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The Amalgamated Free Product

Definition
We say that von Neumann algebras A and B are free with
amalgamation over a subalgebra D in some larger algebra M with
trace preserving conditional expectation onto D if
ED(x1x2 . . . xn) = 0 whenever ED(xi ) = 0 for all i and the xi

alternate between A and B.

Definition
The amalgamated free product of two von Neumann algebras A
and B over common subalgebra D, A ∗D B, is a von Neumann
algebra generated by A and B so that A and B are free with
amalgamation D in A ∗D B.
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Hyperfinite von Neumann Algebras

A Hyperfinite von Neumann algebra is a von Neumann algebras
which contain an ascending sequence of finite dimensional
subalgebras whose union is WOT dense in it. We will additionally
assume that it is semifinite.

Semifinite hyperfinite von Neumann algebras can be written as the
direct sum of the following types of algebras:

I Matrix Algebras

I B(H)

I Matrix Algebras or B(H) tensor L∞(ν), where ν is diffuse and
semifinite.

I R ⊗ L∞(µ), where R is the hyperfinite II1 factor.

I R ⊗ B(H)⊗ L∞(µ).
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In general we will be working with semifinite von Neumann
algebras, with specified trace, and specified trace preserving
expectation onto subalgebra D (where the trace should also be
semifinite). In general our morphisms will be trace preserving.
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Interpolated Free Group Factors

The interpolated free group factors, written as L(Fs) for s > 1
generalize the standard factors generated by the free groups on n
generators.

They have the following properties:

1. If r ∈ Z, 2 ≤ r ≤ ∞ then L(Fr ) is the factor associated to the
free group on r elements.

2. For 1 < r , r ′ ≤ ∞, L(Fr ) ∗ L(Fr ′) = L(Fr+r ′).

3. For 1 < r ≤ ∞ and 0 < γ <∞, L(Fr )γ = L(F1+(r−1)/γ2),
where L(Fr )γ is the compression or dilation of L(Fr ) by γ.
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I R1 (referred to as R in Dykema’s original paper) is the class
of finite von Neumann algebras which are the finite direct sum
of: Matrix algebras, Matrix algebras tensor L∞([0, 1]),
Hyperfinite II1 factors, and interpolated free group factors.

I R2 is the class of finite von Neumann algebras which are the
direct sum of a hyperfinite von Neumann algebra and a finite
number of interpolated free group factors.

I R3 is the class of finite von Neumann algebas which are the
direct sum of a hyperfinite von Neumann algebra and a
countable number of interpolated free group factors.

I R4 is the class of semifinite von Neumann algebras which are
the direct sum of a hyperfinite von Neumann algebra and a
countable number of interpolated free group factors and
B(H)⊗ L(Ft).
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Free Dimension

Definition
Let A be a finite von Neumann algebra in R3 , written in the
following format

A = H ⊕
⊕
i∈I

pi

L(Fri )⊕
⊕
j∈J

Mnj

tj

,

where H is a diffuse hyperfinite algebra, the L(Fri ) are interpolated
free group factors. The free dimension

fdim(A) = 1 +

(∑
i∈I

τ(pi )
2(ri − 1)

)
−
∑
j∈J

t2
j .
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1. For A a diffuse hyperfinite algebra, fdim(A) = 1.

2. For A = L(Fr ), an interpolated free group factor, fdim(A) = r .

3. For A = ⊕j∈JMnj

tj

a multimatrix algebra,

fdim(A) = 1−
∑

j∈J t2
j .

4. For any A, fdim(A) ≥ 0, and fdim(C) = 0.
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Hyperfinite von Neumann Algebras over C

Theorem (Dykema 1993)

The standard free product of two finite hyperfinite von Neumann
algebras A and B is of the form

F ⊕
⊕
i∈I

Mni

where F is an interpolated free group factor or diffuse type I
hyperfinite algebra, and I is finite. Furthermore the
fdim(A ∗ B) = fdim(A) + fdim(B).
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The Amalgamated Free Product of Multimatrix Algebras

Theorem (Dykema 1995)

For A and B multimatrix algebras with subalgebra D, A ∗D B is in
R3, and if D is finite dimensional then it is in R2. Furthermore
fdim(A ∗D B) = fdim(A) + fdim(B)− fdim(D).
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Theorem (Dykema 2011)

R1 is closed under amalgamated free products over finite
dimensional subspaces. They also follow the formula
fdim(A ∗D B) = fdim(A) + fdim(B)− fdim(D).
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Standard Embeddings

Definition
A standard embedding is a unital embedding which includes an
interpolated free group factor into another, L(Ft)→ L(Fs), by
taking a generating set of L(Ft), R ∪ {piXipi}i∈I to a larger
generating set for L(Fs), R ∪ {piXipi}i∈I ′ , where I ⊂ I ′.
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Properties of Standard Embeddings

I For A = L(Fs) and B = L(Fs′), s < s ′, then for φ : A→ B
and projection p ∈ A, φ is standard if and only if
φ|pAp → φ(p)Bφ(p) is standard.

I The inclusion A→ A ∗ B is standard if A is an interpolated
free group factor and B is an interpolated free group factor,
L(Z), or a finite dimensional algebra other than C.

I The composition of standard embeddings is standard.

I For An = L(Fsn), with sn < sn′ if n < n′, and φn : An → An+1

a sequence of standard embeddings, then the inductive limit of
the An with the inclusions φn is L(Fs) where s = limn→∞ sn.
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Theorem (Dykema, R. 2011)

Let A and B be finite hyperfinite von Neumann algebras with finite
dimensional subalgebra D. Then A ∗D B is in R2. Furthermore
fdim(A ∗D B) = fdim(A) + fdim(B)− fdim(D).
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Lemma
If the class we are working over is closed under cutdowns, we can
assume D is abelian without loss of generality.

Proof.

I Find a projection in D which is abelian, but has full central
support.

I Work in the cutdown, then dilate.

Thus we can assume D is abelian, and thus isomorphic to
⊕n

i=1

pD
n

C
tn
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Lemma
Let M be a hyperfinite von Neumann algebra with finite
dimensional abelian subalgebra D. Then there exists a chain of
finite dimensional subalgebras in M containing D whose union is
dense in M.

I Thus we can construct sequences Ai and Bj of finite
dimensional von Neumann algebras approximating A and B

I Thus a sequence M(i , j) = Ai ∗D Bj which approximates
M = A ∗D B.

I Each M(i , j) is the amalgamated free product of multimatrix
algebras over a multimatrix subalgebra.

I Thus we can apply Dykema’s result to determine M(i , j).
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We call an embedding a simple step if it of the following forms:

1. Mn
t
⊕ A→

(⊕m
i=1 Mn

ti

)
⊕ A.

2. Mn
t
⊕Mm

t
⊕ A→ Mn+m

t
⊕ A

Lemma
Let N and M be two finite dimensional von Neumann algebras. A
trace preserving embedding, φ : N →M, can be written as a the
composition of a finite sequence of simple steps.

Assume each step Ai → Ai+1 and Bj → Bj+1 is a simple step.
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Lemma
For a minimal projection p ∈ Mn less than some minimal projection
in D.

p (((Mn ⊗ A)⊕ B) ∗D C ) p ∼= p ((Mn ⊕ B) ∗D C ) p ∗ A

Proof.

I Note the left is generated by p ((Mn ⊕ B) ∗D C ) p and
A ∼= p(Mn ⊗ A)p.

I Play with alternating words to show this is free.

Thus we can assume that if Ai → Ai+1 is a simple step of the first
kind then M(i , j)→M(i , j) is induced by a standard embedding
(possibly with a dialation).
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Lemma
Let N = (Mm⊕Mn⊕B) ∗D C andM = (Mn+m⊕B) ∗D C , where

B, C are semifinite von Neumann algebras and D =
⊕K

i=1

pD
i

C with
K ∈ N ∪ {∞}. N is included in M by including Mm and Mn as
blocks on the diagonal of Mn+m, and B and C by the identity.
Assume there exists a partial isometry in N between minimal
projections in Mm and Mn (for example if there exists a factor F
with Mm ⊕Mn ⊆ F ⊆ N ). Then for any minimal projection
p ∈ Mm such that p ≤ pD

i for some i, pNp ∗ L(Z) ∼= pMp.

I Proof uses the partial isometry assumed to reduce it to a
lemma proved by Dykema on the amalgamated free product
of two by two matrix algebras over C2

I This shows us the simple steps of the second kind give us
standard embedddings, as long as we have the partial isometry
necessary.
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Example

M = L∞(µ1)⊗ R ∗C
α
⊕ C

1−α
L∞(µ2)⊗ R.

fdim(M) = fdim(A)+fdim(B)−fdim(D) = 1+1−(1−α2−(1−α)2),
Thus M = L(F1+α2+(1−α)2).
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Theorem (Dykema, R. 2011)

The class R2 is closed under amalgamated free products over finite
dimensional subalgebras. Furthermore
fdim(A ∗D B) = fdim(A) + fdim(B)− fdim(D).
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Regulated Dimension

Definition
For a von Neumann algebra A with trace τ in R3 we definite the
Regulated Dimension of A to be rdim(A) = τ(IA)2(fdim(A)− 1).

I Additive over direct sums

I Invariant over dilation or cutdown by projections with full
central support.

I Possibly negative (less than or equal to zero for hyperfinite
algebras)

I Does NOT match index of interpolated free group factors.
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Regulated Dimension for R4

I For A = L(Ft)⊗ B(H) we define rdim(A) = rdim(pAp) where
p ∈ A is a projection with finite trace

I For A = B(H)
t

, we define rdim(A) = −t2

I For A = L∞(µ)⊗ B(H)⊗ R and A = B(H)⊗ L∞(ν) define
rdim(A) = 0.

Thus we can extend rdim to R4
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Semifinite Free Group Factors

We will use the notation F t
r to denote the factor which is either

L(Fs) or B(H)⊗ L(Fs), with regulated dimension of r and so that
τ(I ) = t.
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Substandard Embeddings

Definition
Let φ be a trace preserving (and not necessarily unital) embedding
of F t

r → F t′
r ′ . We say that φ is a substandard embedding if for

some (any) non-zero finite trace projection p ∈ F t
r the embedding

φ|p : pF t
r p → φ(p)F t′

r ′φ(p) is standard or an isomorphism.

For An = F ti
ri

, and φn : An → An+1 a sequence of substandard
embeddings then the inductive limit of the An with the inclusions
φn is F t

r where s = limn→∞ sn and t = limn→∞ tn.
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Theorem (R. 2012)

Let A and B be semifinite hyperfinite algebras with type I atomic
subalgebra D. Then A ∗D B is in R4. If they are finite then the
product is in R3. Furthermore
rdim(A ∗D B) = rdim(A) + rdim(B)− rdim(D) (where this is
defined).

Proof.

I Use lemma to assume D is abelian.

I Let qk be the projections on the first k coordinates of D

I Let M(i , j , k) = vN(qkA(i)qk ∪ qkB(j)qk)

I Advance i , j in the same manner as the finite dimensional case

I Advance k in the same manner as the multimatrix case.

I Choose a path so this works.
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Theorem (R. 2012)

The classes R3 and R4 are closed under amalgamated free
products over type I atomic subalgebras. Furthermore
rdim(A ∗D B) = rdim(A) + rdim(B)− rdim(D) (where this is
defined).

Proof.

I Check that the steps in the finite dimensional case are all
induced by substandard embeddings

I Replace induction with inductive limits.
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Example

D =
∞⊕
i=1

C
1
i

A =
∞⊕
i=1

pA
i

R , τ(pA
i ) =

1

2i − 1
+

1

2i

B =
pB

0

R
∞⊕
i=1

pB
i

R , τ(pB
i ) =

1

2i
+

1

2i + 1
, τ(pB

0 ) = 1.

I A and B are diffuse, and the “graph is connected”, so this is
of the format F t

r for some r and t.

I r = rdim(A) + rdim(B)− rdim(D)= 0 + 0− (−π2

6 )

I A ∗D B = F∞
π2

6

.
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