Free Convolution with A Free Multiplicative Analogue of The Normal Distribution

Ping Zhong

Indiana University Bloomington

July 23, 2013

Fields Institute, Toronto

- 4 回 ト 4 ヨ ト 4 ヨ ト

Outline

- Density of the measures $\mu \boxplus \gamma_t$, where γ_t is the semicircular distribution with variance t.
 - Voiculescu transform
 - \bullet $\boxplus\text{-infinitely}$ divisible distributions
 - Density formula
- 2 Density of the measures $\mu \boxtimes \lambda_t$ and $\nu \boxtimes \sigma_t$, where λ_t and σ_t are free multiplicative analogue of the normal distributions.
 - Σ -transform
 - \bullet $\boxtimes\text{-infinitely}$ divisible distributions
 - Density formula
 - Free multiplicative analogue of the normal distributions

Voiculescu transform

 $\bullet \ \mathcal{M}_{\mathbb{R}}:$ the set of probability measures on \mathbb{R}

• For a measure $\mu \in \mathcal{M}_{\mathbb{R}}$, we define the Cauchy transform $G_{\mu}: \mathbb{C}^+ \to \mathbb{C}^-$ by

$$\mathcal{G}_{\mu}(z)=\int_{-\infty}^{+\infty}rac{1}{z-t}\,d\mu(t),\;\;z\in\mathbb{C}^+.$$

We set $F_{\mu}(z) = 1/G_{\mu}(z), z \in \mathbb{C}^+$, so that $F_{\mu} : \mathbb{C}^+ \to \mathbb{C}^+$ is analytic.

• Voiculescu transform of μ :

$$\varphi_{\mu}(z)=F_{\mu}^{-1}(z)-z.$$

• (Voiculescu '86, Maassen '92, Bercovici-Voiculescu '93)

$$\varphi_{\mu\boxplus
u}(z) = \varphi_{\mu}(z) + \varphi_{
u}(z).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Given $\nu \in \mathcal{M}_{\mathbb{R}}$, we say that ν is \boxplus -infinitely divisible if for every positive integer *n*, there exists a $\nu_{1/n} \in \mathcal{M}_{\mathbb{R}}$ such that

$$\nu = \underbrace{\nu_{1/n} \boxplus \nu_{1/n} \boxplus \cdots \boxplus \nu_{1/n}}_{n \text{ times}}.$$

• (Voiculescu '86, Bercovici-Voiculescu '93) ν is \boxplus -infinitely divisible if and only if

$$\varphi_{\nu}(z) = \alpha + \int_{-\infty}^{+\infty} \frac{1+tz}{z-t} d\sigma(t).$$

where $\alpha \in \mathbb{R}$ and σ is a finite positive measure on \mathbb{R} .

(4月) (4日) (4日)

Boundary set

- F_{ν} is a conformal map and its inverse map is $H: z \rightarrow z + \varphi_{\nu}(z)$.
- (Biane '97, Chistyakov-Götze '11) The boundary of the set $U = \{F_{\nu}(z) : z \in \mathbb{C}^+\}$ is the graph of a function defined on \mathbb{R} .
- If $x + iy \in \partial U$ and y > 0, then

$$1 = \int_{\mathbb{R}} \frac{1+t^2}{(x-t)^2 + y^2} d\sigma(t).$$
 (1)

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: $F_t : F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z)).$
- The function F_t can be regarded as the *F*-transform of a probability measure on \mathbb{R} , denoted by $\gamma_t \boxminus \mu$.

向下 イヨト イヨト

- $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: $F_t : F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z)).$
- The function F_t can be regarded as the *F*-transform of a probability measure on \mathbb{R} , denoted by $\gamma_t \boxminus \mu$.
- $\gamma_t \square \nu$ is \boxplus -infinitely divisible and $\varphi_{\gamma_t} \square_{\nu}(z) = z + t G_{\mu}(z)$.
- Set $\Omega_t := F_t(\mathbb{C}^+)$, then $\partial \Omega_t$ is the graph of a function.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: $F_t : F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z)).$
- The function F_t can be regarded as the *F*-transform of a probability measure on \mathbb{R} , denoted by $\gamma_t \boxminus \mu$.
- $\gamma_t \square \nu$ is \boxplus -infinitely divisible and $\varphi_{\gamma_t} \square_{\nu}(z) = z + t G_{\mu}(z)$.
- Set $\Omega_t := F_t(\mathbb{C}^+)$, then $\partial \Omega_t$ is the graph of a function.

• Given $x \in \mathbb{R}$, let $y_t(x) \in \mathbb{R}$ such that $x + iy_t(x) \in \partial \Omega_t$, and $f_t(x) = H_t(x + iy_t(x))$.

Theorem (Biane '97)

The density of $\mu \boxplus \gamma_t$ is given by $p_t(f_t(x)) = \frac{y_t(x)}{\pi t}$.

- $\mu \in \mathcal{M}_{\mathbb{R}}$, γ_t : semicircular distribution.
- Subordination function: $F_t : F_{\mu \boxplus \gamma_t}(z) = F_{\mu}(F_t(z)).$
- The function F_t can be regarded as the *F*-transform of a probability measure on \mathbb{R} , denoted by $\gamma_t \square \mu$.
- $\gamma_t \square \nu$ is \boxplus -infinitely divisible and $\varphi_{\gamma_t} \square_{\nu}(z) = z + t G_{\mu}(z)$.
- Set $\Omega_t := F_t(\mathbb{C}^+)$, then $\partial \Omega_t$ is the graph of a function.

• Given $x \in \mathbb{R}$, let $y_t(x) \in \mathbb{R}$ such that $x + iy_t(x) \in \partial \Omega_t$, and $f_t(x) = H_t(x + iy_t(x))$.

Theorem (Biane '97)

The density of $\mu \boxplus \gamma_t$ is given by $p_t(f_t(x)) = \frac{y_t(x)}{\pi t}$.

- The density p_t is analytic whenever it is positive.
- Biane also proved that the number of connected components of the interior of the support is a non-increasing function of *t*.

▲□ → ▲ 臣 → ▲ 臣 → ○ ● ○ ○ ○ ○

Multiplicative free convolution on $\mathcal{M}_{\mathbb{T}}$

• $\mathcal{M}_{\mathbb{T}}$: the set of probability measures on \mathbb{T} ; \mathcal{M}_* : the set of probability measures on \mathbb{C} with nonzero mean.

• Given $\mu \in \mathcal{M}_{\mathbb{T}}$, we define

$$\psi_{\mu}(z) = \int_{\mathbb{T}} \frac{tz}{1-tz} d\,\mu(t)$$

and set $\eta_{\mu}(z) = \psi_{\mu}(z)/(1 + \psi_{\mu}(z)).$ • $\eta_{\mu} : \mathbb{D} \to \mathbb{D}$ is analytic.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Multiplicative free convolution on $\mathcal{M}_{\mathbb{T}}$

• $\mathcal{M}_{\mathbb{T}}$: the set of probability measures on \mathbb{T} ; \mathcal{M}_* : the set of probability measures on \mathbb{C} with nonzero mean.

• Given $\mu \in \mathcal{M}_{\mathbb{T}}$, we define

$$\psi_{\mu}(z) = \int_{\mathbb{T}} \frac{tz}{1-tz} d\,\mu(t)$$

and set $\eta_{\mu}(z) = \psi_{\mu}(z)/(1+\psi_{\mu}(z)).$

- $\eta_{\mu} : \mathbb{D} \to \mathbb{D}$ is analytic.
- For $\mu \in \mathcal{M}_{\mathbb{T}} \cap \mathcal{M}_*$, set $\Sigma_{\mu}(z) = \eta_{\mu}^{-1}(z)/z$.

Theorem (Voiculescu '87)

Given $\mu, \nu \in \mathcal{M}_{\mathbb{T}} \cap \mathcal{M}_*$, then we have

$$\Sigma_{\mu\boxtimes
u}(z) = \Sigma_{\mu}(z)\Sigma_{
u}(z).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Subordination distributions

- λ_t : the free multiplicative analogue of the normal distribution on \mathbb{T} such that $\sum_{\lambda_t}(z) = \exp\left(\frac{t}{2}\frac{1+z}{1-z}\right)$.
- Subordination function $\eta_t : \mathbb{D} \to \mathbb{D}$: $\eta_{\mu \boxtimes \lambda_t}(z) = \eta_{\mu}(\eta_t(z))$.
- Subordination distribution $\rho_t \in \mathcal{M}_{\mathbb{T}}$: $\eta_{\rho_t}(z) = \eta_t(z)$, for t > 0.

Lemma

The measure ρ_t is \boxtimes -infinitely divisible and its Σ -transform is

$$\Sigma_{\rho_t}(z) = \Sigma_{\lambda_t}(\eta_{\mu}(z)) = \exp\left(\frac{t}{2} \int_{\mathrm{T}} \frac{1+\xi z}{1-\xi z} d\mu(\xi)\right).$$
(2)

• Let $\Phi_{t,\mu}(z) := z \Sigma_{\rho_t}(z)$, then $\Phi_{t,\mu}(\eta_{\rho_t}(z)) = z$ for all $z \in \mathbb{T}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Subordination distributions

- λ_t : the free multiplicative analogue of the normal distribution on \mathbb{T} such that $\sum_{\lambda_t}(z) = \exp\left(\frac{t}{2}\frac{1+z}{1-z}\right)$.
- Subordination function $\eta_t : \mathbb{D} \to \mathbb{D}$: $\eta_{\mu \boxtimes \lambda_t}(z) = \eta_{\mu}(\eta_t(z))$.
- Subordination distribution $\rho_t \in \mathcal{M}_{\mathbb{T}}$: $\eta_{\rho_t}(z) = \eta_t(z)$, for t > 0.

Lemma

The measure ρ_t is \boxtimes -infinitely divisible and its Σ -transform is

$$\Sigma_{\rho_t}(z) = \Sigma_{\lambda_t}(\eta_{\mu}(z)) = \exp\left(\frac{t}{2} \int_{\mathrm{T}} \frac{1+\xi z}{1-\xi z} d\mu(\xi)\right).$$
(2)

- Let $\Phi_{t,\mu}(z) := z \Sigma_{\rho_t}(z)$, then $\Phi_{t,\mu}(\eta_{\rho_t}(z)) = z$ for all $z \in \mathbb{T}$.
- The function η_{ρ_t} is a conformal map.
- (Belinschi-Bercovici '05) η_{ρ_t} extends to be a one-to-one and continuous function on $\overline{\mathbb{D}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

A formula for the density of $\mu \boxtimes \lambda_t$

•
$$\mu \in \mathcal{M}_{\mathbb{T}}$$
; $\mu_t := \mu \boxtimes \lambda_t$.

• Subordination distribution: $\eta_{\mu_t} = \eta_{\mu}(\eta_{\rho_t}(z)), \ \rho_t \in \mathcal{ID}(\boxtimes, \mathbb{T}).$

•
$$\Phi_{t,\mu}(z) := z \Sigma_{\rho_t}(z).$$

•
$$\Omega_{t,\mu} := \{z \in \mathbb{D} : |\Phi_{t,\mu}(z)| < 1\} = \eta_{\rho_t}(\mathbb{D}).$$

Lemma

 $\partial \Omega_{t,\mu}$ is the graph of a function of θ .

A formula for the density of $\mu \boxtimes \lambda_t$

•
$$\mu \in \mathcal{M}_{\mathbb{T}}; \ \mu_t := \mu \boxtimes \lambda_t.$$

• Subordination distribution: $\eta_{\mu_t} = \eta_{\mu}(\eta_{\rho_t}(z)), \ \rho_t \in \mathcal{ID}(\boxtimes, \mathbb{T}).$

•
$$\Phi_{t,\mu}(z) := z \Sigma_{\rho_t}(z).$$

•
$$\Omega_{t,\mu} := \{z \in \mathbb{D} : |\Phi_{t,\mu}(z)| < 1\} = \eta_{\rho_t}(\mathbb{D}).$$

Lemma

 $\partial \Omega_{t,\mu}$ is the graph of a function of θ .

Given $\theta \in [-\pi,\pi]$, let $v_t(\theta) \in (0,1]$ such that $v_t(\theta)e^{i\theta} \in \partial\Omega_{t,\mu}$.

Theorem (Z. '12)

The density of μ_t is given by $p_t(\overline{\Psi_{t,\mu}(e^{i\theta})}) = -\ln(v_t(\theta))/\pi t$, where $\Psi_{t,\mu} = \Phi_{t,\mu}(v_t(\theta)e^{i\theta})$.

• The density p_t is analytic whenever it is positive. The number of connected components of the interior of the support of μ_t is a non-increasing function of t.

An example

• (Biane '97)
$$\int_{\mathbb{T}} \xi^n d\lambda_t(\xi) = Q_n(t) e^{-\frac{n}{2}t}, \qquad (3)$$

where $Q_n(t) = \sum_{k=0}^{n-1} (-1)^k \frac{t^k}{k!} n^{k-1} {n \choose k+1}$.

• Let $\mu = \delta_1$, $\Omega_t = \Omega_{t,\delta_1}$, $\Phi_t = \Phi_{t,\delta_1}$ and $U_t = U_{t,\delta_1}$, we recover Biane's result.

Proposition

The density of λ_t is symmetric with respect to x-axis; and the density of λ_t has a unique maximum at 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ○

A formula for the density of $\nu \boxtimes \sigma_t$

•
$$\sigma_t$$
: $\Sigma_{\sigma_t}(z) = e^{\frac{t}{2}\frac{1+z}{z-1}}; \ \nu \in \mathcal{M}_{\mathbb{R}^+}: \ \nu \neq \delta_0; \ \nu_t := \nu \boxtimes \sigma_t.$

• τ_t : $\eta_{\nu_t} = \eta_{\nu}(\eta_{\tau_t}(z))$, then $\tau_t \in \mathcal{ID}(\boxtimes, \mathbb{R}^+)$, and

$$\Sigma_{ au_t}(z) = \Sigma_{\lambda_t}\left(\eta_
u(z)
ight) = \exp\left(rac{t}{2}\int_0^{+\infty}rac{1+\xi z}{\xi z-1}d
u(\xi)
ight).$$

• Let $H_{t,\nu}(z) = z\Sigma_{\tau_t}(z)$, and let $\Gamma_{t,\nu}$ be the connected component of the set $\{z \in \mathbb{C}^+ : \Im(H_{t,\nu}(z)) > 0\}$ whose boundary contains the left half line $(-\infty, 0)$.

Proposition (Belinschi-Bercovici '05)

The function η_{τ_t} extends to be a continuous function on $\mathbb{C}^+ \cup \mathbb{R}$, and η_{τ_t} is one to one on this set. If $\xi \in \mathbb{R}^+$ satisfies $\Im(\eta_{\tau_t}(\xi)) > 0$, then η_{τ_t} can be extended analytically to a neighborhood of ξ .

(ロ) (同) (E) (E) (E)

A formula for the density of $\nu \boxtimes \sigma_t$

Lemma

Given $r \in (0, +\infty)$, then there exists only one $\theta \in [0, \pi)$, denoted by $u_t(r)$, such that $re^{i\theta} \in \partial(\Gamma_{t,\nu})$.

Let
$$\Lambda_{r,\nu}(r) = H_{t,\nu}(re^{iu_t(r)}).$$

Theorem (Z. '12)

The measure ν_t has a density given by

$$q_t\left(rac{1}{\Lambda_{t,
u}(r)}
ight) = rac{1}{\pi} \Lambda_{t,
u}(r) rac{u_t(r)}{t}$$

for $r \in (0, +\infty)$.

イロン イヨン イヨン イヨン

The density of ν_t

Corollary

- The number of connected components of the interior of the support of ν_t is a non-increasing function of t.
- v_t is absolutely continuous and q_t is analytic whenever it is positive.
- If ν is compactly supported on (0, +∞), then the support of ν_t has only one connected component for large t.

An example

We then give a description of σ_t , part of results were known by Biane.

• Let
$$\nu = \delta_1$$
, $H_t(z) = H_{t,\delta_1} = z \exp(\frac{t}{2} \frac{z+1}{z-1})$, and $V_t = \{0 < r < +\infty : u_t(r) > 0\}.$

• Then
$$\nu_t = \sigma_t$$
 and $V_t = (x_1(t), x_2(t))$, where $x_1(t) = (2 + t - \sqrt{t(t+4)})/2$ and $x_2(t) = (2 + t + \sqrt{t(t+4)})/2 = 1/x_1(t)$.

Let
$$x_3(t) = \frac{1}{\Lambda_t(x_2(t))} = \frac{2+t-\sqrt{t(t+4)}}{2} \exp\left(-\frac{\sqrt{t(t+4)}}{2}\right)$$

and $x_4(t) = 1/x_3(t)$.

・ 回 と ・ ヨ と ・ ヨ と

Proposition

For t > 0, let $s_t(x)$ be the density of the measure σ_t at x.

(1) The support of the function
$$s_t$$
 is the interval $[x_3(t), x_4(t)]$.

(2) For
$$[\alpha, \beta] \subset (0, 1]$$
, we have $\sigma_t([\alpha, \beta]) = \sigma_t\left(\left[\frac{1}{\beta}, \frac{1}{\alpha}\right]\right)$.

(3) s_t(x)x and s_t are strictly decreasing functions of x on the interval [1, x₄(t)).

Remark

For any integer n, let
$$a_n = 1 + \sqrt{2t/n}$$
, $b_n = 1/a_n$ and $\mu_n = (\delta_{a_n} + \delta_{b_n})/2$, then $\mu_n^{\boxtimes n} \to \sigma_t$ weakly as $n \to +\infty$.

・ロン ・回 と ・ヨン ・ヨン

