On the free gamma distributions

23. juli 2013

The Fields Institute, Toronto

Steen Thorbjørnsen Department of Mathematics University of Aarhus

Uffe Haagerup Department of Mathematical Sciences University of Copenhagen

Unimodality

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Classical and free infinite divisibility

By $\mathcal{ID}(*)$ we denote the class of *-infinitely divisible probability measures on \mathbb{R} , i.e.

$$\mu \in \mathcal{ID}(*) \iff \forall n \in \mathbb{N} \; \exists \mu_n \in \mathcal{P}(\mathbb{R}) \colon \mu = \underbrace{\mu_n * \mu_n * \cdots * \mu_n}_{n \text{ terms}}.$$

Unimodality

Classical and free infinite divisibility

By $\mathcal{ID}(*)$ we denote the class of *-infinitely divisible probability measures on \mathbb{R} , i.e.

$$\mu \in \mathcal{ID}(*) \iff \forall n \in \mathbb{N} \; \exists \mu_n \in \mathcal{P}(\mathbb{R}) \colon \mu = \underbrace{\mu_n * \mu_n * \cdots * \mu_n}_{n \text{ terms}}.$$

By $\mathcal{ID}(\boxplus)$ we denote the class of \boxplus -infinitely divisible probability measures on \mathbb{R} , i.e.

$$\mu \in \mathcal{ID}(\boxplus) \iff \forall n \in \mathbb{N} \; \exists \mu_n \in \mathcal{P}(\mathbb{R}) \colon \mu = \underbrace{\mu_n \boxplus \mu_n \boxplus \dots \boxplus \mu_n}_{n \text{ terms}}.$$

Classical Lévy-Khintchine representation

Theorem [Lévy-Khintchine]. Let μ be a probability measure on \mathbb{R} and consider its characteristic function

$$\hat{\mu}(u) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}tu} \, \mu(\mathrm{d}t).$$

Classical Lévy-Khintchine representation

Theorem [Lévy-Khintchine]. Let μ be a probability measure on \mathbb{R} and consider its characteristic function

$$\hat{\mu}(u) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}tu} \, \mu(\mathrm{d}t).$$

Then μ is infinitely divisible, if and only if $\hat{\mu}$ has a representation in the form:

$$\log(\hat{\mu}(u)) = \mathrm{i}\eta u - \frac{1}{2}au^2 + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t)\right) \,\rho(\mathrm{d}t).$$

Classical Lévy-Khintchine representation

Theorem [Lévy-Khintchine]. Let μ be a probability measure on \mathbb{R} and consider its characteristic function

$$\hat{\mu}(u) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}tu} \, \mu(\mathrm{d}t).$$

Then μ is infinitely divisible, if and only if $\hat{\mu}$ has a representation in the form:

$$\log(\hat{\mu}(u)) = \mathrm{i}\eta u - \frac{1}{2}au^2 + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t)\right) \,\rho(\mathrm{d}t).$$

Here $\eta \in \mathbb{R}$, $a \ge 0$ and ρ is a Lévy measure on \mathbb{R} , i.e.

$$ho(\{0\})=0, \quad ext{and} \quad \int_{\mathbb{R}}\min\{1,t^2\} \
ho(\mathrm{d} t)<\infty.$$

| □ ▶ ∢ 圖 ▶ ∢ 필 ▶ ★ 필 ▶ _ 三 = _ の Q @

Classical Lévy-Khintchine representation

Theorem [Lévy-Khintchine]. Let μ be a probability measure on \mathbb{R} and consider its characteristic function

$$\hat{\mu}(u) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}tu} \, \mu(\mathrm{d}t).$$

Then μ is infinitely divisible, if and only if $\hat{\mu}$ has a representation in the form:

$$\log(\hat{\mu}(u)) = \mathrm{i}\eta u - \frac{1}{2}au^2 + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t)\right) \,\rho(\mathrm{d}t).$$

Here $\eta \in \mathbb{R}$, $a \ge 0$ and ρ is a Lévy measure on \mathbb{R} , i.e.

$$ho(\{0\})=0, \quad ext{and} \quad \int_{\mathbb{R}}\min\{1,t^2\} \
ho(\mathrm{d} t)<\infty.$$

The characteristic triplet (a, ρ, η) is uniquely determined.

The Free Lévy-Khintchine-representation

Theorem [Bercovici & Voiculescu]. Let μ be a probability measure on \mathbb{R} with free cumulant transform

$$\mathcal{C}_{\mu}(z)=z\mathcal{G}_{\mu}^{\langle-1
angle}(z)-1, \qquad (z\in\mathcal{D}(\mu)\subseteq\mathbb{C}^{-}).$$

The Free Lévy-Khintchine-representation

Theorem [Bercovici & Voiculescu]. Let μ be a probability measure on \mathbb{R} with free cumulant transform

$$\mathcal{C}_{\mu}(z)=z\mathcal{G}_{\mu}^{\langle-1
angle}(z)-1, \qquad (z\in\mathcal{D}(\mu)\subseteq\mathbb{C}^{-}).$$

Then μ is \boxplus -infinitely divisible, if and only if C_{μ} has a representation in the form:

$$\mathcal{C}_{\mu}(z) = \eta z + a z^2 + \int_{\mathbb{R}} \left(\frac{1}{1-tz} - 1 - tz \mathbb{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t), \quad (z \in \mathbb{C}^-).$$

where $\eta \in \mathbb{R}$, $a \ge 0$ and ρ is a Lévy measure on \mathbb{R} .

(日・《聞・《聞・《聞・《曰、②�?

The Free Lévy-Khintchine-representation

Theorem [Bercovici & Voiculescu]. Let μ be a probability measure on \mathbb{R} with free cumulant transform

$$\mathcal{C}_{\mu}(z)=z\mathcal{G}_{\mu}^{\langle-1
angle}(z)-1, \qquad (z\in\mathcal{D}(\mu)\subseteq\mathbb{C}^{-}).$$

Then μ is \boxplus -infinitely divisible, if and only if C_{μ} has a representation in the form:

$$\mathcal{C}_{\mu}(z) = \eta z + a z^2 + \int_{\mathbb{R}} \left(\frac{1}{1-tz} - 1 - tz \mathbb{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t), \quad (z \in \mathbb{C}^-).$$

where $\eta \in \mathbb{R}$, $a \ge 0$ and ρ is a Lévy measure on \mathbb{R} .

The free characteristic triplet (a, ρ, η) is uniquely determined.

∃ ► 4

The Bercovici-Pata bijection

Definition. The Bercovici-Pata bijection $\Lambda : \mathcal{ID}(*) \to \mathcal{ID}(\boxplus)$ is defined as follows:

$$\begin{split} \mu &\longleftrightarrow \log(\hat{\mu}(u)) = \mathrm{i}\eta u - \frac{1}{2}au^2 + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t) \right) \,\rho(\mathrm{d}t) \\ &\longleftrightarrow (a,\rho,\eta) \\ &\longleftrightarrow \mathcal{C}_{\Lambda(\mu)}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - tz} - 1 - tz\mathbf{1}_{[-1,1]}(t) \right) \,\rho(\mathrm{d}t) \\ &\longleftrightarrow \Lambda(\mu). \end{split}$$

The Bercovici-Pata bijection

Definition. The Bercovici-Pata bijection $\Lambda : \mathcal{ID}(*) \to \mathcal{ID}(\boxplus)$ is defined as follows:

$$\begin{split} \mu &\longleftrightarrow \mathsf{log}(\hat{\mu}(u)) = \mathrm{i}\eta u - \frac{1}{2}au^2 + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t) \right) \,\rho(\mathrm{d}t) \\ &\longleftrightarrow (a,\rho,\eta) \\ &\longleftrightarrow \mathcal{C}_{\Lambda(\mu)}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - tz} - 1 - tz\mathbf{1}_{[-1,1]}(t) \right) \,\rho(\mathrm{d}t) \\ &\longleftrightarrow \Lambda(\mu). \end{split}$$

Direct formula: For any measure μ in $\mathcal{ID}(*)$ we have

$$\mathcal{C}_{\Lambda(\mu)}(\mathrm{i} z) = \int_0^\infty \log(\hat{\mu}(zx)) \mathrm{e}^{-x} \,\mathrm{d} x, \qquad (z < 0).$$

> < => < =>

Properties of the Bercovici-Pata bijection

(i) If $\mu_1, \mu_2 \in \mathcal{ID}(*)$, then $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$.

< ∃ > <

Properties of the Bercovici-Pata bijection

(i) If
$$\mu_1, \mu_2 \in \mathcal{ID}(*)$$
, then $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$.

(ii) If $\mu \in \mathcal{ID}(*)$ and $c \in \mathbb{R}$, then $\Lambda(D_c\mu) = D_c\Lambda(\mu)$.

Properties of the Bercovici-Pata bijection

(i) If
$$\mu_1, \mu_2 \in \mathcal{ID}(*)$$
, then $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$.

(ii) If
$$\mu \in \mathcal{ID}(*)$$
 and $c \in \mathbb{R}$, then $\Lambda(D_c\mu) = D_c\Lambda(\mu)$.

(iii) For any c in \mathbb{R} , $\Lambda(\delta_c) = \delta_c$.

Properties of the Bercovici-Pata bijection

(i) If
$$\mu_1, \mu_2 \in \mathcal{ID}(*)$$
, then $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$.

(ii) If
$$\mu \in \mathcal{ID}(*)$$
 and $c \in \mathbb{R}$, then $\Lambda(D_c\mu) = D_c\Lambda(\mu)$.

(iii) For any
$$c$$
 in \mathbb{R} , $\Lambda(\delta_c) = \delta_c$.

(iv) For measures $\mu, \mu_1, \mu_2, \mu_3, \dots$ in $\mathcal{ID}(*)$, we have

$$\mu_n \stackrel{\mathrm{w}}{\to} \mu \iff \Lambda(\mu_n) \stackrel{\mathrm{w}}{\to} \Lambda(\mu).$$

(ロ) (日) (日) (日) (日) (日) (日) (日)

'문▶' ★ 문▶

Examples.

(1) Let μ be the standard *Gaussian distribution*, i.e.

$$\mu(\mathrm{d}t) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}t^2) \,\mathrm{d}t.$$

Examples.

(1) Let μ be the standard *Gaussian distribution*, i.e.

$$\mu(\mathrm{d}t) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}t^2) \,\mathrm{d}t.$$

Then $\Lambda(\mu)$ is the standard *semi-circle distribution*, i.e.,

$$\Lambda(\mu)(\mathrm{d}t) = \frac{1}{2\pi}\sqrt{4-t^2} \cdot \mathbf{1}_{[-2,2]}(t)\,\mathrm{d}t.$$

Examples.

 $(1)~{\rm Let}~\mu$ be the standard Gaussian distribution, i.e.

$$\mu(\mathrm{d}t) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}t^2) \,\mathrm{d}t.$$

Then $\Lambda(\mu)$ is the standard *semi-circle distribution*, i.e.,

$$\Lambda(\mu)(\mathrm{d} t) = \frac{1}{2\pi}\sqrt{4-t^2} \cdot \mathbf{1}_{[-2,2]}(t)\,\mathrm{d} t.$$

(2) Let μ be the *Poisson distribution* with parameter $\lambda > 0$, i.e.

$$\mu(\{n\}) = \mathrm{e}^{-\lambda} \frac{\lambda^n}{n!}, \qquad (n \in \mathbb{N}_0).$$

Examples.

(1) Let μ be the standard Gaussian distribution, i.e.

$$\mu(\mathrm{d}t) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}t^2) \,\mathrm{d}t.$$

Then $\Lambda(\mu)$ is the standard *semi-circle distribution*, i.e.,

$$\Lambda(\mu)(\mathrm{d} t) = \frac{1}{2\pi} \sqrt{4 - t^2} \cdot \mathbf{1}_{[-2,2]}(t) \,\mathrm{d} t.$$

(2) Let μ be the *Poisson distribution* with parameter $\lambda > 0$, i.e.

$$\mu(\{n\}) = e^{-\lambda} \frac{\lambda^n}{n!}, \qquad (n \in \mathbb{N}_0).$$

Then $\Lambda(\mu)$ is given by

$$\begin{cases} (1-\lambda)\delta_0 + \frac{1}{2\pi t}\sqrt{(t-a)(b-t)} \cdot \mathbf{1}_{[a,b]}(t) \, \mathrm{d}t, & \text{if } 0 \leq \lambda < 1, \\ \frac{1}{2\pi t}\sqrt{(t-a)(b-t)} \cdot \mathbf{1}_{[a,b]}(t) \, \mathrm{d}t, & \text{if } \lambda \geq 1, \end{cases}$$

where $a = (1 - \sqrt{\lambda})^2$ and $b = (1 + \sqrt{\lambda})^2$ is the set of the

3 🕨 🖌 3

The free gamma distributions

It is not hard to show that

$$X \sim rac{1}{2\pi} \sqrt{4-t^2} \mathbf{1}_{[-1,1]}(t) \, \mathrm{d}t \implies X^2 \sim rac{1}{4\pi t} \sqrt{t(4-t)} \mathbf{1}_{[0,4]}(t) \, \mathrm{d}t.$$

It is not hard to show that

$$X \sim rac{1}{2\pi} \sqrt{4-t^2} \mathbb{1}_{[-1,1]}(t) \, \mathrm{d}t \implies X^2 \sim rac{1}{4\pi t} \sqrt{t(4-t)} \mathbb{1}_{[0,4]}(t) \, \mathrm{d}t.$$

This means that X^2 has the free Poisson distribution with parameter $\lambda = 1$.

It is not hard to show that

$$X \sim rac{1}{2\pi} \sqrt{4-t^2} \mathbb{1}_{[-1,1]}(t) \, \mathrm{d}t \implies X^2 \sim rac{1}{4\pi t} \sqrt{t(4-t)} \mathbb{1}_{[0,4]}(t) \, \mathrm{d}t.$$

This means that X^2 has the free Poisson distribution with parameter $\lambda = 1$.

Natural questions:

It is not hard to show that

$$X \sim rac{1}{2\pi} \sqrt{4-t^2} \mathbb{1}_{[-1,1]}(t) \, \mathrm{d}t \implies X^2 \sim rac{1}{4\pi t} \sqrt{t(4-t)} \mathbb{1}_{[0,4]}(t) \, \mathrm{d}t.$$

This means that X^2 has the free Poisson distribution with parameter $\lambda = 1$.

Natural questions:

• What is $\Lambda(\chi_1^2)$?

It is not hard to show that

$$X \sim rac{1}{2\pi} \sqrt{4-t^2} \mathbb{1}_{[-1,1]}(t) \, \mathrm{d}t \implies X^2 \sim rac{1}{4\pi t} \sqrt{t(4-t)} \mathbb{1}_{[0,4]}(t) \, \mathrm{d}t.$$

This means that X^2 has the free Poisson distribution with parameter $\lambda = 1$.

Natural questions:

- What is $\Lambda(\chi_1^2)$?
- What is Λ(Gamma-distribution)?

It is not hard to show that

$$X \sim rac{1}{2\pi} \sqrt{4-t^2} \mathbb{1}_{[-1,1]}(t) \, \mathrm{d}t \implies X^2 \sim rac{1}{4\pi t} \sqrt{t(4-t)} \mathbb{1}_{[0,4]}(t) \, \mathrm{d}t.$$

This means that X^2 has the free Poisson distribution with parameter $\lambda = 1$.

Natural questions:

- What is $\Lambda(\chi_1^2)$?
- What is $\Lambda(Gamma-distribution)$?
- What is Λ(exponential distribution)?

E ▶ .

The free exponential distribution

The classical exponential distribution $\mu(dx) = e^{-x} \mathbb{1}_{(0,\infty)}(x) dx$ has cumulant function

$$\log(\hat{\mu}(z)) = \int_0^\infty (\mathrm{e}^{\mathrm{i} z t} - 1) rac{\mathrm{e}^{-t}}{t} \, \mathrm{d} t, \qquad (z \in \mathbb{R}).$$

The free exponential distribution

The classical exponential distribution $\mu(dx) = e^{-x} \mathbb{1}_{(0,\infty)}(x) dx$ has cumulant function

$$\log(\hat{\mu}(z)) = \int_0^\infty (\mathrm{e}^{\mathrm{i} z t} - 1) rac{\mathrm{e}^{-t}}{t} \, \mathrm{d} t, \qquad (z \in \mathbb{R}).$$

Setting $u = \Lambda(\mu)$ we then have for z in $(-\infty, 0)$ that

$$\mathcal{C}_{\nu}(\mathrm{i}z) = \int_{0}^{\infty} \log(\hat{\mu}(zx)) \mathrm{e}^{-x} \,\mathrm{d}x$$
$$= \int_{0}^{\infty} \left(\int_{0}^{\infty} (\mathrm{e}^{\mathrm{i}zxt} - 1) \frac{\mathrm{e}^{-t}}{t} \,\mathrm{d}t\right) \mathrm{e}^{-x} \,\mathrm{d}x$$
$$= \int_{0}^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{1}{1 - \mathrm{i}zt} - 1\right) \mathrm{d}t$$

The free exponential distribution

The classical exponential distribution $\mu(dx) = e^{-x} \mathbb{1}_{(0,\infty)}(x) dx$ has cumulant function

$$\log(\hat{\mu}(z)) = \int_0^\infty (\mathrm{e}^{\mathrm{i} z t} - 1) rac{\mathrm{e}^{-t}}{t} \, \mathrm{d} t, \qquad (z \in \mathbb{R}).$$

Setting $u = \Lambda(\mu)$ we then have for z in $(-\infty, 0)$ that

$$\begin{aligned} \mathcal{C}_{\nu}(\mathrm{i}z) &= \int_{0}^{\infty} \log(\hat{\mu}(zx)) \mathrm{e}^{-x} \, \mathrm{d}x \\ &= \int_{0}^{\infty} \left(\int_{0}^{\infty} (\mathrm{e}^{\mathrm{i}zxt} - 1) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t \right) \mathrm{e}^{-x} \, \mathrm{d}x \\ &= \int_{0}^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{1}{1 - \mathrm{i}zt} - 1 \right) \mathrm{d}t \end{aligned}$$

It follows that

$$\mathcal{C}_{
u}(z) = \int_{0}^{\infty} rac{\mathrm{e}^{-t}}{t} \Big(rac{1}{1-zt} - 1\Big) \,\mathrm{d}t, \quad (z \in \mathbb{C}^{-}).$$

・ロト ・部ト ・ヨト ・ヨト

The free exponential distribution (continued)

Setting
$$z = \frac{1}{w}$$
 we find for w in \mathbb{C}^+ that

$$\mathcal{C}_{\nu}(1/w) = \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{1}{1-t/w} - 1\right) \mathrm{d}t = \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{w}{w-t} - 1\right) \mathrm{d}t$$

$$= \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{t}{w-t}\right) \mathrm{d}t = \int_0^{\infty} \mathrm{e}^{-t} \left(\frac{1}{w-t}\right) \mathrm{d}t$$

$$= G_{\mu}(w).$$

The free exponential distribution (continued)

Setting $z = \frac{1}{w}$ we find for w in \mathbb{C}^+ that $\mathcal{C}_{\nu}(1/w) = \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{1}{1-t/w} - 1\right) \mathrm{d}t = \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{w}{w-t} - 1\right) \mathrm{d}t$ $= \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{t}{w-t}\right) \mathrm{d}t = \int_0^{\infty} \mathrm{e}^{-t} \left(\frac{1}{w-t}\right) \mathrm{d}t$ $= \mathcal{G}_{\mu}(w).$

It follows that

$$rac{1}{w} \mathcal{G}_
u^{\langle -1
angle}(rac{1}{w}) - 1 = \mathcal{C}_
u(rac{1}{w}) = \mathcal{G}_\mu(w),$$

◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

The free exponential distribution (continued)

Setting $z = \frac{1}{w}$ we find for w in \mathbb{C}^+ that $\mathcal{C}_{\nu}(1/w) = \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{1}{1-t/w} - 1\right) \mathrm{d}t = \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{w}{w-t} - 1\right) \mathrm{d}t$ $= \int_0^{\infty} \frac{\mathrm{e}^{-t}}{t} \left(\frac{t}{w-t}\right) \mathrm{d}t = \int_0^{\infty} \mathrm{e}^{-t} \left(\frac{1}{w-t}\right) \mathrm{d}t$ $= G_{\mu}(w).$

It follows that

$$rac{1}{w} \mathcal{G}_
u^{\langle -1
angle}(rac{1}{w}) - 1 = \mathcal{C}_
u(rac{1}{w}) = \mathcal{G}_\mu(w),$$

so that

$$\mathcal{G}_{\nu}^{\langle -1
angle}(rac{1}{w})=w+w\mathcal{G}_{\mu}(w)=w+\int_{0}^{\infty}rac{w}{w-t}\mathrm{e}^{-t}\,\mathrm{d}\,t,\qquad(w\in\mathbb{C}^{+}).$$

(ロ) 《聞 》 《臣 》 《臣) 臣 … のへで

Unimodality

Lebesgue Decomposition

Let μ be a (Borel-) probability measure on \mathbb{R} , and consider its cumulative distribution function:

$$F_{\mu}(t)=\mu((-\infty,t]), \qquad (t\in\mathbb{R}),$$

Unimodality

Lebesgue Decomposition

Let μ be a (Borel-) probability measure on \mathbb{R} , and consider its cumulative distribution function:

$${\it F}_{\mu}(t)=\mu((-\infty,t]), \qquad (t\in {\mathbb R}),$$

as well as its Lebesgue decomposition:

 $\mu = \rho + \sigma, \quad \text{where} \quad \rho \ll \lambda \text{ and } \sigma \perp \lambda.$

Unimodality

Lebesgue Decomposition

Let μ be a (Borel-) probability measure on \mathbb{R} , and consider its cumulative distribution function:

$${\it F}_{\mu}(t)=\mu((-\infty,t]), \qquad (t\in {\mathbb R}),$$

as well as its Lebesgue decomposition:

$$\mu = \rho + \sigma, \quad \text{where} \quad \rho \ll \lambda \text{ and } \sigma \perp \lambda.$$

It follows from De la Vallé Poussin's Theorem that

$$\rho = \mu_{|D_1}, \text{ where } D_1 = \left\{ x \in \mathbb{R} \mid \lim_{h \to 0} \frac{F_{\mu}(x+h) - F_{\mu}(x)}{h} \text{ exists in } \mathbb{R} \right\}$$

Unimodality

Lebesgue Decomposition

Let μ be a (Borel-) probability measure on \mathbb{R} , and consider its cumulative distribution function:

$${\it F}_{\mu}(t)=\mu((-\infty,t]), \qquad (t\in {\mathbb R}),$$

as well as its Lebesgue decomposition:

$$\mu = \rho + \sigma$$
, where $\rho \ll \lambda$ and $\sigma \perp \lambda$.

It follows from De la Vallé Poussin's Theorem that

$$\rho = \mu_{|D_1}, \quad \text{where} \quad D_1 = \left\{ x \in \mathbb{R} \mid \lim_{h \to 0} \frac{F_{\mu}(x+h) - F_{\mu}(x)}{h} \text{ exists in } \mathbb{R} \right\}$$

and

$$\sigma = \mu_{|D_{\infty}}, \quad \text{where} \quad D_{\infty} = \big\{ x \in \mathbb{R} \ \big| \ \lim_{h \to 0} \frac{F_{\mu}(x+h) - F_{\mu}(x)}{h} = \infty \big\}.$$

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● のへの

Lebesgue Decomposition

Let μ be a (Borel-) probability measure on \mathbb{R} , and consider its cumulative distribution function:

$${\it F}_{\mu}(t)=\mu((-\infty,t]), \qquad (t\in {\mathbb R}),$$

as well as its Lebesgue decomposition:

$$\mu = \rho + \sigma, \quad \text{where} \quad \rho \ll \lambda \text{ and } \sigma \perp \lambda.$$

It follows from De la Vallé Poussin's Theorem that

$$\rho = \mu_{|D_1}, \text{ where } D_1 = \left\{ x \in \mathbb{R} \mid \lim_{h \to 0} \frac{F_{\mu}(x+h) - F_{\mu}(x)}{h} \text{ exists in } \mathbb{R} \right\}$$
and

$$\sigma = \mu_{|D_{\infty}}, \quad \text{where} \quad D_{\infty} = \big\{ x \in \mathbb{R} \ \big| \ \lim_{h \to 0} \frac{F_{\mu}(x+h) - F_{\mu}(x)}{h} = \infty \big\}.$$

In addition we have that

$$\rho(\mathrm{d}t) = F'_{\mu}(t)\mathbf{1}_{D_1}(t)\,\mathrm{d}t.$$

Background	The free exponential distribution	Unimodality	General free Gamma's
Stieltjes	inversion		

Background	The free exponential distribution	Unimodality	General free Gamma's
Stielties	inversion		

It follows then from general theory of Poisson-Stieltjes integrals that

$$F_\mu'(x)=-rac{1}{\pi}\lim_{y\downarrow 0} {
m Im}(\mathcal{G}_\mu(x+{
m i} y)), \qquad (x\in D_1),$$

Background	The free exponential distribution	Unimodality	General free Gamma's
Stielties i	nversion		

It follows then from general theory of Poisson-Stieltjes integrals that

$$F_\mu'(x)=-rac{1}{\pi}\lim_{y\downarrow 0} {
m Im}({\it G}_\mu(x+{
m i} y)), \qquad (x\in D_1),$$

and that

$$\lim_{y\downarrow 0} \big| \operatorname{Im}(G_{\mu}(x+\mathrm{i} y)) \big| = \infty, \qquad (x \in D_{\infty}).$$

It follows then from general theory of Poisson-Stieltjes integrals that

$$F_\mu'(x)=-rac{1}{\pi}\lim_{y\downarrow 0} {
m Im}({\it G}_\mu(x+{
m i} y)), \qquad (x\in D_1),$$

and that

$$\lim_{y\downarrow 0} \big| \operatorname{Im}(G_{\mu}(x+\mathrm{i} y)) \big| = \infty, \qquad (x \in D_{\infty}).$$

In particular the singular part σ of μ is concentrated on the set

$$\{x \in \mathbb{R} \mid \lim_{y \downarrow 0} |\mathcal{G}_{\nu_{\alpha}}(x + \mathrm{i}y)| = \infty\}.$$

A fundamental lemma of Bercovici & Voiculescu

For any positive number δ , put

$$\triangle_{\delta} = \{ z \in \mathbb{C}^+ \mid \mathsf{Im}(z) > \delta | \operatorname{\mathsf{Re}}(z) | \}.$$

A fundamental lemma of Bercovici & Voiculescu

For any positive number δ , put

$$riangle_{\delta} = \{ z \in \mathbb{C}^+ \mid \mathsf{Im}(z) > \delta | \mathsf{Re}(z) | \}.$$

Let $u \colon \mathbb{C}^+ \to \mathbb{C}^+$ be an analytic function, and let Γ be a curve in \mathbb{C}^+ which approaches 0 nontangentially.

A fundamental lemma of Bercovici & Voiculescu

For any positive number δ , put

$$\triangle_{\delta} = \{ z \in \mathbb{C}^+ \mid \mathsf{Im}(z) > \delta | \operatorname{\mathsf{Re}}(z) | \}.$$

Let $u \colon \mathbb{C}^+ \to \mathbb{C}^+$ be an analytic function, and let Γ be a curve in \mathbb{C}^+ which approaches 0 nontangentially.

If $\lim_{z\to 0, z\in\Gamma} u(z) = \ell$, then $\lim_{z\to 0, z\in\Delta_{\delta}} u(z) = \ell$ for any positive number δ .

General free Gamma's

The free exponential distribution (continued)

We saw before that

$$G_{\nu}^{\langle -1
angle}(rac{1}{w}) = w + w G_{\mu}(w), \qquad (w \in \mathbb{C}^+),$$

General free Gamma's

The free exponential distribution (continued)

We saw before that

$$\mathcal{G}_{\!\nu}^{\langle -1
angle}(rac{1}{w})=w+w\mathcal{G}_{\!\mu}(w),\qquad (w\in\mathbb{C}^+),$$

so that

$$\frac{1}{w} = G_{\nu}(w + wG_{\mu}(w))$$

for all w in \mathbb{C}^+ , such that $w + wG_\mu(w) \in \mathbb{C}^+$.

Background The free exponential distribution Unimodality General free Gamma's The curve: $\int_0^\infty \frac{t e^{-t}}{(t-x)^2+y^2} dt = 1.$

Let c_0 be the positive constant determined by

$$\int_0^\infty \frac{t e^{-t}}{(t+c_0)^2} dt = 1, \quad \text{i.e.} \quad c_0 = 0.139688.$$

< ∃ > <

.∋...>

Background The free exponential distribution Unimodality General free Gamma's The curve: $\int_0^\infty \frac{t e^{-t}}{(t-x)^2+y^2} dt = 1.$

Let c_0 be the positive constant determined by

$$\int_0^\infty \frac{t e^{-t}}{(t+c_0)^2} \, \mathrm{d}t = 1, \quad \text{i.e.} \quad c_0 = 0.139688.$$

For any x in $[-c_0, \infty)$ there is a unique positive number y = v(x), such that

$$\int_0^\infty \frac{t e^{-t}}{(t-x)^2 + y^2} \, \mathrm{d}t = 1.$$

- **₹ ≣ ≻** - €

General free Gamma's

The curve: $\int_0^\infty \frac{t e^{-t}}{(t-x)^2+y^2} dt = 1.$

The free exponential distribution (continued)

The free exponential distribution ν is absolutely continuous with density given implicitly by

$$f_{\nu}(P(x)) = rac{1}{\pi} rac{v(x)}{x^2 + v(x)}, \qquad (x \in [-c_0,\infty)),$$

The free exponential distribution (continued)

The free exponential distribution $\boldsymbol{\nu}$ is absolutely continuous with density given implicitly by

$$f_{\nu}(P(x)) = rac{1}{\pi} rac{v(x)}{x^2 + v(x)}, \qquad (x \in [-c_0, \infty)),$$

where

۲

$$P(x) = H(x + iv(x)) = \begin{cases} x + 1 + \int_0^\infty \frac{te^{-t}}{x - t} dt, & \text{if } x < -c_0 \\ 2x + 1 - \int_0^\infty \frac{t^2 e^{-t}}{(x - t)^2 + v(x)^2} dt, & \text{if } x \ge -c_0 \end{cases}$$

The free exponential distribution (continued)

The free exponential distribution $\boldsymbol{\nu}$ is absolutely continuous with density given implicitly by

$$f_{\nu}(P(x)) = rac{1}{\pi} rac{v(x)}{x^2 + v(x)}, \qquad (x \in [-c_0, \infty)),$$

where

۲

$$P(x) = H(x + iv(x)) = \begin{cases} x + 1 + \int_0^\infty \frac{te^{-t}}{x - t} dt, & \text{if } x < -c_0 \\ 2x + 1 - \int_0^\infty \frac{t^2 e^{-t}}{(x - t)^2 + v(x)^2} dt, & \text{if } x \ge -c_0 \end{cases}$$

• *P* is a strictly increasing bijection of \mathbb{R} onto \mathbb{R} , and $\lim_{x\to\infty}(x+1-P(x))=0.$

The free exponential distribution (continued)

The free exponential distribution ν is absolutely continuous with density given implicitly by

$$f_{\nu}(P(x)) = rac{1}{\pi} rac{v(x)}{x^2 + v(x)}, \qquad (x \in [-c_0,\infty)),$$

where

۲

$$P(x) = H(x + iv(x)) = \begin{cases} x + 1 + \int_0^\infty \frac{te^{-t}}{x - t} dt, & \text{if } x < -c_0 \\ 2x + 1 - \int_0^\infty \frac{t^2 e^{-t}}{(x - t)^2 + v(x)^2} dt, & \text{if } x \ge -c_0 \end{cases}$$

- *P* is a strictly increasing bijection of \mathbb{R} onto \mathbb{R} , and $\lim_{x\to\infty}(x+1-P(x))=0.$
- $P(-c_0) \approx 0.1054$.

The free exponential distribution

Unimodality

General free Gamma's

The free exponential distribution (continued)

The free exponential distribution ν is absolutely continuous with density given implicitly by

$$f_{\nu}(P(x)) = rac{1}{\pi} rac{v(x)}{x^2 + v(x)}, \qquad (x \in [-c_0,\infty)),$$

where

۲

$$P(x) = H(x + iv(x)) = \begin{cases} x + 1 + \int_0^\infty \frac{te^{-t}}{x - t} dt, & \text{if } x < -c_0 \\ 2x + 1 - \int_0^\infty \frac{t^2 e^{-t}}{(x - t)^2 + v(x)^2} dt, & \text{if } x \ge -c_0 \end{cases}$$

- *P* is a strictly increasing bijection of \mathbb{R} onto \mathbb{R} , and $\lim_{x\to\infty}(x+1-P(x))=0.$
- $P(-c_0) \approx 0.1054.$
- ν has support [0.1054, ∞).

The density of the free exponential distribution

The density of the free exponential distribution

General free Gamma's

Asymptotic behavior of the free exponential distribution

The asymptotic behavior of $f_{\nu}(\xi)$ as $\xi \to \infty$ is given by

$$\frac{f_\nu(\xi)}{\xi^{-1}\mathrm{e}^\xi} \longrightarrow \mathrm{e} \quad \text{as } \xi \to \infty.$$

General free Gamma's

Asymptotic behavior of the free exponential distribution

The asymptotic behavior of $f_{\nu}(\xi)$ as $\xi \to \infty$ is given by

$$\frac{f_\nu(\xi)}{\xi^{-1}\mathrm{e}^\xi} \longrightarrow \mathrm{e} \quad \text{as } \xi \to \infty.$$

In particular ν has moments of any order.

General free Gamma's

Asymptotic behavior of the free exponential distribution

The asymptotic behavior of $f_{\nu}(\xi)$ as $\xi \to \infty$ is given by

$$rac{f_
u(\xi)}{\xi^{-1}\mathrm{e}^\xi} \longrightarrow \mathrm{e} \quad \mathrm{as} \; \xi o \infty.$$

In particular ν has moments of any order.

At the lower bound $s_0 := \inf \operatorname{supp}(\nu) = P(-c_0)$, we have that

$$f_
u(\xi) = rac{\sqrt{2}}{\pi c_0 \sqrt{s_0 - c_0^2}} (\xi - s_0)^{1/2} + o(\xi - s_0), \quad ext{as } \xi \downarrow s_0.$$

(ロ) (聞) (臣) (臣) (臣) のへで

A measure μ on $\mathbb R$ is called unimodal, if, for some a in $\mathbb R,$ it has the form

$$\mu = \mu(\{a\})\delta_a + f(x)\,\mathrm{d}x,$$

where f is increasing on $(-\infty, a)$ and decreasing on (a, ∞) .

A measure μ on $\mathbb R$ is called *unimodal*, if, for some a in $\mathbb R,$ it has the form

$$\mu = \mu(\{a\})\delta_a + f(x)\,\mathrm{d}x,$$

where f is increasing on $(-\infty, a)$ and decreasing on (a, ∞) .

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

A measure μ on $\mathbb R$ is called *unimodal*, if, for some a in $\mathbb R,$ it has the form

$$\mu = \mu(\{a\})\delta_a + f(x)\,\mathrm{d}x,$$

where f is increasing on $(-\infty, a)$ and decreasing on (a, ∞) .

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

Theorem [Biane '98]. All ⊞-stable probability measures are unimodal.

A measure μ on $\mathbb R$ is called *unimodal*, if, for some a in $\mathbb R,$ it has the form

$$\mu = \mu(\{a\})\delta_a + f(x)\,\mathrm{d}x,$$

where f is increasing on $(-\infty, a)$ and decreasing on (a, ∞) .

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

Theorem [Biane '98]. All ⊞-stable probability measures are unimodal.

Question: Are all \boxplus -selfdecomposable probability measures unimodal?

A measure μ on $\mathbb R$ is called unimodal, if, for some a in $\mathbb R,$ it has the form

$$\mu = \mu(\{a\})\delta_a + f(x)\,\mathrm{d}x,$$

where f is increasing on $(-\infty, a)$ and decreasing on (a, ∞) .

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

Theorem [Biane '98]. All ⊞-stable probability measures are unimodal.

Question: Are all \boxplus -selfdecomposable probability measures unimodal?

Theorem [Haagerup+T '11] The free gamma distributions are unimodal.

Sketch of proof of unimodality

It suffices to show that for any ρ in $(0,\infty)$ the equality:

$$f_{\nu}(\xi) =
ho, \qquad (\xi \in (s_0, \infty))$$

has at most 2 solutions,

Sketch of proof of unimodality

It suffices to show that for any ρ in $(0,\infty)$ the equality:

$$f_{\nu}(\xi) =
ho, \qquad (\xi \in (s_0, \infty))$$

has at most 2 solutions, or equivalently that

$$\rho = f_{\nu}(P(x)) = -\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{x + \operatorname{i} v(x)}\right), \qquad (x \in (-c_0, \infty))$$

has at most 2 solutions.

Sketch of proof of unimodality

It suffices to show that for any ρ in $(0,\infty)$ the equality:

$$f_{\nu}(\xi) =
ho, \qquad (\xi \in (s_0, \infty))$$

has at most 2 solutions, or equivalently that

$$\rho = f_{\nu}(\mathcal{P}(x)) = -\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{x + \mathrm{i}v(x)}\right), \qquad (x \in (-c_0, \infty))$$

has at most 2 solutions.

Note that

$$\left\{z \in \mathbb{C}^+ \mid -\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{z}\right) = \rho\right\} = \operatorname{Circle}\left(\frac{1}{2\pi\rho}\mathrm{i}, \frac{1}{2\pi\rho}\right) =: C_{\rho}.$$

Sketch of proof of unimodality

It suffices to show that for any ρ in $(0,\infty)$ the equality:

$$f_{\nu}(\xi) =
ho, \qquad (\xi \in (s_0, \infty))$$

has at most 2 solutions, or equivalently that

$$\rho = f_{\nu}(\mathcal{P}(x)) = -\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{x + \operatorname{i} v(x)}\right), \qquad (x \in (-c_0, \infty))$$

has at most 2 solutions.

Note that

$$\left\{z \in \mathbb{C}^+ \mid -\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{z}\right) = \rho\right\} = \operatorname{Circle}\left(\frac{1}{2\pi\rho}\mathrm{i}, \frac{1}{2\pi\rho}\right) =: C_{\rho}.$$

Hence we want to show that

$$\#(\mathit{C}_{\rho}\cap \mathrm{Graph}(v))\leq 2.$$

Unimodality

米部ト 米油ト 米油ト

Sketch of proof of unimodality (continued)

In polar coordinates:

$$C_{\rho} = \left\{ \frac{1}{\pi \rho} \sin(\theta) \mathrm{e}^{\mathrm{i}\theta} \mid \theta \in (0, \pi] \right\}.$$

Sketch of proof of unimodality (continued)

In polar coordinates:

$$C_{\rho} = \left\{ \frac{1}{\pi \rho} \sin(\theta) \mathrm{e}^{\mathrm{i}\theta} \mid \theta \in (0, \pi] \right\}.$$

Recall also that

$$\mathsf{Graph}(v) = \{x + \mathrm{i}y \in \mathbb{C}^+ \mid F(x + \mathrm{i}y) = 1\},\$$

where

$$F(x,y) = \int_0^\infty \frac{t \mathrm{e}^{-t}}{(t-x)^2 + y^2} \,\mathrm{d}t.$$

(ロ > 《 母 > 《 母 > 《 母 > (母) のへで

Sketch of proof of unimodality (continued)

In polar coordinates:

$$C_{\rho} = \left\{ \frac{1}{\pi \rho} \sin(\theta) \mathrm{e}^{\mathrm{i}\theta} \mid \theta \in (0, \pi] \right\}.$$

Recall also that

$$\mathsf{Graph}(\nu) = \{x + \mathrm{i}y \in \mathbb{C}^+ \mid F(x + \mathrm{i}y) = 1\},\$$

where

$$F(x,y) = \int_0^\infty \frac{t \mathrm{e}^{-t}}{(t-x)^2 + y^2} \,\mathrm{d}t.$$

Hence we need to show that

$$F(rac{1}{\pi
ho}\sin(heta)\mathrm{e}^{\mathrm{i} heta})=1,\qquad (heta\in(0,\pi])$$

has at most 2 solutions.

Sketch of proof of unimodality (continued)

In polar coordinates:

$$C_{\rho} = \left\{ \frac{1}{\pi \rho} \sin(\theta) \mathrm{e}^{\mathrm{i}\theta} \mid \theta \in (0, \pi] \right\}.$$

Recall also that

$$\mathsf{Graph}(\nu) = \{x + \mathrm{i}y \in \mathbb{C}^+ \mid F(x + \mathrm{i}y) = 1\},\$$

where

$$F(x,y) = \int_0^\infty \frac{t \mathrm{e}^{-t}}{(t-x)^2 + y^2} \,\mathrm{d}t.$$

Hence we need to show that

$$F(rac{1}{\pi
ho}\sin(heta)\mathrm{e}^{\mathrm{i} heta})=1,\qquad (heta\in(0,\pi])$$

has at most 2 solutions.

By changes of variables and differentiation under the integral sign, one may verify that the function $\theta \mapsto F(\frac{1}{\pi\rho}\sin(\theta)e^{i\theta})$ is strictly decreasing on $(0, \theta_0]$ and strictly increasing on $[\theta_0, \pi]$ for some θ_0 .

General free Gamma's

The classical Gamma distribution μ_{α} with parameter α is given by

$$\mu_{\alpha}(\mathrm{d} x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-x} \mathbb{1}_{[0,\infty)}(x) \,\mathrm{d} x.$$

General free Gamma's

The classical Gamma distribution μ_{α} with parameter α is given by

$$\mu_{\alpha}(\mathrm{d} x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-x} \mathbb{1}_{[0,\infty)}(x) \,\mathrm{d} x.$$

Setting $\nu_{\alpha} = \Lambda(\mu_{\alpha})$ we have that

General free Gamma's

The classical Gamma distribution μ_{α} with parameter α is given by

$$\mu_{\alpha}(\mathrm{d} x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-x} \mathbb{1}_{[0,\infty)}(x) \,\mathrm{d} x.$$

Setting $u_{\alpha} = \Lambda(\mu_{\alpha})$ we have that

• ν_{α} is absolutely continuous with a unimodal and analytical density f_{α} .

General free Gamma's

The classical Gamma distribution μ_{α} with parameter α is given by

$$\mu_{\alpha}(\mathrm{d} x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-x} \mathbb{1}_{[0,\infty)}(x) \,\mathrm{d} x.$$

Setting $u_{\alpha} = \Lambda(\mu_{\alpha})$ we have that

- ν_{α} is absolutely continuous with a unimodal and analytical density f_{α} .
- 2 the support of ν_α has the form [s_α, ∞) for some strictly positive number s_α.

General free Gamma's

The classical Gamma distribution μ_{α} with parameter α is given by

$$\mu_{\alpha}(\mathrm{d} x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-x} \mathbb{1}_{[0,\infty)}(x) \,\mathrm{d} x.$$

Setting $u_{\alpha} = \Lambda(\mu_{\alpha})$ we have that

- ν_{α} is absolutely continuous with a unimodal and analytical density f_{α} .
- 2 the support of ν_α has the form [s_α, ∞) for some strictly positive number s_α.
- s_{α} increases strictly with α , and $\lim_{\alpha \to 0} s_{\alpha} = 0$, $\lim_{\alpha \to \infty} s_{\alpha} = \infty$.

General free Gamma's

The classical Gamma distribution μ_{α} with parameter α is given by

$$\mu_{\alpha}(\mathrm{d} x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-x} \mathbb{1}_{[0,\infty)}(x) \,\mathrm{d} x.$$

Setting $u_{\alpha} = \Lambda(\mu_{\alpha})$ we have that

- ν_{α} is absolutely continuous with a unimodal and analytical density f_{α} .
- 2 the support of ν_α has the form [s_α, ∞) for some strictly positive number s_α.
- s_{α} increases strictly with α , and $\lim_{\alpha \to 0} s_{\alpha} = 0$, $\lim_{\alpha \to \infty} s_{\alpha} = \infty$.

$$\lim_{\xi \to \infty} \frac{f_{\alpha}(\xi)}{\xi^{-1}e^{-\xi}} = \alpha e^{\alpha}, \quad \text{and} \quad \lim_{\xi \downarrow s_{\alpha}} \frac{f_{\alpha}(\xi)}{\sqrt{\xi - s_{\alpha}}} = \frac{\sqrt{2}}{\pi c_{\alpha}\sqrt{s_{\alpha} - c_{\alpha}^{2}}}.$$

General free Gamma's

Graphs of f_{α} for $\alpha = \frac{1}{2}, 1, 2, 10$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Asymptotic behavior as $\alpha \downarrow 0$

(i) For any p in \mathbb{N} we have that

$$\frac{1}{\alpha}\int_0^\infty t^p\,\nu_\alpha(\mathrm{d} t)\longrightarrow \int_0^\infty t^{p-1}\mathrm{e}^{-t}\,\mathrm{d} t\quad\text{as }\alpha\downarrow 0.$$

Asymptotic behavior as $\alpha \downarrow 0$

(i) For any p in \mathbb{N} we have that

$$\frac{1}{\alpha}\int_0^\infty t^p\,\nu_\alpha(\mathrm{d} t)\longrightarrow \int_0^\infty t^{p-1}\mathrm{e}^{-t}\,\mathrm{d} t\quad\text{as }\alpha\downarrow 0.$$

(ii) For any t in $(0,\infty)$ we have that

$$rac{f_{lpha}(t)}{lpha} \longrightarrow t^{-1} \mathrm{e}^{-t} \quad ext{as } lpha \downarrow 0.$$

▲ロ ▶ ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ● ●

Proof of convergence in moments

The (classical) cumulant transform of μ_{α} is given by

$$\log(\hat{\mu}_{\alpha}(u)) = \alpha \int_0^\infty (\mathrm{e}^{\mathrm{i} u t} - 1) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d} t = \alpha \sum_{p=1}^\infty \frac{\mathrm{i}^p (p-1)!}{p!} u^p.$$

Proof of convergence in moments

The (classical) cumulant transform of μ_{α} is given by

$$\log(\hat{\mu}_{\alpha}(u)) = \alpha \int_0^\infty (\mathrm{e}^{\mathrm{i}ut} - 1) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t = \alpha \sum_{p=1}^\infty \frac{\mathrm{i}^p (p-1)!}{p!} u^p.$$

Hence for any p in \mathbb{N}

 $r_p(\alpha) := p$ 'th free cuml. of $\nu_{\alpha} = p$ 'th class. cuml. of $\mu_{\alpha} = \alpha(p-1)!$

Proof of convergence in moments

The (classical) cumulant transform of μ_{α} is given by

$$\log(\hat{\mu}_{\alpha}(u)) = \alpha \int_{0}^{\infty} (\mathrm{e}^{\mathrm{i}ut} - 1) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t = \alpha \sum_{p=1}^{\infty} \frac{\mathrm{i}^{p}(p-1)!}{p!} u^{p}.$$

Hence for any p in \mathbb{N}

 $r_p(\alpha) := p$ 'th free cuml. of $\nu_{\alpha} = p$ 'th class. cuml. of $\mu_{\alpha} = \alpha(p-1)!$ By the moment-cumulant formula it follows that

$$\int_0^\infty t^p \nu_\alpha(\mathrm{d}t) = r_p(\alpha) + \sum_{k=2}^p \frac{1}{k} \binom{p}{k-1} \sum_{\substack{q_1,\dots,q_k \ge 1\\ q_1+\dots+q_k=p}} r_{q_1}(\alpha) r_{q_2}(\alpha) \cdots r_{q_k}(\alpha)$$

= polynomial in α with no const. term and linear term $\alpha(p-1)!$.

▲日▼ ▲雪▼ ▲画▼ ▲画▼ 一面 → ⊘⊘⊙

Proof of convergence in moments

The (classical) cumulant transform of μ_{α} is given by

$$\log(\hat{\mu}_{\alpha}(u)) = \alpha \int_{0}^{\infty} (\mathrm{e}^{\mathrm{i}ut} - 1) \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t = \alpha \sum_{p=1}^{\infty} \frac{\mathrm{i}^{p}(p-1)!}{p!} u^{p}.$$

Hence for any p in \mathbb{N}

 $r_p(\alpha) := p$ 'th free cuml. of $\nu_{\alpha} = p$ 'th class. cuml. of $\mu_{\alpha} = \alpha(p-1)!$ By the moment-cumulant formula it follows that

$$\int_0^\infty t^p \nu_\alpha(\mathrm{d}t) = r_p(\alpha) + \sum_{k=2}^p \frac{1}{k} \binom{p}{k-1} \sum_{\substack{q_1,\dots,q_k \ge 1\\ q_1+\dots+q_k=p}} r_{q_1}(\alpha) r_{q_2}(\alpha) \cdots r_{q_k}(\alpha)$$

= polynomial in α with no const. term and linear term $\alpha(p-1)!$. Hence

$$\frac{1}{\alpha} \int_0^\infty t^p \,\nu(\mathrm{d} t) \xrightarrow[\alpha \to 0]{} (p-1)! = \int_0^\infty t^{p-1} \mathrm{e}^{-t} \,\mathrm{d} t.$$