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Introduction and some definitions
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Topic 1

Let µ and ν be two compactly supported probability mesures on R.

We consider the time evolutions µt and νt (µ0 = µ, ν0 = ν) by the
free Fokker-Planck equation.

We calculate the time derivative

d

dt

(
W2(µt , νt)

)2

with Brenier map (the optimal transport map).
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We will see

the convergence and uniqueness of the long time asymptotic
stationary measure νV of the free Fokker-Planck equation,

and show

some inequalities between the L2 Wasseretein distance and the
relative free Fisher information.

�

µ0

�

ν0

�

νV

�
µt

�νt

���
Tt
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Topic 2

We consider the time evolution µt (µ0 = µ) by the free
Fokker-Planck equation.

We calculate the time derivatives (free entropy dissipations)

d

dt
Σ

(
µt | νV

)
and

d

dt
Φ

(
µt | νV

)
,

where the reference measure νV is stationary.
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We will see

the differential relation between the relative free entropy and the
relative free Fisher information and convergence of µt to the
stationary measure in the relative free entropy,

and show

the free logarithmic Sobolev and the free transpotation cost
inequalities by time integration.

The results in the first two topics are not new, but the proofs are a
little different at time integration.
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Topic 3

We consider the time evolutions µt and νt by semicircular
purterbations, which corresponds to the case of the free
Fokker-Planck equation with null potential.

We calculate the time derivative of the relative free entropy

d

dt
Σ

(
µt | νt

)
,

where the reference measure νt is moving!
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We will see

the differential relation between the relative free entropy and the
relative free Fisher information,

and recover

in case of the reference measure being semicircular, the formula for
the micro states free approach to the free entropy of Voiculescu by
time integration.
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Matrix valued diffusion

Let V : R → R be an analytic function, and consider the
stochastic differential equation on N × N Hermitian matrices HN

dXt =
1√
N

dBt − 1
2 ∇TrV

(
Xt

)
dt,

that is, HN -valued diffusion process, where Bt is the standard
Brownian motion on HN and ∇ denotes the gradient operator.

Note that ∇TrV
(
Xt

)
can be written as V ′(Xt

)
.
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Eigenvalues of the Xt

The eigenvalues
(
λ1(t), λ2(t), . . . , λN(t)

)
of the matrix Xt satisfy

the SDE

dλi (t) =
1√
N

dWi(t) +
1

N

∑
j:j �=i

1

λi (t) − λj(t)
dt − 1

2 V ′(λi (t)) dt

i = i , 2, . . . , N .

where the Wi(t) are independent one dimensional Brownian
motions.

The process λN(t) =
(
λ1(t), λ2(t), . . . , λN(t)

)
is called the

generalized Dyson Brownian motion with potential V in physists.
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N-particles system

This process can be modeled as an intracting N-particles
(electrons) system with the logarithmic Coulomb interaction and
the external potential V , and hence, the Hamiltonian of the
system is given of the form

H(x1, x2, . . . , xN) = − 1
2

(
1

N

i=1∑
N

∑
i �=j

log
∣∣xi − xj

∣∣ − N∑
i=1

V (xi )

)
.
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The McKean-Vlasov equation

We assume the empirical measures of eigenvalues

LN(t) =
1

N

N∑
i=1

δλi (t).

weakly converges, as N → ∞, to some limit distribution µt .

Then the measure µt is given as a weak solution of the non-linear
partial differential equation:

d

dt

∫
R

f (x)µt(dx) =
1

2

∫∫
R2

∂x f (x) − ∂y f (y)

x − y
µt(dx)µt(dy)

− 1
2

∫
R

V ′(X )f ′(x)µt(dx),

where f is the test function in C 2
b

(
R

)
, which is called the

McKean-Vlasov equation.
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The free Fokker-Planck equation

Suppose that µt is absolutely continuous w.r.t. the Lebesgue
measure dx and denote its density by ρt .

Then ρt satisfies the free Fokker-Planck equation:

∂

∂t
ρt = − ∂

∂x

(
ρt

((Hρt

)
(x) − 1

2 V ′(x)
))

.

Here,
(Hρt

)
is the Hilbert transform(×π), which is defined by the

principal value integral

(Hf
)
(x) = p.v .

∫
R

f (y)

x − y
dy = lim

ε→0

( ∫ x−ε

−∞
+

∫ ∞

x+ε

f (y)

x − y
dy

)
for a probability density function f .
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Characterization of the measure µt

In order to characterize the measure µt , it is enough to use the
test functions f (x) = (z − x)−1, instead of using all test function
f ∈ C 2

b

(
R

)
in the McKean-Vlasov equation.

Indeed, let

Gt(z) =

∫
R

µt(dx)

z − x

be the Cauchy transform of µt . Then we can find that Gt(z)
satisfies

∂

∂t
Gt(z) = −Gt(z)

∂

∂z
Gt(z) − 1

2

∫
R

V ′(x)

(z − x)2
µt(dx).
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The PDE for free Ornstein-Uhlenbeck process

As the special case, if we put V (x) =
x2

2
, since

−
∫

R

x

(z − x)2
µt(dx) = z

∂

∂z
Gt(z) + Gt(z),

we obtain

∂

∂t
Gt(z) =

( − Gt(z) +
1
2 z

) ∂

∂z
Gt(z) +

1
2 Gt(z),

which corresponds to the case of the free Ornstein-Uhlenbeck
process.
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The free Ornstein-Uhlenbeck process

The free Ornstein-Uhlenbeck process

Let (M, τ) be a W ∗-probability space. Let X ∈ M be a
self-adjoint operator and S ∈ M be a standard semi-circular
element freely independent of X in (M, τ).
Then the one parameter family

X̃ (t) =
√

e−tX +
√

1 − e−tS (t ≥ 0)

is called the free Ornstein-Uhlenbeck process,

which is investigated in Biane and Speicher for the free LSI and in
Biane and Voiculescu for the free TCI.

The Cauchy transform of Gt(Z ) of X̃ (t) satisfies the above PDE.
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free entropy functional

Let V be a C 1 function on R. The logarithmic energy with the
potential V for a probability measure µ on R is defined by

ΣV (µ) = −
∫∫

log |x − y | dµ(x) dµ(y) +

∫
V (x) dµ(x).

When V has a sufficient growth rate at infinity, there exists a
unique minimizer νV ∈ Prob(R) for the functional ΣV ( · ), which is
called the equilibrium measure of ΣV ( · ).
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Equilibrium measure

The measure νV has a compact support S , and is absolutely
continuous with respect to the Lebesgue measure, the density g of
which satisfies (Hg

)
(x) =

1
2

V ′(x) for all x ∈ S .

More precisely, there exists a constant C such that

V (x) =2

∫
R

log |x − y | g(y)dy + C for x ∈ S ,

V (x) ≥ 2

∫
R

log |x − y | g(y)dy + C for x ∈ R.
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The stationary measure of the free Fokker-Planck equation

Remark

The long-time asymptotically stationary measure of the free
Fokker-Planck equation with the potential V

∂

∂t
ρt = − ∂

∂x

(
ρt

((Hρt

)
(x) − 1

2
V ′(x)

))
,

is the equilibrium measure νV for the entropy functional ΣV ( · ).
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The relative free entropy

With the potential function V , we consider the functional ΣV . Let
νV be the equilibrium measure (unique minimizer) of ΣV .
Then the relative free entropy of µ with respect to νV is defined by

Definition (The relative free entropy)

Σ(µ | νV ) = ΣV (µ) −ΣV (νV ).
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The relative free Fisher information

The relative free Fisher information Φ(µ | νV ) of µ with respect to
νV is defined by

Definition (The relative free Fisher information)

Φ(µ | νV ) = 4

∫
R

(
(Hf )(x) − 1

2
V ′(x)

)2
f (x) dx ,

where f denotes the density of µ.

The definition can be slightly extended to a little more general case
that for two compactly supported probability measures µ and ν on
R with µ � ν.

Φ(µ | ν) = 4

∫
R

(
(Hf )(x) − (Hg)(x)

)2

f (x) dx ,

where f and g are density functions of µ and ν, respectively.
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The L2 Wasserstein distance

For two Borel probability measures µ and ν in R with finite second
moment, the L2-(or simply 2-) Wasserstein distance W2(µ, ν)
between µ and ν is defined by

Definition (The L2-Wasserstein distance)

W2(µ, ν) =

√
inf

π∈Π(µ,ν)

( ∫ ∣∣x − y
∣∣2dπ(x , y)

)
,

where Π(µ, ν) denotes the set of probability measures on R × R

with marginals µ and ν, respectively

There is at least one solution π ∈ Π(µ, ν) to this minimization
problem.
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The transport map and optimality

For two probability measures µ and ν on R, a map T : R −→ R

defined µ-almost everywhere is said to push µ forward to ν (or to
transport map of µ and ν) if for every Borel set B ∈ R,
ν
(
B

)
= µ

(
T−1(B)

)
, which is denoted by T#µ = ν.

A transport map T pushing µ forward to ν is said to be optimal if

W2(µ, ν)2 =

∫ ∣∣x − T (x)
∣∣2 dµ(x).
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Brenier’s Theorem

Theorem (Brenier)

If µ and ν have finite second moment, then there exists a map T
such that T#µ = ν, which realizes the optimal transport.
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The free LSI

The free logarithmic Sobolev inequality (free LSI)

Σ(µ | ν) ≤ 1

2K
Φ(µ | ν)

For semicircle laws ν by Biane and Speicher, for the equilibrium
measures of a strongly convex potential V by Biane via random
matrix approximation.
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The free TCI

The free transportation cost inequality (free TCI)

W2(µ | ν) ≤
√

1

K
Σ(µ | ν)

For semicircle laws ν by Biane and Voiculescu, for the equilibrium
measures νV of a strongly convex potential V by Hiai, Petz, and
Ueda via random matrix approximation.

Ledoux gave simpler proof of the free LSI and free TCI based on
free Brunn-Minkowski inequality, and also showed the free
analogue of Otto-Villani theorem.
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Mass transportation method

Ledoux and Popescu showed the free LSI and the free TCI for the
equilibrium measure νV of the strictly convex potential V by using
mass transportation method and convex analysis without random
matrix approximation. They also gave the free analogue of HWI
inequality.

The free HWI inequality

Σ(µ | ν) ≤
√

Φ(µ | ν) W2(µ | ν) − 1

2K
W2(µ | ν)2

The time parameter does not appear in their transport map.
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The time derivative of the L2-Wasserstein distance
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First our Situation

Let µt and νt be two solutions of the free Fokker-Planck equation
with initial data µ0 and ν0 in Pc

2 (R), and we denote by ft and gt

the density functions of µt and νt , respectively.

Let Tt be the optimal transport map, which pushes µt forward to
νt , that is. Tt#µt = νt for t ≥ 0.

The map T−1
t is the inverse transport of Tt , that is, µt = T−1

t #νt

for t ≥ 0.
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Time derivative of the square of the L2-Wasserstein distance

Then the time derivative of the square of the L2-Wasserstein
distance is given as

Theorem A

d

dt

(
W2(µt , νt)

2
)

= 2

∫ (
x − Tt(x)

) ((Hft
)
(x) − 1

2
V ′(x)

)
ft(x) dx

+ 2

∫ (
x − T−1

t (x)
) ((Hgt

)
(x) − 1

2
V ′(x)

)
gt(x) dx
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Proof of Th. A

This formula can be obtained by applying Otto’s calculus.
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The free analogue of the Stein relation

The following formula is frequently used in our calculation:

Lemma (The free Stein relation)

For a differentiable function η with bounded derivative, we have
the formula:

2

∫
η(x)

(Hf
)
(x) f (x) dx =

∫∫
η(x) − η(y)

x − y
f (x)f (y) dxdy .

It can be seen by direct calculation.
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Noncommutative derivative

Let X be a self-adjoint random variable in a C ∗-probability space
and denote the density of the distribution µ of X by f .

Then the Hilbert transform 2
(Hf

)
can be regarded as a free

analogue of the classical score function because ||2(Hf
)||2 the

square of L2 norm in L2(R, dµ) is the free Fisher information of X .
2
(Hf

)
corresponds to the conjugate variable.

Moreover the difference quotient

Dη =
η(x) − η(y)

x − y

is regarded as the non-commutative derivative.
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Compare to the classical Stein relation

The previous Lemma formula can be read as the free counterpart
of the classical Stein relation:

Classical Stein relation

EX

(
η(X ) ρX (X )

)
= −EX

(
η′(X )

)
,

where ρX is the classical score function and EX stands for the
expectation with respect to a classical random variable X .

We should also note that the sign of the free analogue of the score
function is opposite to the classical one.
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Decay of the L2-Wasserstein distance

Let µt and νt be the same as in Theorem A.

Theorem B

We assume that the potential function V is uniformly K-convex
with a positive constant K, namely, V ′′(x) ≥ K > 0 for x ∈ R.
Then we obtain

d

dt

(
W2(µt , νt)

2
)
≤ −K W2(µt , νt)

2.

Thus we have the exponential decay

W2(µt , νt) ≤ e−(K/2) t W2(µ0, ν0),

which means the uniqueness of the long-time asymptotic stationary
measure of the free FP equation.
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Proof of Th. B

Split the formula in Theorem A into two parts:

d

dt

(
W2(µt , νt)

2
)

= −
(∫ (

x − Tt(x)
)
V ′(x) ft(x) dx +

∫ (
x − T−1

t (x)
)
V ′(x) gt(x) dx︸ ︷︷ ︸

(I)

)

−
(

2

∫ (
Tt(x) − x

)(Hft
)
(x) ft(x) dx

+2

∫ (
T−1

t (x) − x
)(Hgt

)
(x) gt(x) dx︸ ︷︷ ︸

(II)

)
.
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The uniform K -convexity for the potential function V of that
V ′′(x) ≥ K > 0 for any x ∈ R yields the inequality

(
x − Tt(x)

) (
V ′(x) − V ′(Tt(x))

) ≥ K
∣∣x − Tt(x)

∣∣2.
Using Taylor expansion, we get

V (x) = V (y) + V ′(y)(x − y) +
1

2
V ′′(x + θy) |x − y |2

for any x , y ∈ R, where θ ∈ (0, 1).
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Applying this inequality, the first part can be estimated as

(I) =

∫ (
x − Tt(x)

)
V ′(x) ft(x) dx +

∫ (
Tt(x) − x

)
V ′(Tt(x)) ft(x) dx

=

∫ (
x − Tt(x)

) (
V ′(x) − V ′(Tt(x))

)
ft(x) dx

≥
∫

K
∣∣x − Tt(x)

∣∣2 ft(x) dx = K W2(µt , νt)
2,
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On the second part:
Using the free analogue of Stein relation, we obtain

2

∫ (
Tt(x) − x

) (Hft
)
(x) ft(x) dx

=

∫∫ (
Tt(x) − Tt(y)

x − y
− 1

)
ft(y) ft(x) dx dy ,

2

∫ (
T−1

t (x) − x
) (Hgt

)
(x) gt(x) dx

=

∫∫ (
T−1

t (x) − T−1
t (y)

x − y
− 1

)
gt(y) gt(x) dx dy

=

∫∫ (
x − y

Tt(x) − Tt(y)
− 1

)
ft(y) ft(x) dx dy ,

where at the last equality we have applied the optimal transport
map Tt to both of the integral variables x and y .
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Hence, we have

(II) =

∫∫ (
Tt(x) − Tt(y)

x − y
+

x − y

Tt(x) − Tt(y)
− 2

)
ft(y) ft(x) dx dy

=

∫∫ (√
Tt(x) − Tt(y)

x − y
−

√
x − y

Tt(x) − Tt(y)

)2

ft(y) ft(x) dx dy ≥ 0,

where
Tt(x) − Tt(y)

x − y
≥ 0 since Tt is monotone.

Consequently,

d

dt

(
W2(µt , νt)

2
)

= −(I) − (II) ≤ −K W2(µt , νt)
2.

�
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The derivative of of the L2-Wasserstein distance

We choose particularly the stationary measure νV of the free
Fokker-Planck equation as the initial datum ν0, then it holds, of
course, that gt(x)dx = dνV (x) and(Hgt

)
(x) =

1
2 V ′(x) for t ≥ 0.

Thus we have immediately

Theorem A’

d

dt

(
W2(µt , νV )2

)
= 2

∫ (
x − Tt(x)

) ((Hft
)
(x) − 1

2
V ′(x)

)
ft(x) dx .
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Convergence to the equilibrium in the L2-Wasserstein distance

Moreover, we have

Theorem B’

If V is uniformly K convex that such V ′′(x) ≥ K > 0 for x ∈ R,
then we obtain

d

dt

(
W2(µt , νV )2

)
≤ −K W2(µt , νV )2.

This can be read that

W2(µt , νV ) ≤ e−(K/2)t W2 (µ0, νV ) for t ≥ 0,

which implies that µt converges to νV in the L2-Wasserstein
distance with exponential rate K/2.
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The relative free Fisher information

For simplicity, we put

Jt(x) =
(Hft

)
(x) − 1

2
V ′(x).

Then the derivative formula is written as

d

dt

(
W2(µt , νV )2

)
= 2

∫ (
x − Tt(x)

)
Jt(x) dµt(x)

and the relative free information is given as

Φ
(
µt |νV

)
= 4

∫
Jt(x)2 dµt(x).
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W2 Φ inequalities

In our second situation, we have the following inequalities:

Proposition C

(C .1)
d

dt

(
W2(µt , νV )2

)
≥ −W2(µt , νV )

√
Φ

(
µt |νV

)
,

(C .2)
d

dt

(
W2(µt , νV )2

)
≥ − 1

K
Φ

(
µt |νV

)
.
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Proof of Prop. C

The inequality (C.1) is a simple application of the Cauthy-Schwarz
inequality on L2

(
R, dµt

)
.∣∣∣∣ d

dt

(
W2(µt , νV )2

)∣∣∣∣ =

∣∣∣∣2∫ (
x − Tt(x)

)
Jt(x) dµt(x)

∣∣∣∣
≤

√∫ ∣∣x − Tt(x)
∣∣2 dµt(x)

√
4

∫
Jt(X )2 dµt(x)

=W2(µt , νV )
√

Φ
(
µt |νV

)
,

where we should note that
d

dt

(
W2(µt , νV )2

)
≤ 0.
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We know by Theorem B’ that

d

dt

(
W2(µt , νV )2

)
≤ −K W2(µt , νV )2.

Combine it with

(C .1)
d

dt

(
W2(µt , νV )2

)
≥ −W2(µt , νV )

√
Φ

(
µt |νV

)
,

we obtain

W2(µt , νV ) ≤ 1

K

√
Φ

(
µt |νV

)
.

Substitute this into (C.1) again, it follows

(C .2)
d

dt

(
W2(µt , νV )2

)
≥ − 1

K
Φ

(
µt |νV

)
.

H. Yoshida Dissipation of the free entropy



Relation to the free TCI

As we will find later that the inequality

(C .2)
d

dt

(
W2(µt , νV )2

)
≥ − 1

K
Φ

(
µt |νV

)
yields the free TCI.

For this purpose, we will see the dissipation formulas of the free
entropy
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The dissipations of the relative free entropy
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The dissipation of the relative free entropy

Let νV be the stationary measure of the free Fokker-Planck
equation with the C 2 potential V , and let µt be the time-evolution
by the free Fokker-Planck equation starting from a compactly
supported probability measure µ0.

Proposition D

(D.1)
d

dt
Σ

(
µt

∣∣ νV

)
= − 1

2 Φ
(
µt

∣∣ νV

)
.

This formula is well-known since the work of Biane and Speicher.
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Since ΣV

(
νV

)
does not depend on t,

d

dt
Σ

(
µt

∣∣ νV

)
= − d

dt

∫∫
log |x − y | dµt(x)dµt(y) +

d

dt

∫
V (x) dµt(x).

The calculation is routine that by using the free Fokker-Planck
equation, we exchange the time derivative to the space one and
apply integration by parts.
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Dissipation of the entropy dissipation

Here we shall consider
d2

dt2
Σ

(
µt

∣∣ νV

)
, which is nothing but the

timie derivative
d

dt
Φ

(
µt

∣∣ νV

)
.

This is also obtained by the result of the entropy dissipation
formula in Carrillo, McCann, and Villani by Otto’s calculus.
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Time derivative of the relative free Fisher information

Theorem E

Under the same situation in Proposition D, we have

d

dt
Φ

(
µt

∣∣ νV

)
= −4

∫
V ′′(x) Jt(x)2 dµ(x)

− 4

∫∫ (
Jt(x) − Jt(y)

x − y

)2

dµ(x) dµ(y),

where Jt(x) =
(Hft

)
(x) − 1

2
V ′(x).
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Convergence to the equilibrium in the relative free Fisher information

Theorem F

If the C 2 potential function V is uniformly K convex that
V ′′(x) ≥ K > 0 for x ∈ R, then we obtain

d

dt
Φ

(
µt

∣∣ νV

) ≤ −K Φ
(
µt

∣∣ νV

)
,

Hence, we have

Φ
(
µt

∣∣ νV

) ≤ e−KtΦ
(
µ0

∣∣ νV

)
for t ≥ 0,

which implies that µt converges to the equilibrium νV in the
relative Fisher information with exponential rate K .
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By the uniform K -convexity V ′′(x) ≥ K > 0, it follows that

d

dt
Φ

(
µt

∣∣ νV

) ≤ −4

∫
V ′′(x)Jt(x)2dµt(x)

≤ −4K

∫
Jt(x)2dµt(x) = −K Φ

(
µt

∣∣ ν
)
.

Together with

(D.1)
d

dt
Σ

(
µt

∣∣ νV

)
= − 1

2 Φ
(
µt

∣∣ νV

)
,

we have the following inequality on the derivatives.
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The inequality for the fee LSI

Corollary G

d

dt
Σ

(
µt

∣∣ νV

) ≥ 1

2K

d

dt
Φ

(
µt

∣∣ νV

)
for t ≥ 0.

As we will see this inequality yields the free LSI by the time
integration.

But we need the convergence of µt to the equilibrium νV in the
relative free entropy.

As the same in the classical case, the exponential decay of the
relative free entropy Σ

(
µt

∣∣ νV

)
and the free LSI are equivalent.

Here we will show the convergence of Σ
(
µt

∣∣ νV

)
to 0 without

relying the free LSI.
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Convergence to the equilibrium in the relative free entropy

Theorem H

In our second situation with uniform K -convexity of V that
V ′′(x) ≥ K > 0 for x ∈ R, we obtain

(H .1) Σ
(
µt

∣∣ νV

) ≤ − d

dt

(
W2(µt , νV )2

)
− K

2
W2(µt , νV )2

This inequality implies the convergence of µt to the equilibrium νV

in the relative free entropy.
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Proof of Th. H

The proof is similar to one for the free HWI of Ledoux and
Popescu that we will use the optimal transport map and apply the
free Stein relation, because the free HWI can be obtained as the
direct consequence of this inequality.

The key points are as follows:

H. Yoshida Dissipation of the free entropy



Key 1

Using the transport map Tt such that Tt#µt = ν, the relative free
entropy Σ

(
µt

∣∣ νV

)
can be reformulated as

Σ
(
µt

∣∣ νV

)
= −

∫∫
log |x − y | dµt(x) dµt(y) +

∫
V (x) dµt(x)

+

∫∫
log

∣∣Tt(x) − Tt(y)
∣∣ dµt(x) dµt(y) −

∫
V

(
Tt(x)

)
dµt(x)

=

∫∫
log

Tt(x) − Tt(y)

x − y
dµt(y) dµt(y) −

∫ (
V

(
Tt(x)

) − V
(
x
))

dµt(x).
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Key 2

Using the free Stein relation, the time derivative
d

dt
W2(µt , νV )2 can

be reformulated as

d

dt

(
W2(µt , νV )2

)
= 2

∫ (
x − Tt(x)

) ((Hft
)
(x) − 1

2
V ′(x)

)
ft(x) dx

= −
∫∫ (Tt(x) − Tt(y)

x − y
− 1

)
dµt(x) dµt(y)

+

∫ (
Tt(x) − x

)
V ′(x) dµt(x).
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free HWI inequality

We now know two inequalities:

(H .1) Σ
(
µt

∣∣ νV

) ≤ − d

dt

(
W2(µt , νV )2

)
− K

2
W2(µt , νV )2

(C .1)
d

dt

(
W2(µt , νV )2

)
≥ −W2(µt , νV )

√
Φ

(
µt |νV

)
,

Hence we obtain

The free HWI inequality

Σ
(
µt

∣∣ νV

) ≤ W2(µt , νV )
√

Φ
(
µt |νV

) − K

2
W2(µt , νV )2,
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Exponential decay of Σ
(
µt

∣∣ ν
)

µt converges to the equilibrium

in the L2-Wasserstein distance with exponential rate K/2,
in the relative free Fisher information with exponential rate K .

Hence with the help of the free HWI inequality, we have that

µt converges to the equilibrium
in the relative free entropy with exponential rate K .
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The free LSI

We know the inequality by Cor. G that

d

dt
Σ

(
µt

∣∣ νV

) ≥ 1

2K

d

dt
Φ

(
µt

∣∣ νV

)
for t ≥ 0.

Taking the time integration from 0 to ∞, we have

The free LSI

Σ
(
µ0

∣∣ νV

) ≤ 1

2K
Φ

(
µ0

∣∣ νV

)
.

As we noted lim
t→∞Φ

(
µt |νV

)
= 0 and lim

t→∞Σ
(
µt |νV

)
= 0.
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The free TCI

We know the inequality and the equality by (C.2) and (D,1) that

⎧⎪⎨⎪⎩
d

dt

(
W2(µt , νV )2

)
≥ − 1

K
Φ

(
µt |νV

)
,

d

dt
Σ

(
µt

∣∣ νV

)
= − 1

2 Φ
(
µt

∣∣ νV

)
.

Thus we obtain the inequality

d

dt

(
W2(µt , νV )2

)
≥ 2

K

d

dt
Σ

(
µt |νV

)
.
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The free TCI

Taking the time integration from 0 to ∞, we have

W2(µ, νV )2 ≤ 2

K
Σ

(
µ |νV

)
and, hence,

The free TCI

W2(µ, νV ) ≤
√

2

K
Σ

(
µ |νV

)
As we noted lim

t→∞W2

(
µt , νV

)2
= 0 and lim

t→∞Σ
(
µt |νV

)
= 0.
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Semicircular perturbations and the relative free entropy

H. Yoshida Dissipation of the free entropy



In the classical case

For probability measures µ and ν (µ << ν) with the densities f and
g , respectively, the relative classical entropy (Kullback-Leibler
divergence) D(µ | ν) is defined as

D(µ | ν) =

∫ (
log f (x) − log g(x)

)
f (x)dx ,

and the relative classical Fisher information I (µ | ν) is defined as

I (µ | ν) =

∫ ({
log f (x)

}′ − {
log g(x)

}′)2
f (x)dx .

We consider the gaussian perturbations µt and νt of µ and ν, and
take the derivation of t.
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The gaussian perturbation

Let X be a random variable, which has the distribution µ and let Z
be a standard gaussian random variable.

We consider the random variable X +
√

tZ and denote the
corresponding distribution by µt , which is called the gaussian
perturbation of µ.

H. Yoshida Dissipation of the free entropy



The derivation

Let µt and νt be the gaussian perturbations of µ and ν,
respectively. Then it holds that

Proposition

d

dt
D(µt | νt) = − 1

2
I
(
µt | νt

)
.

Verdú (2010) showed the above identity via the estimation theory,
Hirata, Nemoto, and Y. (2012) gave another more direct proof by
using the heat equation and integration by parts.

Here, let us see the free version of this identity.
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Assumption

We consider two compactly supported probability measures µ and
ν on R such that µ � ν.

We assume that µ and ν are absolutely continuous with respect to
the Lebesgue measure on R and have the density functions p and
q, respectively.

After this, we shall pay attention to the case where

Supp(p) ⊂ Supp(q).
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Semicircular perturbation

Let X be a self-adjoint random variable in a W ∗-probability space
(M, τ) with the distribution µ, and S be a (standard)
(0, 1)-semicircular element in (M, τ) freely independent of X .

Let µt be the distribution of semicircular perturbed random
variable X +

√
tS , that is, the free convolution µt = µ � w0,t ,

where w0,t is the centered semicircular law of variance t.
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The formula of the free case

Theorem

The derivative formula of the free case can be give as

d

dt
Σ

(
µt | νt

)
= − 1

2
Φ(µt |νt) + Ψ(µt |νt).

Here

Ψ(µt |νt) = −2

∫
S(p)

(Hp) (Hq) p dx +

∫
S(p)

(Hq)2 p dx

− 2

∫
S(q)

(Hq)2 q dx +

∫
S(p)

π2 q2p dx .

There is an extra term Ψ(µt |νt) in general.
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An integral representation of the relative free entropy

Theorem

If Ψ(µt |νt) = 0 for t > 0 then we have the integral representation
of the relative free entropy,

Σ
(
µ | ν)

=
1
2

∫ ∞

0
Φ(µt |νt)dt.

Since the relative free entropy is invariant under dilations and the
dilation D 1√

t

(µt) −→ w0,1 weakly as t → ∞, where w0,1 is the

standard semicircle law, we have

lim
t→∞Σ

(
µt | νt

)
= lim

t→∞Σ
(
D 1√

t
(µt) |D 1√

t
(νt)

)
= Σ

(
w0,1 |w0,1

)
= 0.
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Semicircular reference

Remark

For the centered semicircle law ν, we can find that for any
probability measure µ with Supp(µ) ⊂ Supp(ν),
Ψ(µt |νt) = 0 for t > 0.

Especially, we take the standard semicircle law w0,1 as the
reference measure ν and Let µ be a standarized measure.

Then νt becomes w0,t , the centered semicircular distribution of
variance t, and we have

Φ(µt | νt) = Φ(µt) − 1

1 + t
.

Thus by the integral formula above, we obtain the relative free
entropy

Σ
(
µ |w0,1

)
=

1
2

∫ ∞

0

(
Φ(µt) − 1

1 + t

)
dt.
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Formula for the maicrostate free approach

For the free entropy χ(µ), using the non-semicircularity equality
(semicircular is maximum),

1
2 log(2πe) − χ(µ) = Σ

(
µ |w0,1

)
,

we obtain the integral representation of the free entropy for a
probability measure of unit variance

χ(µ) = −Σ
(
µ |w0,1

)
+

1
2 log(2πe)

=
1
2

∫ ∞

0

( 1

1 + t
− Φ(µt)

)
dt +

1
2 log(2πe),

which is consistent with Voiculescu’s formula of the micro states
free approach to the free entropy.
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The key of proof

Let νt be the semicircular perturbation of ν, and let V (x , t) be the
potential function, for which the equilibrium measure of ΣV (x ,t) is
given by νt .

Then we should be careful to calculate the derivative

d

dt

∫
S(p)

V (x , t)p(x , t) dx

by taking a count of the inclusion of supports S(p) ⊂ S(q).
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Key Lemma

Lemma

d

dt

∫
S(p)

V (x , t) p(x , t) dx − d

dt

∫
S(q)

V (x , t) q(x , t) dx

=

∫
S(p)

(
π2 q(x , t)2 − (

(Hq)(x , t)
)2

)
p(x , t) dx

+ 2

∫
S(p)

(Hp)(x , t) (Hq)(x , t) p(x , t) dx − 4

∫
S(q)

(
(Hq)(x , t)

)2
q(x , t) dx .
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The complex Burgers equation

From the complex Burgers equation for semicircular purterbation,
we have⎧⎨⎩

∂
∂t

(Hρt

)
(x) =

1
2

∂
∂x

((
π ρt(x)

)2 − ((Hρt

)
(x)

)2
)
,

∂
∂t

ρt(x) = − ∂
∂x

((Hρt

)
(x) ρt(x)

)
,

for x ∈ Supp(ρt) and t ≥ 0.

In the proof for key Lemma, we have to use not only the lower
equation (the free heat equation) but both of them.
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Concluding remarks

Topic 1 and 2 are completely the same in parallel to the classical
case (both of methods and results).

Topic 3 is a little different compare to the classical case. But at
least in the case where the reference measure is semicircular, it
goes in parallel to the classical case.
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