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Background The free exponential distribution Unimodality General free Gamma’s

Classical and free infinite divisibility

By ID(∗) we denote the class of ∗-infinitely divisible probability
measures on R, i.e.

µ ∈ ID(∗) ⇐⇒ ∀n ∈ N ∃µn ∈ P(R) : µ = µn ∗ µn ∗ · · · ∗ µn︸ ︷︷ ︸
n terms

.

By ID(�) we denote the class of �-infinitely divisible probability
measures on R, i.e.

µ ∈ ID(�) ⇐⇒ ∀n ∈ N ∃µn ∈ P(R) : µ = µn � µn � · · ·� µn︸ ︷︷ ︸
n terms

.
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Classical Lévy-Khintchine representation

Theorem [Lévy-Khintchine]. Let µ be a probability measure on
R and consider its characteristic function

µ̂(u) =

∫
R

eitu µ(dt).

Then µ is infinitely divisible, if and only if µ̂ has a representation in
the form:

log(µ̂(u)) = iηu − 1
2au2 +

∫
R

(
eiut − 1− iut1[−1,1](t)

)
ρ(dt).

Here η ∈ R, a ≥ 0 and ρ is a Lévy measure on R, i.e.

ρ({0}) = 0, and
∫
R
min{1, t2} ρ(dt) <∞.

The characteristic triplet (a, ρ, η) is uniquely determined.
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The Free Lévy-Khintchine-representation

Theorem [Bercovici & Voiculescu]. Let µ be a probability
measure on R with free cumulant transform

Cµ(z) = zG 〈−1〉
µ (z)− 1, (z ∈ D(µ) ⊆ C−).

Then µ is �-infinitely divisible, if and only if Cµ has a
representation in the form:

Cµ(z) = ηz+az2+

∫
R

( 1
1− tz

−1−tz1[−1,1](t)
)
ρ(dt), (z ∈ C−).

where η ∈ R, a ≥ 0 and ρ is a Lévy measure on R.

The free characteristic triplet (a, ρ, η) is uniquely determined.
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The Bercovici-Pata bijection

Definition. The Bercovici-Pata bijection Λ: ID(∗)→ ID(�) is
defined as follows:

µ←→ log(µ̂(u)) = iηu − 1
2au2 +

∫
R

(
eiut − 1− iut1[−1,1](t)

)
ρ(dt)

←→ (a, ρ, η)

←→ CΛ(µ)(z) = ηz + az2 +

∫
R

( 1
1− tz

− 1− tz1[−1,1](t)
)
ρ(dt)

←→ Λ(µ).

Direct formula: For any measure µ in ID(∗) we have

CΛ(µ)(iz) =

∫ ∞
0

log(µ̂(zx))e−x dx , (z < 0).
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Properties of the Bercovici-Pata bijection

(i) If µ1, µ2 ∈ ID(∗), then Λ(µ1 ∗ µ2) = Λ(µ1) � Λ(µ2).

(ii) If µ ∈ ID(∗) and c ∈ R, then Λ(Dcµ) = DcΛ(µ).

(iii) For any c in R, Λ(δc) = δc .

(iv) For measures µ, µ1, µ2, µ3, . . . in ID(∗), we have

µn
w→ µ ⇐⇒ Λ(µn)

w→ Λ(µ).
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Examples.

(1) Let µ be the standard Gaussian distribution, i.e.

µ(dt) =
1√
2π

exp(−1
2 t2) dt.

Then Λ(µ) is the standard semi-circle distribution, i.e.,

Λ(µ)(dt) =
1
2π

√
4− t2 · 1[−2,2](t) dt.

(2) Let µ be the Poisson distribution with parameter λ > 0, i.e.

µ({n}) = e−λ
λn

n!
, (n ∈ N0).

Then Λ(µ) is given by(1− λ)δ0 + 1
2πt

√
(t − a)(b − t) · 1[a,b](t) dt, if 0 ≤ λ < 1,

1
2πt

√
(t − a)(b − t) · 1[a,b](t) dt, if λ ≥ 1,

where a = (1−
√
λ)2 and b = (1 +

√
λ)2.
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The free gamma distributions

It is not hard to show that

X ∼ 1
2π

√
4− t21[−1,1](t) dt =⇒ X 2 ∼ 1

4πt

√
t(4− t)1[0,4](t) dt.

This means that X 2 has the free Poisson distribution with
parameter λ = 1.

Natural questions:

What is Λ(χ2
1)?

What is Λ(Gamma-distribution)?

What is Λ(exponential distribution)?
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The free exponential distribution

The classical exponential distribution µ(dx) = e−x1(0,∞)(x) dx has
cumulant function

log(µ̂(z)) =

∫ ∞
0

(
eizt − 1

)e−t

t
dt, (z ∈ R).

Setting ν = Λ(µ) we then have for z in (−∞, 0) that

Cν(iz) =

∫ ∞
0

log(µ̂(zx))e−x dx

=

∫ ∞
0

(∫ ∞
0

(eizxt − 1)
e−t

t
dt
)
e−x dx

=

∫ ∞
0

e−t

t

( 1
1− izt

− 1
)

dt

It follows that

Cν(z) =

∫ ∞
0

e−t

t

( 1
1− zt

− 1
)

dt, (z ∈ C−).
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The free exponential distribution (continued)

Setting z = 1
w we find for w in C+ that

Cν(1/w) =

∫ ∞
0

e−t

t

( 1
1− t/w

− 1
)

dt =

∫ ∞
0

e−t

t

( w
w − t

− 1
)

dt

=

∫ ∞
0

e−t

t

( t
w − t

)
dt =

∫ ∞
0

e−t
( 1

w − t

)
dt

= Gµ(w).

It follows that
1
w

G 〈−1〉
ν ( 1

w )− 1 = Cν( 1
w ) = Gµ(w),

so that

G 〈−1〉
ν ( 1

w ) = w + wGµ(w) = w +

∫ ∞
0

w
w − t

e−t dt, (w ∈ C+).
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Lebesgue Decomposition

Let µ be a (Borel-) probability measure on R, and consider its
cumulative distribution function:

Fµ(t) = µ((−∞, t]), (t ∈ R),

as well as its Lebesgue decomposition:

µ = ρ+ σ, where ρ� λ and σ ⊥ λ.

It follows from De la Vallé Poussin’s Theorem that

ρ = µ|D1 , where D1 =
{
x ∈ R

∣∣ lim
h→0

Fµ(x+h)−Fµ(x)
h exists in R

}
and

σ = µ|D∞ , where D∞ =
{
x ∈ R

∣∣ lim
h→0

Fµ(x+h)−Fµ(x)
h =∞

}
.

In addition we have that

ρ(dt) = F ′µ(t)1D1(t) dt.
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Fµ(x+h)−Fµ(x)
h =∞

}
.

In addition we have that

ρ(dt) = F ′µ(t)1D1(t) dt.
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Stieltjes inversion

Consider now additionally the Cauchy (or Stieltjes) transform Gµ.

It follows then from general theory of Poisson-Stieltjes integrals that

F ′µ(x) = − 1
π
lim
y↓0

Im(Gµ(x + iy)), (x ∈ D1),

and that

lim
y↓0

∣∣ Im(Gµ(x + iy))
∣∣ =∞, (x ∈ D∞).

In particular the singular part σ of µ is concentrated on the set{
x ∈ R

∣∣ limy↓0 |Gνα(x + iy)| =∞
}
.
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A fundamental lemma of Bercovici & Voiculescu

For any positive number δ, put

4δ = {z ∈ C+ | Im(z) > δ|Re(z)|}.

Let u : C+ → C+ be an analytic function, and let Γ be a curve in
C+ which approaches 0 nontangentially.

If limz→0,z∈Γ u(z) = `, then limz→0,z∈4δ u(z) = ` for any positive
number δ.
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The free exponential distribution (continued)

We saw before that

G 〈−1〉
ν ( 1

w ) = w + wGµ(w), (w ∈ C+),

so that
1
w

= Gν(w + wGµ(w))

for all w in C+, such that w + wGµ(w) ∈ C+.



Background The free exponential distribution Unimodality General free Gamma’s

The free exponential distribution (continued)

We saw before that

G 〈−1〉
ν ( 1

w ) = w + wGµ(w), (w ∈ C+),

so that
1
w

= Gν(w + wGµ(w))

for all w in C+, such that w + wGµ(w) ∈ C+.



Background The free exponential distribution Unimodality General free Gamma’s

The curve:
∫∞
0

te−t

(t−x)2+y2 dt = 1.

Let c0 be the positive constant determined by∫ ∞
0

te−t

(t + c0)2 dt = 1, i.e. c0 = 0.139688.

For any x in [−c0,∞) there is a unique positive number y = v(x),
such that ∫ ∞

0

te−t

(t − x)2 + y2 dt = 1.
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The free exponential distribution (continued)

The free exponential distribution ν is absolutely continuous with
density given implicitly by

fν
(
P(x)

)
=

1
π

v(x)

x2 + v(x)
, (x ∈ [−c0,∞)),

where

P(x) = H(x+iv(x)) =

{
x + 1 +

∫∞
0

te−t

x−t dt, if x < −c0

2x + 1−
∫∞
0

t2e−t

(x−t)2+v(x)2
dt, if x ≥ −c0

P is a strictly increasing bijection of R onto R, and
limx→∞(x + 1− P(x)) = 0.

P(−c0) ≈ 0.1054.

ν has support [0.1054,∞).
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Asymptotic behavior of the free exponential
distribution

The asymptotic behavior of fν(ξ) as ξ →∞ is given by

fν(ξ)

ξ−1eξ
−→ e as ξ →∞.

In particular ν has moments of any order.

At the lower bound s0 := inf supp(ν) = P(−c0), we have that

fν(ξ) =
√

2
πc0
√

s0−c2
0

(ξ − s0)1/2 + o(ξ − s0), as ξ ↓ s0.
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Unimodality

A measure µ on R is called unimodal, if, for some a in R, it has the
form

µ = µ({a})δa + f (x) dx ,

where f is increasing on (−∞, a) and decreasing on (a,∞).

Theorem [Yamasato ’78]. All ∗-selfdecomposable probability
measures are unimodal.

Theorem [Biane ’98]. All �-stable probability measures are
unimodal.

Question: Are all �-selfdecomposable probability measures
unimodal?

Theorem [Haagerup+T ’11] The free gamma distributions are
unimodal.
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Sketch of proof of unimodality

It suffices to show that for any ρ in (0,∞) the equality:

fν(ξ) = ρ, (ξ ∈ (s0,∞))

has at most 2 solutions,

or equivalently that

ρ = fν(P(x)) = − 1
π
Im
( 1

x + iv(x)

)
, (x ∈ (−c0,∞))

has at most 2 solutions.

Note that{
z ∈ C+

∣∣ − 1
π Im

(1
z

)
= ρ
}

= Circle( 1
2πρ i,

1
2πρ) =: Cρ.

Hence we want to show that

#(Cρ ∩ Graph(v)) ≤ 2.
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Sketch of proof of unimodality (continued)

In polar coordinates:

Cρ =
{ 1
πρ sin(θ)eiθ ∣∣ θ ∈ (0, π]

}
.

Recall also that

Graph(v) = {x + iy ∈ C+ | F (x + iy) = 1},

where

F (x , y) =

∫ ∞
0

te−t

(t − x)2 + y2 dt.

Hence we need to show that

F ( 1
πρ sin(θ)eiθ) = 1, (θ ∈ (0, π])

has at most 2 solutions.

By changes of variables and differentiation under the integral sign,
one may verify that the function θ 7→ F ( 1

πρ sin(θ)eiθ) is strictly
decreasing on (0, θ0] and strictly increasing on [θ0, π] for some θ0.
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General free Gamma’s

The classical Gamma distribution µα with parameter α is given by

µα(dx) =
1

Γ(α)
xα−1e−x1[0,∞)(x) dx .

Setting να = Λ(µα) we have that

1 να is absolutely continuous with a unimodal and analytical
density fα.

2 the support of να has the form [sα,∞) for some strictly
positive number sα.

3 sα increases strictly with α, and limα→0 sα = 0,
limα→∞ sα =∞.

4 lim
ξ→∞

fα(ξ)

ξ−1e−ξ
= αeα, and lim

ξ↓sα

fα(ξ)√
ξ − sα

=

√
2

πcα
√

sα − c2
α

.
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2 the support of να has the form [sα,∞) for some strictly
positive number sα.

3 sα increases strictly with α, and limα→0 sα = 0,
limα→∞ sα =∞.

4 lim
ξ→∞

fα(ξ)

ξ−1e−ξ
= αeα, and lim

ξ↓sα

fα(ξ)√
ξ − sα

=

√
2

πcα
√

sα − c2
α

.
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Graphs of fα for α = 1
2 , 1, 2, 10.
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Asymptotic behavior as α ↓ 0

(i) For any p in N we have that

1
α

∫ ∞
0

tp να(dt) −→
∫ ∞

0
tp−1e−t dt as α ↓ 0.

(ii) For any t in (0,∞) we have that

fα(t)

α
−→ t−1e−t as α ↓ 0.
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Proof of convergence in moments

The (classical) cumulant transform of µα is given by

log(µ̂α(u)) = α

∫ ∞
0

(eiut − 1)
e−t

t
dt = α

∞∑
p=1

ip(p − 1)!

p!
up.

Hence for any p in N

rp(α) := p’th free cuml. of να = p’th class. cuml. of µα = α(p−1)!

By the moment-cumulant formula it follows that∫ ∞
0

tp να(dt) = rp(α) +

p∑
k=2

1
k

(
p

k − 1

) ∑
q1,...,qk≥1

q1+···+qk =p

rq1(α)rq2(α) · · · rqk (α)

= polynomial in α with no const. term and linear term α(p − 1)!.

Hence
1
α

∫ ∞
0

tp ν(dt) −→
α→0

(p − 1)! =

∫ ∞
0

tp−1e−t dt.
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