Partitions and Quantum Groups

Moritz Weber (joint with Sven Raum, joint with Amaury Freslon)

Fields Institute, Workshop on Free Probability July 22, 2013

< 67 ▶

Compact Matrix Quantum Groups & Easy QG's

One possible motivation for quantum groups (C^* -alg. approach) Symmetries of a (compact) space X: group (G, \circ) acting on X dualization: (C(G), Δ) coacting on C(X)noncommutative version: quantum group coacting on a C^* -algebra

Definition (Woronowicz 87)

Let $n \in \mathbb{N}$. A compact matrix quantum group consists of

- a unital C*-algebra A
- generated by elements u_{ij} , $1 \le i, j \le n$ (*-algebra is dense)
- such that $u = (u_{ij})$ and $u^t = (u_{ji})$ are invertible
- and a *-homomorphism $\Delta : A \to A \otimes_{\min} A$, $u_{ij} \mapsto \sum_k u_{ik} \otimes u_{kj}$

Remark: comp. matrix $QG \Rightarrow$ compact QG, Haar state exists.

- - E + - E +

Ex. 1: Orthogonal group $O_n \subseteq M_n(\mathbb{C})$ \rightsquigarrow free orthogonal quantum group O_n^+ [Wang 95]

$$\begin{aligned} \mathcal{C}(O_n) &= C^*(u_{ij}, 1 \le i, j \le n \mid u_{ij} = u_{ij}^*, uu^t = u^t u = 1, u_{ij} u_{kl} = u_{kl} u_{ij}) \\ \mathcal{C}(O_n^+) &\coloneqq A_o(n) \coloneqq C^*(u_{ij}, 1 \le i, j \le n \mid u_{ij} = u_{ij}^*, uu^t = u^t u = 1) \end{aligned}$$

Note: matrix multiplication $\circ : O_n \times O_n \to O_n$ translates to comultiplication $\Delta : \mathcal{C}(O_n) \to \mathcal{C}(O_n) \otimes \mathcal{C}(O_n)$

Ex. 2: permutation group $S_n \subseteq M_n(\mathbb{C})$ \rightsquigarrow quantum permutation group S_n^+ [Wang 98]

$$\mathcal{C}(S_n) = C^*(u_{ij} \mid u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{kj} = 1, u_{ij}u_{kl} = u_{kl}u_{ij})$$
$$\mathcal{C}(S_n^+) \coloneqq A_s(n) \coloneqq C^*(u_{ij} \mid u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{kj} = 1)$$

Woronowicz' Tannaka-Krein result [Woronowicz 88]: Study *intertwiner space* of a compact matrix QG G ($\forall k, l \in \mathbb{N}_0$).

$$\operatorname{Hom}_{G}(k, I) = \{T : (\mathbb{C}^{n})^{\otimes k} \to (\mathbb{C}^{n})^{\otimes I} \text{ linear } | Tu^{\otimes k} = u^{\otimes I}T\}$$

Idea of indexing the maps T by partitions [Brauer 37]. Let $p \in P(k, I)$ be a partition on k upper and I lower points.

$$T_{p}(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}) \coloneqq n^{-\frac{1}{2}\beta(p)} \sum_{j_{1},\ldots,j_{l}} \delta_{p}(i,j) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}$$

We have:

$$\begin{aligned} & \operatorname{Hom}_{O_n}(k, l) = \operatorname{span}\{T_p \mid p \in P_{\operatorname{pair}}(k, l)\} \\ & \operatorname{Hom}_{O_n^+}(k, l) = \operatorname{span}\{T_p \mid p \in NC_{\operatorname{pair}}(k, l)\} \\ & \operatorname{Hom}_{S_n}(k, l) = \operatorname{span}\{T_p \mid p \in P(k, l)\} \\ & \operatorname{Hom}_{S_n^+}(k, l) = \operatorname{span}\{T_p \mid p \in NC(k, l)\} \end{aligned}$$

Definition (Banica, Speicher 09)

A compact matrix quantum group $S_n \subseteq G \subseteq O_n^+$ is called *easy* (or: *partition quantum group*), if

 $\operatorname{Hom}_{G}(k, l) = \operatorname{span}\{T_{p} \mid p \in \mathcal{C}(k, l)\}, \quad \text{for all } k, l \in \mathbb{N}_{0}$

for a collection C of subsets $C(k, l) \subseteq P(k, l)$, $k, l \in \mathbb{N}_0$.

The set C is a *category of partitions* (since Hom_G is a tensor cat.):

- $p, q \in \mathcal{C} \Rightarrow p \otimes q \in \mathcal{C}$ (horizontal concat., $T_p \otimes T_q = T_{p \otimes q}$)
- $p, q \in \mathcal{C} \Rightarrow pq \in \mathcal{C}$ (vertical concat., $T_p T_q = n^{-\gamma(p,q)} T_{pq}$)
- $p \in \mathcal{C} \Rightarrow p^* \in \mathcal{C}$ (upside-down, $(T_p)^* = T_{p^*}$)
- $\sqcap \in P(0,2)$ and $\mid \in P(1,1)$ are in C

・ロト ・同ト ・ヨト ・ヨト

Why are easy quantum groups interesting (in free prob.)?

- Their **combinatorics** is given by partitions (all: group case, noncrossing: free case; but: more than *P* vs. *NC*)
- Give rise to appropriate symmetries (**de Finetti** theorems etc. [Köstler, Speicher, Banica, Curran])
- envelopping von Neumann algebras are somehow related to $L\mathbb{F}_n$ ($G = O_n^+, U_n^+$ [Vaes, Vergnioux, Banica, Brannan, Freslon, Isono,...])
- **stochastic aspects** (Diaconis-Shahshahani type results, distributions of characters etc. [Banica, Curran, Speicher, Belinschi, Capitaine, Collins,...])

・ロト ・同ト ・ヨト ・ヨト

Classification of easy QG's

- ∃! 7 free easy QG's (categories noncrossing)
 [Banica, Speicher 09, W. 13; (Banica, Bichon, Collins 07)]
- ∃! 6 easy groups (categ. containing \ ∈ P(2,2), u_{ij}u_{kl} = u_{kl}u_{ij}) [Banica, Speicher 09]
- ∃! 3 half-liberated easy QG's & one infinite series (categories containing ★ ∈ P(3,3), u_{ij}u_{kl}u_{st} = u_{st}u_{kl}u_{ij}) [Banica, Curran, Speicher 10, W. 13]
- ∃! 13 *non-hyperoctahedral* easy QG's (~ categories containing singletons as blocks) [Banica, Curran, Speicher 10, W. 13]
- hyperoctahedral case: [Raum, W. 12 & 13]

・ロト ・同ト ・ヨト ・ヨト

Details on the hyperoctahedral case (joint with Sven Raum)

Let: *G* easy QG, *C* associated categ. of partitions, no singletons. *Case 1.* [Raum, W. 12] $\sqcup_{f \sqcap} \in C$, i.e. $u_{ij}u_{kl}^2 = u_{kl}^2u_{ij}$. Obtain a **group structure** out of *C*:

- Label the blocks of the partitions $p \in C$ by letters a_1, a_2, \ldots
- Need only those *p* whith mutually different neighbouring letters
- Obtain a subgroup F(C) ⊆ Z₂^{*∞}, invariant under certain endomorphism actions (gh ≃ p ⊗ q, g⁻¹ ≃ p^{*}, end. actions ≃ pq and others)
- Yields lattice isomorphism F between class of such categories of partitions and certain subgroups of Z₂^{*∞} ⇒ Classification of easy QG = Classif. of those subgroups (huge class)

イロト イポト イラト イラト

- In particular: Lattice injection of the class of non-empty varieties of groups (uncountably many) into easy QG's
 ⇒ easy QG's form a rich class!
- Link to quantum isometry groups/ symmetric reflection groups: Let *H* be an "appropriate" subgroup of Z₂^{*∞} and consider C^{*}_{max}(Z₂^{*n}/(*H*)_n). The maximal quantum subgroup of H_n^[∞] (corresponding to the category generated by ⊔/_□) acting faithfully and isometrically on this C*-algebra is exactly imposed by the category F⁻¹(*H*).

Case 2. [Raum, W. 13, coming soon] $\sqcup \not \vdash_{\Box} \notin C$, but $X \in C$, i.e. $u_{ij}^2 u_{kl}^2 = u_{kl}^2 u_{ij}^2$. (Almost) purely combinatoric.

イロト イポト イラト イラト

Fusion rules of easy QG's (joint with Amaury Freslon)

Repr.: $(u_{st}^{\alpha}) \in M_{n_{\alpha}}(\mathbb{C}) \otimes C(G)$ unitary s.t. $\Delta(u_{st}^{\alpha}) = \sum_{r} u_{sr}^{\alpha} \otimes u_{rt}^{\alpha}$ Woronowicz: (u_{st}^{α}) decomposes into a direct sum of irr. rep.'s u^{α} , u^{β} irr. rep's $\Rightarrow u^{\alpha} \otimes u^{\beta} = \sum_{\gamma} u^{\gamma}$ fusion rules (= "group law")

Fusion rules for S_n^+ and O_n^+ are known [Banica 90's], but we can now treat all easy QG's uniformly, using partitions! [Freslon, W. 13, coming soon]

 $p = p^* = pp \in C(k, k)$ projective partition $\Rightarrow T_p$ projection $u_p := (id \otimes P_p)u^{\otimes k}$, where $P_p := T_p - \bigvee T_q$ and $q \in C(k, k)$ runs through all projective partitions s.t. $pq = q \neq p$ (i.e. q < p)

イロト イポト イラト イラト

In general, u_p is *not* irreducible, but $\operatorname{Aut}(u_p) \cong \bigoplus_{\alpha \in J(p)} M_{n_\alpha}(\mathbb{C})$, where $\mathbb{C}[\operatorname{Sym}_{\mathcal{C}}(p)] = \bigoplus_{\alpha \in J(p) \cup I(p)} M_{n_\alpha}(\mathbb{C})$, and $\operatorname{Sym}_{\mathcal{C}}(p) \subseteq S_m$. S_n^+, O_n^+ : $\operatorname{Sym}_{\mathcal{C}}(p)$ is trivial, hence u_p irred.

 $u_p \otimes u_q = \sum_m u_m$, where *m* runs through all partitions $p *_h q \in C$ S_n^+, O_n^+ : partitions $h \in NC$ only of two/one kind

 u_p, u_q unitarily equivalent iff $p = r^*r, q = rr^*$ for some $r \in C$ iff $\#\{\text{through-blocks}(p)\} = \#\{\text{thr.-blocks}(q)\} \Rightarrow \text{indexed by } \mathbb{N}_0$

$$S_n^+: u_k \otimes u_l = u_{|k-l|} \oplus u_{|k-l|+1} \oplus \dots \oplus u_{k+l-1} \oplus u_{k+l}$$
$$O_n^+: u_k \otimes u_l = u_{|k-l|} \oplus u_{|k-l|+2} \oplus \dots \oplus u_{k+l-2} \oplus u_{k+l}$$

・ロト ・得ト ・ヨト ・ヨト

Summary/ work in progress

- [W. 13]: On the classification of free (noncrossing partitions), half-liberated ($u_{ij}u_{kl}u_{st} = u_{st}u_{kl}u_{ij}$) and non-hyperoctahedral ("containing singletons") easy QG's
- [Raum, W. 12]: classification in the hyperoctahedral case I (u_{ij} u²_{kl} = u²_{kl}u_{ij}, subgroups of Z^{*∞}₂)
- [Raum, W. 13, coming soon]: hyperoctahedral case II $(u_{ij}^2 u_{kl}^2 = u_{kl}^2 u_{ij}^2)$, completing the classification
- [Freslon, W. 13, coming soon]: Fusion rules for all easy QG, using partitions
- [Tarrago, W., work in progress]: Unitary easy QG (u_{ij} ≠ u^{*}_{ij}, using colored partitions)

・ロト ・得ト ・ヨト ・ヨト