Free Convolution with A Free Multiplicative Analogue of The Normal Distribution

Ping Zhong

Indiana University Bloomington

July 23, 2013

Fields Institute, Toronto

メタトメ ミトメ ミト

Outline

- $\mathbf D$ Density of the measures $\mu \boxplus \gamma_t$, where γ_t is the semicircular distribution with variance t.
	- Voiculescu transform
	- ⊞-infinitely divisible distributions
	- Density formula
- $\mathbf 2$ Density of the measures $\mu\boxtimes\lambda_t$ and $\nu\boxtimes\sigma_t$, where λ_t and σ_t are free multiplicative analogue of the normal distributions.
	- Σ-transform
	- ⊠-infinitely divisible distributions
	- Density formula
	- Free multiplicative analogue of the normal distributions

メタト メミト メミト

Voiculescu transform

• $\mathcal{M}_{\mathbb{R}}$: the set of probability measures on $\mathbb R$

• For a measure $\mu \in \mathcal{M}_{\mathbb{R}}$, we define the Cauchy transform $G_{\mu}: \mathbb{C}^+ \to \mathbb{C}^-$ by

$$
G_\mu(z)=\int_{-\infty}^{+\infty}\frac{1}{z-t}\,d\mu(t),\ \, z\in\mathbb{C}^+.
$$

We set $\mathcal{F}_\mu(\mathsf z)=1/\mathsf G_\mu(\mathsf z),\, \mathsf z\in\mathbb C^+$, so that $\mathcal{F}_\mu:\mathbb C^+\to\mathbb C^+$ is analytic.

• Voiculescu transform of μ :

$$
\varphi_{\mu}(z)=F_{\mu}^{-1}(z)-z.
$$

• (Voiculescu '86, Maassen '92, Bercovici-Voiculescu '93)

$$
\varphi_{\mu\boxplus \nu}(z)=\varphi_{\mu}(z)+\varphi_{\nu}(z).
$$

マーター マーティング アイディー

• Given $\nu \in \mathcal{M}_{\mathbb{R}}$, we say that ν is \boxplus -infinitely divisible if for every positive integer *n*, there exists a $\nu_{1/n} \in \mathcal{M}_{\mathbb{R}}$ such that

$$
\nu = \underbrace{\nu_{1/n} \boxplus \nu_{1/n} \boxplus \cdots \boxplus \nu_{1/n}}_{n \text{ times}}.
$$

• (Voiculescu '86, Bercovici-Voiculescu '93) ν is \boxplus -infinitely divisible if and only if

$$
\varphi_{\nu}(z)=\alpha+\int_{-\infty}^{+\infty}\frac{1+tz}{z-t}d\sigma(t).
$$

where $\alpha \in \mathbb{R}$ and σ is a finite positive measure on \mathbb{R} .

マーター マーティング

- F_v is a conformal map and its inverse map is $H: z \to z + \varphi_v(z)$.
- (Biane '97, Chistyakov-Götze '11) The boundary of the set $U = \{F_{\nu}(z) : z \in \mathbb{C}^+\}$ is the graph of a function defined on \mathbb{R} .
- If $x + iy \in \partial U$ and $y > 0$, then

$$
1 = \int_{\mathbb{R}} \frac{1+t^2}{(x-t)^2 + y^2} d\sigma(t).
$$
 (1)

メタト メミト メミト

- \bullet $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: F_t : $F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z))$.
- The function F_t can be regarded as the F-transform of a probability measure on R, denoted by $\gamma_t \boxplus \mu$.

All > 2 = > 2 = >

- \bullet $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: F_t : $F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z))$.
- The function F_t can be regarded as the F-transform of a probability measure on R, denoted by $\gamma_t \boxplus \mu$.
- $\gamma_t \boxplus \nu$ is \boxplus -infinitely divisible and $\varphi_{\gamma_t} \boxplus \nu(z) = z + t G_\mu(z)$.
- \bullet Set $\Omega_t := F_t(\mathbb{C}^+)$, then $\partial \Omega_t$ is the graph of a function.

イター・メモ トライモー

- \bullet $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: F_t : $F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z))$.
- The function F_t can be regarded as the F-transform of a probability measure on R, denoted by $\gamma_t \boxplus \mu$.
- $\gamma_t \boxplus \nu$ is \boxplus -infinitely divisible and $\varphi_{\gamma_t} \boxplus \nu(z) = z + t G_\mu(z)$.
- \bullet Set $\Omega_t := F_t(\mathbb{C}^+)$, then $\partial \Omega_t$ is the graph of a function.

 \bullet Given $x\in\mathbb{R}$, let $y_t(x)\in\mathbb{R}$ such that $x+iy_t(x)\in\partial\Omega_t$, and $f_t(x) = H_t(x + iy_t(x)).$

Theorem (Biane '97)

The density of $\mu \boxplus \gamma_t$ is given by $p_t(f_t(x)) = \frac{y_t(x)}{\pi t}$.

イロメ イ押 トイラ トイラメーラ

- \bullet $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: F_t : $F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z))$.
- The function F_t can be regarded as the F-transform of a probability measure on R, denoted by $\gamma_t \boxplus \mu$.
- $\gamma_t \boxplus \nu$ is \boxplus -infinitely divisible and $\varphi_{\gamma_t} \boxplus \nu(z) = z + t G_\mu(z)$.
- \bullet Set $\Omega_t := F_t(\mathbb{C}^+)$, then $\partial \Omega_t$ is the graph of a function.

 \bullet Given $x\in\mathbb{R}$, let $y_t(x)\in\mathbb{R}$ such that $x+iy_t(x)\in\partial\Omega_t$, and $f_t(x) = H_t(x + i v_t(x))$.

Theorem (Biane '97)

The density of $\mu \boxplus \gamma_t$ is given by $p_t(f_t(x)) = \frac{y_t(x)}{\pi t}$.

- \bullet The density p_t is analytic whenever it is positive.
- Biane also proved that the number of connected components of the interior of the support is a non-increasing function of t .

→ 伊 → → ミ → → ミ → → ミ → つなの

Multiplicative free convolution on $\mathcal{M}_{\mathbb{T}}$

• $\mathcal{M}_{\mathbb{T}}$: the set of probability measures on \mathbb{T} ; \mathcal{M}_* : the set of probability measures on $\mathbb C$ with nonzero mean.

• Given $\mu \in \mathcal{M}_{\mathbb{T}}$, we define

$$
\psi_{\mu}(z) = \int_{\mathbb{T}} \frac{tz}{1 - tz} d\,\mu(t)
$$

and set $\eta_{\mu}(z) = \psi_{\mu}(z)/(1 + \psi_{\mu}(z)).$ • $\eta_{\mu}: \mathbb{D} \to \mathbb{D}$ is analytic.

K 御 と K 唐 と K 唐 と…

Multiplicative free convolution on $\mathcal{M}_{\mathbb{T}}$

• $\mathcal{M}_{\mathbb{T}}$: the set of probability measures on \mathbb{T} ; \mathcal{M}_* : the set of probability measures on $\mathbb C$ with nonzero mean.

• Given $\mu \in \mathcal{M}_{\mathbb{T}}$, we define

$$
\psi_{\mu}(z) = \int_{\mathbb{T}} \frac{tz}{1 - tz} d\,\mu(t)
$$

and set $\eta_{\mu}(z) = \psi_{\mu}(z)/(1 + \psi_{\mu}(z)).$

- $\eta_{\mu} : \mathbb{D} \to \mathbb{D}$ is analytic.
- For $\mu \in \mathcal{M}_{\mathbb{T}} \cap \mathcal{M}_*$, set $\Sigma_{\mu}(z) = \eta_{\mu}^{-1}(z)/z$.

Theorem (Voiculescu '87)

Given $\mu, \nu \in \mathcal{M}_{\mathbb{T}} \cap \mathcal{M}_{*}$, then we have

$$
\Sigma_{\mu\boxtimes \nu}(z)=\Sigma_{\mu}(z)\Sigma_{\nu}(z).
$$

 $A \cap B$ is a $B \cap A \cap B$ is

Subordination distributions

- \bullet λ_t : the free multiplicative analogue of the normal distribution on $\mathbb T$ such that $\Sigma_{\lambda_t}(z) = \exp\left(\frac{t}{2}\right)$ 2 $rac{1+z}{1-z}$.
- Subordination function $\eta_t : \mathbb{D} \to \mathbb{D}$: $\eta_{\mu \boxtimes \lambda_t}(z) = \eta_{\mu}(\eta_t(z))$.
- Subordination distribution $\rho_t \in \mathcal{M}_{\mathbb{T}}$: $\eta_{\rho_t}(z) = \eta_t(z)$, for $t > 0$.

Lemma

The measure ρ_t is \boxtimes -infinitely divisible and its Σ -transform is

$$
\Sigma_{\rho_t}(z) = \Sigma_{\lambda_t}(\eta_\mu(z)) = \exp\left(\frac{t}{2}\int_T \frac{1+\xi z}{1-\xi z}d\mu(\xi)\right).
$$
 (2)

 \bullet Let $\Phi_{t,\mu}(z):=z\Sigma_{\rho_t}(z)$, then $\Phi_{t,\mu}(\eta_{\rho_t}(z))=z$ for all $z\in\mathbb{T}.$

メ御き メミメ メミメー

Subordination distributions

- \bullet λ_t : the free multiplicative analogue of the normal distribution on $\mathbb T$ such that $\Sigma_{\lambda_t}(z) = \exp\left(\frac{t}{2}\right)$ 2 $rac{1+z}{1-z}$.
- Subordination function $\eta_t : \mathbb{D} \to \mathbb{D}$: $\eta_{\mu \boxtimes \lambda_t}(z) = \eta_{\mu}(\eta_t(z))$.
- Subordination distribution $\rho_t \in \mathcal{M}_{\mathbb{T}}$: $\eta_{\rho_t}(z) = \eta_t(z)$, for $t > 0$.

Lemma

The measure ρ_t is \boxtimes -infinitely divisible and its Σ -transform is

$$
\Sigma_{\rho_t}(z) = \Sigma_{\lambda_t}(\eta_\mu(z)) = \exp\left(\frac{t}{2}\int_T \frac{1+\xi z}{1-\xi z}d\mu(\xi)\right).
$$
 (2)

- \bullet Let $\Phi_{t,\mu}(z):=z\Sigma_{\rho_t}(z)$, then $\Phi_{t,\mu}(\eta_{\rho_t}(z))=z$ for all $z\in\mathbb{T}.$
- \bullet The function η_{ρ_t} is a conformal map.
- \bullet (Belinschi-Bercovici '05) η_{ρ_t} extends to be a one-to-one and continuous function on \overline{D} .

マーター マーティング アイディー

A formula for the density of $\mu \boxtimes \lambda_t$

•
$$
\mu \in \mathcal{M}_{\mathbb{T}}
$$
; $\mu_t := \mu \boxtimes \lambda_t$.

• Subordination distribution: $\eta_{\mu_t} = \eta_{\mu}(\eta_{\rho_t}(z))$, $\rho_t \in \mathcal{ID}(\boxtimes, \mathbb{T})$.

$$
\bullet \ \Phi_{t,\mu}(z) := z \Sigma_{\rho_t}(z).
$$

$$
\bullet \ \Omega_{t,\mu}:=\{z\in\mathbb{D}:|\Phi_{t,\mu}(z)|<1\}=\eta_{\rho_t}(\mathbb{D}).
$$

Lemma

 $\partial\Omega_{t,u}$ is the graph of a function of θ .

メタトメ ミトメ ミト

 QQ

A formula for the density of $\mu \boxtimes \lambda_t$

•
$$
\mu \in \mathcal{M}_{\mathbb{T}}
$$
; $\mu_t := \mu \boxtimes \lambda_t$.

• Subordination distribution: $\eta_{\mu_t} = \eta_{\mu}(\eta_{\rho_t}(z))$, $\rho_t \in \mathcal{ID}(\boxtimes, \mathbb{T})$.

$$
\bullet \ \Phi_{t,\mu}(z) := z \Sigma_{\rho_t}(z).
$$

$$
\bullet \ \Omega_{t,\mu}:=\{z\in\mathbb{D}:|\Phi_{t,\mu}(z)|<1\}=\eta_{\rho_t}(\mathbb{D}).
$$

Lemma

 $\partial\Omega_{t,\mu}$ is the graph of a function of θ .

Given $\theta\in[-\pi,\pi]$, let $v_t(\theta)\in(0,1]$ such that $v_t(\theta)e^{i\theta}\in\partial\Omega_{t,\mu}.$

Theorem (Z. '12)

The density of μ_t is given by $p_t(\Psi_{t,\mu}(e^{i\theta})) = -\ln(\nu_t(\theta))/\pi t$, where $\Psi_{t,\mu} = \Phi_{t,\mu}(\nu_t(\theta) e^{i\theta}).$

 \bullet The density ρ_t is analytic whenever it is positive. The number of connected components of the interior of the support of μ_t is a non-increasing function of t . イロメ イ押メ イモメ イモメート

An example

• (Biane '97)

$$
\int_{\mathbb{T}} \xi^n d\lambda_t(\xi) = Q_n(t) e^{-\frac{n}{2}t},
$$
(3)

where $Q_n(t) = \sum_{k=0}^{n-1} (-1)^k \frac{t^k}{k!}$ $rac{t^k}{k!}n^{k-1}\binom{n}{k+1}.$

 \bullet Let $\mu=\delta_1$, $\Omega_t=\Omega_{t,\delta_1}$, $\Phi_t=\Phi_{t,\delta_1}$ and $U_t=U_{t,\delta_1}$, we recover Biane's result.

\n- **①** The support of
$$
\lambda_t
$$
 is \mathbb{T} if $t \geq 4$.
\n- **②** Let $\theta_t = -\arccos\left(1 - \frac{t}{2}\right) - \frac{1}{2}\sqrt{(4-t)t}$, then the support of λ_t is $\left\{e^{i\theta} : -\theta_t \leq \theta \leq \theta_t\right\} \subsetneq \mathbb{T}$ for $t < 4$.
\n

Proposition

The density of λ_t is symmetric with respect to x-axis; and the density of λ_t has a unique maximum at 1.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 ○

 299

A formula for the density of $\nu \boxtimes \sigma_t$

•
$$
\sigma_t
$$
: $\Sigma_{\sigma_t}(z) = e^{\frac{t}{2} \frac{1+z}{z-1}}$; $\nu \in \mathcal{M}_{\mathbb{R}^+}$: $\nu \neq \delta_0$; $\nu_t := \nu \boxtimes \sigma_t$.

 \bullet τ_t : $\eta_{\nu_t} = \eta_{\nu}(\eta_{\tau_t}(z))$, then $\tau_t \in \mathcal{ID}(\boxtimes,\mathbb R^+)$, and

$$
\Sigma_{\tau_t}(z) = \Sigma_{\lambda_t}(\eta_{\nu}(z)) = \exp\left(\frac{t}{2}\int_0^{+\infty} \frac{1+\xi z}{\xi z-1}d\nu(\xi)\right).
$$

 \bullet Let $H_{t,\nu}(z)=z\Sigma_{\tau_t}(z)$, and let $\Gamma_{t,\nu}$ be the connected component of the set $\{z\in \mathbb C^+:\Im(H_{t,\nu}(z))>0\}$ whose boundary contains the left half line $(-\infty, 0)$.

Proposition (Belinschi-Bercovici '05)

The function η_{τ_t} extends to be a continuous function on $\mathbb{C}^+ \cup \mathbb{R}$, and η_{τ_t} is one to one on this set. If $\xi \in \mathbb{R}^+$ satisfies $\Im(\eta_{\tau_t}(\xi)) > 0$, then η_{τ_t} can be extended analytically to a neighborhood of ξ .

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

A formula for the density of $\nu \boxtimes \sigma_t$

Lemma

Given $r \in (0, +\infty)$, then there exists only one $\theta \in [0, \pi)$, denoted by $u_t(r)$, such that $re^{i\theta} \in \partial(\Gamma_{t,v})$.

Let
$$
\Lambda_{r,\nu}(r) = H_{t,\nu}(re^{iu_t(r)})
$$
.

Theorem $(Z, '12)$

The measure ν_t has a density given by

$$
q_t\left(\frac{1}{\Lambda_{t,\nu}(r)}\right)=\frac{1}{\pi}\Lambda_{t,\nu}(r)\frac{u_t(r)}{t}
$$

for $r \in (0, +\infty)$.

イロメ イ母メ イヨメ イヨメー

Corollary

- **1** The number of connected components of the interior of the support of ν_t is a non-increasing function of t.
- $\mathbf{2}$ ν_t is absolutely continuous and q_t is analytic whenever it is positive.
- **3** If ν is compactly supported on $(0, +\infty)$, then the support of ν_t has only one connected component for large t.

 \mathcal{A} and \mathcal{A} in \mathcal{A} . In a set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

We then give a description of σ_t , part of results were known by Biane.

• Let
$$
\nu = \delta_1
$$
, $H_t(z) = H_{t,\delta_1} = z \exp(\frac{t}{2} \frac{z+1}{z-1})$, and
\n $V_t = \{0 < r < +\infty : u_t(r) > 0\}$.

• Then
$$
\nu_t = \sigma_t
$$
 and $V_t = (x_1(t), x_2(t))$, where $x_1(t) = (2 + t - \sqrt{t(t+4)})/2$ and $x_2(t) = (2 + t + \sqrt{t(t+4)})/2 = 1/x_1(t)$.

Let
$$
x_3(t) = \frac{1}{\Lambda_t(x_2(t))} = \frac{2 + t - \sqrt{t(t+4)}}{2} \exp\left(-\frac{\sqrt{t(t+4)}}{2}\right)
$$

and $x_4(t) = 1/x_3(t)$.

イロト イ部 トイミト イミト

重

 299

Proposition

For $t > 0$, let $s_t(x)$ be the density of the measure σ_t at x.

- (1) The support of the function s_t is the interval $[x_3(t), x_4(t)]$.
- $\mathcal{L}(2)$ For $[\alpha, \beta]\subset (0,1]$, we have $\sigma_t([\alpha, \beta])=\sigma_t\left(\Big[\frac{1}{\beta}\Big]\right)$ $\frac{1}{\beta}, \frac{1}{\alpha}$ $\frac{1}{\alpha}$.
- (3) $s_t(x)x$ and s_t are strictly decreasing functions of x on the interval $[1, x_4(t)]$.

Remark

For any integer n, let
$$
a_n = 1 + \sqrt{2t/n}
$$
, $b_n = 1/a_n$ and
\n $\mu_n = (\delta_{a_n} + \delta_{b_n})/2$, then $\mu_n^{\boxtimes n} \to \sigma_t$ weakly as $n \to +\infty$.

マーター マーティング アイディー

