K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

New Examples of Noncommutative Brownian **Motion**

Steve Avsec

University of Ottawa

(joint work with Marius Junge and Benoit Collins)

Fields Institute, 22 July, 2013

Definition (Collins, Junge)

Let $M = \vee_{t>0} M_t$ ($M_s \subset M_t$ for $s < t$) be a filtered finite von Neumann algebra. b_t is a Brownian motion if

D b_t is self-adjoint.

$$
\bullet \quad b_t \in \bigcap_{1 \leq p < \infty} L^p(\mathcal{M}, \tau) := \mathcal{M}^{\infty}. \ \ (\text{where} \\ \|x\|_p := \tau((x^*x)^{\frac{p}{2}})^{\frac{1}{p}}.)
$$

 $\mathbf{3}$ $t\rightarrow b_{t}$ is continuous in \mathcal{M}^{∞} with respect to the natural topology induced from the L^p -norms.

•
$$
b_t
$$
 and $b_t^2 - t$ are martingales. $(E_s(b_t) = b_s$ for $s < t$.)

$$
\bullet \t ||b_t - b_s||_4 \leq C |t - s|^{\frac{1}{2}}.
$$

\n- **0** Let
$$
(l_k)
$$
 be a collection of disjoint intervals such that $|l_k| = |l_j|$ for all k, j . Let $b_{l_k} := b_{s_k} - b_{r_k}$ where $l_k = [r_k, s_k)$. The (b_{l_k}) are exchangeable, i.e. the sequences $(b_{l_1}, \ldots, b_{l_n})$ and $(b_{l_{\sigma(1)}}, \ldots, b_{l_{\sigma(n)}})$ are equal in distribution.
\n

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Deformed Fock Spaces

Let $\varphi : S_{\infty} \to \mathbb{R}$ be a positive definite function, and H be a real Hilbert space. Define $F_\varphi(H)=\oplus_{n\geq 0} H_\mathbb{C}^{\otimes n}$ to be the Fock space with the deformed inner product

$$
\langle h_1 \otimes \cdots \otimes h_m, k_1 \otimes \cdots \otimes k_n \rangle = \delta_{mn} \sum_{\sigma \in S_n} \varphi(\sigma) \prod_{j=1}^n \langle h_j, k_{\sigma(j)} \rangle
$$

Let $\ell_{\varphi}(h)$ denote the left creation operator, (Toeplitz-type operator) and define

$$
s_{\varphi}(h) = \ell_{\varphi}(h) + \ell_{\varphi}(h)^*
$$

Let

$$
\omega_{\varphi}(x) = \langle \Omega, x\Omega \rangle
$$

where Ω is the vacuum vector.

Traciality

A straightforward calculation shows that

$$
\omega(s(h_1)\dots s(h_m))=\sum_{\nu\in P_2(m)}\psi(\nu)\prod_{\{i,j\}\in\nu}\langle h_i,h_j\rangle.
$$

Let e_1,e_2,e_3,e_4 be orthonormal vectors and $s(e_j)=s_j.$

 $\omega(s_4s_3s_2s_1s_3s_4s_2s_1) = \langle e_1 \otimes e_2 \otimes e_3 \otimes e_4, e_3 \otimes e_4 \otimes e_2 \otimes e_1 \rangle = \varphi(1423)$

Figure: $\sigma = (1432)$ (see also the second secon

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Rotated Once

 $\omega(s_1s_4s_3s_2s_1s_3s_4s_2) = \langle e_2 \otimes e_3 \otimes e_4 \otimes e_1, e_1 \otimes e_3 \otimes e_4 \otimes e_2 \rangle = (14)$

Figure: $\sigma = (14)$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Rotated Again

 $\omega(s_2s_1s_4s_3s_2s_1s_3s_4) = \langle e_3 \otimes e_4 \otimes e_1 \otimes e_2, e_2 \otimes e_1 \otimes e_3 \otimes e_4 \rangle = \varphi(1324)$

Figure: $\sigma = (1324)$

Traciality Conditions

Notice that

$$
(1423) = (1432)(243)
$$
 and $(14) = (1234)(132)$

and that

$$
(14) = (1432)(234) \text{ and } (1324) = (1234)(123)
$$

So the conditions we need are

$$
\varphi(\rho_n \iota_1(\sigma)) = \varphi(\rho_n^{-1} \iota_2(\sigma)) \tag{1}
$$

$$
\varphi(\iota_1(\sigma)) = \varphi(\iota_2(\sigma)) \tag{2}
$$

where $\rho_{n+1} = (1, 2, \ldots, n+1)$, $\iota_1 : S_n \hookrightarrow S_{n+1}$ is the inclusion which stabilizes the last element, and ι_2 stabilizes the first. Examples: $\varphi(\sigma)=q^{\iota(\sigma)}$ for $-1\leq q\leq 1$ (Bożejko-Speicher 1991), $\varphi(\sigma)=q^{n-B(\sigma)}$ for $0\leq q\leq 0$ (Bożejko-Spe[ich](#page-5-0)[er](#page-7-0) [19](#page-6-0)[9](#page-7-0)[6\)](#page-1-0)[.](#page-2-0) Ω

A Theorem

Theorem (A.-Junge)

- \textbf{D} Let $H=L^2([0,\infty),\mathbb{R}).$ $b_t:=s_\varphi(\chi_{[0,t]})$ is an exchangeable brownian motion if φ satisfies [1](#page-6-1) and [2.](#page-6-2)
- \bullet Let (b_t) be an exchangeable noncommutative brownian motion. There exists a positive definite function on $\varphi_b : S_{\infty} \to \mathbb{R}$ which satisfies [1](#page-6-1) and [2](#page-6-2) such that

$$
\tau(b_{l_n}\ldots b_{l_1}b_{l_{\sigma(1)}}\ldots b_{l_{\sigma(n)}})=\varphi(\sigma)
$$

Note: Since the real-valued positive definite functions which satisfy [1](#page-6-1) and [2](#page-6-2) are closed under pointwise multiplication and convex combinations, we can construct new Brownian motions from old ones using these operations.

Why isn't this everything?

Let

$$
B_t = (b_{ij}(t))_{1 \leq i,j \leq N}
$$

where $b_{ii}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \bar{b_{ji}}$ for $i > j$.

In this case, $\psi(\nu)=N^{-g(\nu)}$ where g denotes the g enus number of ν.

Why isn't this everything?

Let

$$
B_t = (b_{ij}(t))_{1 \leq i,j \leq N}
$$

where $b_{ii}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \bar{b_{ji}}$ for $i > j$.

In this case, $\psi(\nu)=N^{-{\bf g}(\nu)}$ where ${\bf g}$ denotes the ${\bf g}$ enus number of ν .

Let φ denote the restriction of ψ to permutations.

Why isn't this everything?

Let

$$
B_t = (b_{ij}(t))_{1 \leq i,j \leq N}
$$

where $b_{ii}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \bar{b_{ji}}$ for $i > j$.

In this case, $\psi(\nu)=N^{-{\bf g}(\nu)}$ where ${\bf g}$ denotes the ${\bf g}$ enus number of ν .

Let φ denote the restriction of ψ to permutations.

 φ is positive definite and satisfies [1](#page-6-1) and [2,](#page-6-2) so we may apply our theorem to obtain a brownian motion b_t^\prime . However, b_t^\prime is not the same brownian motion as $B_t!$

Why isn't this everything?

Let

$$
B_t = (b_{ij}(t))_{1 \leq i,j \leq N}
$$

where $b_{ii}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \bar{b_{ji}}$ for $i > j$.

In this case, $\psi(\nu)=N^{-{\bf g}(\nu)}$ where ${\bf g}$ denotes the ${\bf g}$ enus number of ν .

Let φ denote the restriction of ψ to permutations.

 φ is positive definite and satisfies [1](#page-6-1) and [2,](#page-6-2) so we may apply our theorem to obtain a brownian motion b_t' . However, b_t' is not the same brownian motion as $B_t!$

Another Example (due to M. Guta)

Let ψ_1, \ldots, ψ_m be functions on pair partitions which arise as moments of brownian motions b_t^1, \ldots, b_t^m .

For a pair partition $\nu \in P_2(2n)$, define

$$
\psi_1 *_{q} \psi_2 *_{q} \cdots *_{q} \psi_n(\nu) = m^{-n} \sum_{c:\nu \to \{1,\dots,m\}} q^{\iota(c,\nu)} \prod_j \psi_j(c^{-1}(j))
$$

where $\iota(c,\nu)=\frac{1}{2} |(a,b)|$ a crosses $b,c(a)\neq c(b)\}$ |.

Another Example (due to M. Guta)

Let ψ_1, \ldots, ψ_m be functions on pair partitions which arise as moments of brownian motions b_t^1, \ldots, b_t^m .

For a pair partition $\nu \in P_2(2n)$, define

$$
\psi_1 *_{q} \psi_2 *_{q} \cdots *_{q} \psi_n(\nu) = m^{-n} \sum_{c:\nu \to \{1,\dots,m\}} q^{\iota(c,\nu)} \prod_j \psi_j(c^{-1}(j))
$$

where $\iota(c,\nu)=\frac{1}{2} |(a,b)|$ a crosses $b,c(a)\neq c(b)\}$ |.

For example, $\psi_{\bm{q_1}} *_q \psi_{\bm{q_2}}$ gives a brownian motion which does not come from the "naïve" construction.

Another Example (due to M. Guta)

Let ψ_1, \ldots, ψ_m be functions on pair partitions which arise as moments of brownian motions b_t^1, \ldots, b_t^m .

For a pair partition $\nu \in P_2(2n)$, define

$$
\psi_1 *_{q} \psi_2 *_{q} \cdots *_{q} \psi_n(\nu) = m^{-n} \sum_{c:\nu \to \{1,\dots,m\}} q^{\iota(c,\nu)} \prod_j \psi_j(c^{-1}(j))
$$

where $\iota(c,\nu)=\frac{1}{2} |(a,b)|$ a crosses $b,c(a)\neq c(b)\}$ |.

For example, $\psi_{\bm{q_1}}*_\bm{q} \psi_{\bm{q_2}}$ gives a brownian motion which does not come from the "na¨ıve" construction.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Thank You!