(1) Boundary $\partial \Omega_t$: the graph of some continuous function f_t .

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let
$$H_t(z) = tz - (t-1)F_\mu(z)$$
, $z \in \mathbb{C}^+$, and let $\Omega_t = \{z \in \mathbb{C}^+ : \Im H_t(z) > 0\}$ be as before.

Theorem

Boundary ∂Ω_t: the graph of some continuous function f_t.
 H_t is a conformal mapping from Ω_t onto C⁺ and is a homeomorphism from Ω_t onto C⁺ ∪ R.

(日) (同) (E) (E) (E)

Let
$$H_t(z) = tz - (t-1)F_\mu(z)$$
, $z \in \mathbb{C}^+$, and let $\Omega_t = \{z \in \mathbb{C}^+ : \Im H_t(z) > 0\}$ be as before.

Theorem

Boundary ∂Ω_t: the graph of some continuous function f_t.
 H_t is a conformal mapping from Ω_t onto C⁺ and is a homeomorphism from Ω_t onto C⁺ ∪ ℝ.
 F_μ has a continuous extension to Ω_t which is Lipschitz continuous.

(日) (同) (E) (E) (E)

Let
$$H_t(z) = tz - (t-1)F_\mu(z)$$
, $z \in \mathbb{C}^+$, and let $\Omega_t = \{z \in \mathbb{C}^+ : \Im H_t(z) > 0\}$ be as before.

Theorem

(1) Boundary $\partial \Omega_t$: the graph of some continuous function f_t . (2) H_t is a conformal mapping from Ω_t onto \mathbb{C}^+ and is a homeomorphism from $\overline{\Omega}_t$ onto $\mathbb{C}^+ \cup \mathbb{R}$. (2) \overline{D}_t has a continuous extension to $\overline{\Omega}$ which is Lipschitz.

(3) F_{μ} has a continuous extension to $\overline{\Omega}_t$ which is Lipschitz continuous.

(4) $\psi_t(x) = H_t(x + if_t(x))$ is a homeomorphism on \mathbb{R} .

イロン イ部ン イヨン イヨン 三日

Let
$$H_t(z)=tz-(t-1)F_\mu(z),\ z\in\mathbb{C}^+$$
, and let $\Omega_t=\{z\in\mathbb{C}^+:\Im H_t(z)>0\}$ be as before.

Theorem

(1) Boundary $\partial \Omega_t$: the graph of some continuous function f_t . (2) H_t is a conformal mapping from Ω_t onto \mathbb{C}^+ and is a homeomorphism from $\overline{\Omega}_t$ onto $\mathbb{C}^+ \cup \mathbb{R}$.

(3) F_{μ} has a continuous extension to $\overline{\Omega}_t$ which is Lipschitz continuous.

(4) $\psi_t(x) = H_t(x + if_t(x))$ is a homeomorphism on \mathbb{R} . (5) Density of $(\mu^{\boxplus t})^{\mathrm{ac}}$ is given by

$$\frac{d(\mu^{\boxplus t)^{\rm ac}}}{dx}(\psi_t(x)) = \frac{t(t-1)f_t(x)}{\pi |tx - \psi_t(x) + itf_t(x)|^2} \sim \frac{f_t(x)}{\pi (x^2 + f_t^2(x))}, \ x \in \mathbb{R}.$$

Main results

Support of $\mu^{\boxplus t}$

Hao-Wei Huang Supports of measures in a free additive convolution semigroups

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Main results

Support of $\mu^{\boxplus t}$

(1) Support of $\mu^{\boxplus t}$ is completely determined by $\partial \Omega_t$.

Hao-Wei Huang Supports of measures in a free additive convolution semigroups

Main results

Support of $\mu^{\boxplus t}$

(1) Support of $\mu^{\boxplus t}$ is completely determined by $\partial \Omega_t$. (2) $\Omega_{t_2} \subset \Omega_{t_1}$ for $1 < t_1 < t_2$.

< □ > < @ > < 注 > < 注 > ... 注

Main results

Support of $\mu^{\boxplus t}$

(1) Support of $\mu^{\boxplus t}$ is completely determined by $\partial \Omega_t$. (2) $\Omega_{t_2} \subset \Omega_{t_1}$ for $1 < t_1 < t_2$. (3) The number of the components in $\operatorname{supp}(\mu^{\boxplus t})$ is

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Main results

Support of $\mu^{\boxplus t}$

(1) Support of $\mu^{\boxplus t}$ is completely determined by $\partial \Omega_t$.

(2) $\Omega_{t_2} \subset \Omega_{t_1}$ for $1 < t_1 < t_2$.

(3) The number of the components in $\operatorname{supp}(\mu^{\boxplus t})$ is at most countable for all t and is a non-increasing function of t.

n(t): number of components in $\operatorname{supp}(\mu^{\boxplus t})$.

・ロン ・回と ・ヨン ・ヨン

n(t): number of components in $supp(\mu^{\boxplus t})$.

• Is $\lim_{t\to\infty} n(t) = 1$?

(日) (四) (王) (王) (王)

n(t): number of components in $\operatorname{supp}(\mu^{\boxplus t})$.

• Is $\lim_{t\to\infty} n(t) = 1$?

Equivalent conditions

 S_b : the set of all bounded components in $\mathbb{R}\setminus \operatorname{supp}(\mu)$. TFAE:

(日) (同) (E) (E) (E)

n(t): number of components in $\operatorname{supp}(\mu^{\boxplus t})$.

• Is
$$\lim_{t \to \infty} n(t) = 1?$$

Equivalent conditions

 S_b : the set of all bounded components in $\mathbb{R}\setminus \text{supp}(\mu)$. TFAE: (1) n(t) = 1 for large t;

・ 回 と ・ ヨ と ・ ヨ と

n(t): number of components in $\operatorname{supp}(\mu^{\boxplus t})$.

• Is
$$\lim_{t \to \infty} n(t) = 1?$$

Equivalent conditions

 S_b : the set of all bounded components in $\mathbb{R}\setminus \text{supp}(\mu)$. TFAE: (1) n(t) = 1 for large t; (2) $n(t) < \infty$ for some t > 1;

(4回) (1日) (日)

n(t): number of components in $\operatorname{supp}(\mu^{\boxplus t})$.

• Is
$$\lim_{t \to \infty} n(t) = 1?$$

Equivalent conditions

 S_b : the set of all bounded components in $\mathbb{R} \setminus \operatorname{supp}(\mu)$. TFAE: (1) n(t) = 1 for large t; (2) $n(t) < \infty$ for some t > 1; (3) either $S_b = \emptyset$ or we have $S_b \neq \emptyset$ and $\inf \int \frac{G'_{\mu}(x)}{x} : x \in I > 0$

$$\inf_{I\in S_b}\left\{\frac{\mathrm{d}_{\mu}(x)}{G_{\mu}^2(x)}:x\in I\right\}>0.$$

n(t): number of components in $\operatorname{supp}(\mu^{\boxplus t})$.

• Is
$$\lim_{t \to \infty} n(t) = 1?$$

Equivalent conditions

 S_b : the set of all bounded components in $\mathbb{R} \setminus \operatorname{supp}(\mu)$. TFAE: (1) n(t) = 1 for large t; (2) $n(t) < \infty$ for some t > 1; (3) either $S_b = \emptyset$ or we have $S_b \neq \emptyset$ and $i \in \left(G'_{\mu}(x) - \mu \right) = 0$

$$\inf_{I\in S_b}\left\{\frac{G_{\mu}(x)}{G_{\mu}^2(x)}:x\in I\right\}>0.$$

Example: μ is compactly supported $\Rightarrow n(t) = 1$ for large t.

イロト イボト イヨト イヨト 二日

Counterexample

• For any Borel probability measure ν there exists a unique measure μ with mean zero and unit variance such that

$$\mathcal{F}_{\mu}(z)=z-\mathcal{G}_{
u}(z), \ \ z\in\mathbb{C}^+.$$

$n(t) = \infty$ for all t > 1

Consider the measure

$$\nu=\sum_{n=1}^{\infty}2^{-n}\delta_{2^n}.$$

Then $\mu^{\boxplus t}$ contains infinitely many numbers of components in the support.

э

(Huang, Zhong, 2013) Similar results hold for the free multiplicative semigroup $\{\mu^{\boxtimes t} : t \ge 1\}$.

・ロト ・回ト ・ヨト ・ヨト

Thank You!

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ