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Definition (Collins, Junge)

Let M = ∨t≥0Mt (Ms ⊂Mt for s < t) be a filtered finite von
Neumann algebra. bt is a Brownian motion if

1 bt is self-adjoint.

2 bt ∈ ∩1≤p<∞Lp(M, τ) :=M∞. (where

‖x‖p := τ((x∗x)
p
2 )

1
p .)

3 t → bt is continuous in M∞ with respect to the natural
topology induced from the Lp-norms.

4 bt and b2
t − t are martingales. (Es(bt) = bs for s < t.)

5 ‖bt − bs‖4 ≤ C |t − s|
1
2 .

6 Let (Ik) be a collection of disjoint intervals such that
|Ik | = |Ij | for all k, j . Let bIk := bsk − brk where Ik = [rk , sk).
The (bIk ) are exchangeable, i.e. the sequences (bI1 , . . . , bIn)
and (bIσ(1)

, . . . , bIσ(n)
) are equal in distribution.
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Deformed Fock Spaces

Let ϕ : S∞ → R be a positive definite function, and H be a real
Hilbert space.
Define Fϕ(H) = ⊕n≥0H⊗nC to be the Fock space with the deformed
inner product

〈h1 ⊗ · · · ⊗ hm, k1 ⊗ · · · ⊗ kn〉 = δmn

∑
σ∈Sn

ϕ(σ)
n∏

j=1

〈hj , kσ(j)〉

Let `ϕ(h) denote the left creation operator, (Toeplitz-type
operator) and define

sϕ(h) = `ϕ(h) + `ϕ(h)∗

Let
ωϕ(x) = 〈Ω, xΩ〉

where Ω is the vacuum vector.
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Traciality

A straightforward calculation shows that

ω(s(h1) . . . s(hm)) =
∑

ν∈P2(m)

ψ(ν)
∏
{i ,j}∈ν

〈hi , hj〉.

Let e1, e2, e3, e4 be orthonormal vectors and s(ej) = sj .

ω(s4s3s2s1s3s4s2s1) = 〈e1⊗e2⊗e3⊗e4, e3⊗e4⊗e2⊗e1〉 = ϕ(1423)
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Figure: σ = (1432)
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Rotated Once

ω(s1s4s3s2s1s3s4s2) = 〈e2 ⊗ e3 ⊗ e4 ⊗ e1, e1 ⊗ e3 ⊗ e4 ⊗ e2〉 = (14)
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Figure: σ = (14)
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Rotated Again

ω(s2s1s4s3s2s1s3s4) = 〈e3⊗e4⊗e1⊗e2, e2⊗e1⊗e3⊗e4〉 = ϕ(1324)
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Figure: σ = (1324)
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Traciality Conditions

Notice that

(1423) = (1432)(243) and (14) = (1234)(132)

and that

(14) = (1432)(234) and (1324) = (1234)(123)

So the conditions we need are

ϕ(ρnι1(σ)) = ϕ(ρ−1n ι2(σ)) (1)

ϕ(ι1(σ)) = ϕ(ι2(σ)) (2)

where ρn+1 = (1, 2, . . . , n + 1), ι1 : Sn ↪→ Sn+1 is the inclusion
which stabilizes the last element, and ι2 stabilizes the first.
Examples: ϕ(σ) = qι(σ) for −1 ≤ q ≤ 1 (Bożejko-Speicher 1991),
ϕ(σ) = qn−B(σ) for 0 ≤ q ≤ 0 (Bożejko-Speicher 1996).
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A Theorem

Theorem (A.-Junge)

1 Let H = L2([0,∞),R). bt := sϕ(χ[0,t]) is an exchangeable
brownian motion if ϕ satisfies 1 and 2.

2 Let (bt) be an exchangeable noncommutative brownian
motion. There exists a positive definite function on
ϕb : S∞ → R which satisfies 1 and 2 such that

τ(bIn . . . bI1bIσ(1)
. . . bIσ(n)

) = ϕ(σ)

Note: Since the real-valued positive definite functions which
satisfy 1 and 2 are closed under pointwise multiplication and
convex combinations, we can construct new Brownian motions
from old ones using these operations.
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Why isn’t this everything?

Let
Bt = (bij(t))1≤i ,j≤N

where bij(t) are independent complex-valued brownian motions for
i ≤ j and bij = b̄ji for i > j .

In this case, ψ(ν) = N−g(ν) where g denotes the genus number of
ν.

Let ϕ denote the restriction of ψ to permutations.

ϕ is positive definite and satisfies 1 and 2, so we may apply our
theorem to obtain a brownian motion b′t . However, b′t is not the
same brownian motion as Bt !
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Another Example (due to M. Guta)

Let ψ1, . . . , ψm be functions on pair partitions which arise as
moments of brownian motions b1

t , . . . , b
m
t .

For a pair partition ν ∈ P2(2n), define

ψ1 ∗q ψ2 ∗q · · · ∗q ψn(ν) = m−n
∑

c:ν→{1,...,m}

qι(c,ν)
∏
j

ψj(c−1(j))

where ι(c, ν) = 1
2 | (a, b)|a crosses b, c(a) 6= c(b)} |.

For example, ψq1 ∗q ψq2 gives a brownian motion which does not
come from the “näıve” construction.
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Thank You!
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