< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

New Examples of Noncommutative Brownian Motion

Steve Avsec

University of Ottawa

(joint work with Marius Junge and Benoit Collins) Fields Institute, 22 July, 2013

Definition (Collins, Junge)

Let $\mathcal{M} = \bigvee_{t \geq 0} \mathcal{M}_t$ ($\mathcal{M}_s \subset \mathcal{M}_t$ for s < t) be a filtered finite von Neumann algebra. b_t is a Brownian motion if

b_t is self-adjoint.

②
$$b_t \in \cap_{1 \le p < \infty} L^p(\mathcal{M}, \tau) := \mathcal{M}^\infty$$
. (where
 $\|x\|_p := \tau((x^*x)^{\frac{p}{2}})^{\frac{1}{p}}$.)

t → b_t is continuous in M[∞] with respect to the natural topology induced from the L^p-norms.

•
$$b_t$$
 and $b_t^2 - t$ are martingales. $(E_s(b_t) = b_s$ for $s < t$.)

$$||b_t - b_s||_4 \le C|t - s|^{\frac{1}{2}}.$$

• Let (I_k) be a collection of disjoint intervals such that $|I_k| = |I_j|$ for all k, j. Let $b_{I_k} := b_{s_k} - b_{r_k}$ where $I_k = [r_k, s_k)$. The (b_{I_k}) are exchangeable, i.e. the sequences $(b_{I_1}, \ldots, b_{I_n})$ and $(b_{I_{\sigma(1)}}, \ldots, b_{I_{\sigma(n)}})$ are equal in distribution.

Deformed Fock Spaces

Let $\varphi : S_{\infty} \to \mathbb{R}$ be a positive definite function, and H be a real Hilbert space. Define $F_{\varphi}(H) = \bigoplus_{n \ge 0} H_{\mathbb{C}}^{\otimes n}$ to be the Fock space with the deformed inner product

$$\langle h_1 \otimes \cdots \otimes h_m, k_1 \otimes \cdots \otimes k_n \rangle = \delta_{mn} \sum_{\sigma \in S_n} \varphi(\sigma) \prod_{j=1}^n \langle h_j, k_{\sigma(j)} \rangle$$

Let $\ell_{\varphi}(h)$ denote the left creation operator, (Toeplitz-type operator) and define

$$s_arphi(h) = \ell_arphi(h) + \ell_arphi(h)^*$$

Let

$$\omega_{\varphi}(\mathbf{x}) = \langle \Omega, \mathbf{x} \Omega \rangle$$

where Ω is the vacuum vector.

Traciality

A straightforward calculation shows that

$$\omega(s(h_1)\ldots s(h_m)) = \sum_{\nu \in P_2(m)} \psi(\nu) \prod_{\{i,j\} \in \nu} \langle h_i, h_j \rangle$$

Let e_1, e_2, e_3, e_4 be orthonormal vectors and $s(e_j) = s_j$.

 $\omega(s_4s_3s_2s_1s_3s_4s_2s_1) = \langle e_1 \otimes e_2 \otimes e_3 \otimes e_4, e_3 \otimes e_4 \otimes e_2 \otimes e_1 \rangle = \varphi(1423)$

Figure: $\sigma = (1432)$ (1432) (1432) (1432)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rotated Once

 $\omega(s_1s_4s_3s_2s_1s_3s_4s_2) = \langle e_2 \otimes e_3 \otimes e_4 \otimes e_1, e_1 \otimes e_3 \otimes e_4 \otimes e_2 \rangle = (14)$

Figure: $\sigma = (14)$

・ロト・日本・モート モー うへぐ

Rotated Again

 $\omega(s_2s_1s_4s_3s_2s_1s_3s_4) = \langle e_3 \otimes e_4 \otimes e_1 \otimes e_2, e_2 \otimes e_1 \otimes e_3 \otimes e_4 \rangle = \varphi(1324)$

Figure: $\sigma = (1324)$

Traciality Conditions

Notice that

$$(1423) = (1432)(243)$$
 and $(14) = (1234)(132)$

and that

$$(14) = (1432)(234)$$
 and $(1324) = (1234)(123)$

So the conditions we need are

$$\varphi(\rho_n \iota_1(\sigma)) = \varphi(\rho_n^{-1} \iota_2(\sigma)) \tag{1}$$

$$\varphi(\iota_1(\sigma)) = \varphi(\iota_2(\sigma)) \tag{2}$$

where $\rho_{n+1} = (1, 2, ..., n+1)$, $\iota_1 : S_n \hookrightarrow S_{n+1}$ is the inclusion which stabilizes the last element, and ι_2 stabilizes the first. Examples: $\varphi(\sigma) = q^{\iota(\sigma)}$ for $-1 \le q \le 1$ (Bożejko-Speicher 1991), $\varphi(\sigma) = q^{n-B(\sigma)}$ for $0 \le q \le 0$ (Bożejko-Speicher 1996).

A Theorem

Theorem (A.-Junge)

- Let H = L²([0,∞), ℝ). b_t := s_φ(χ_[0,t]) is an exchangeable brownian motion if φ satisfies 1 and 2.
- ② Let (b_t) be an exchangeable noncommutative brownian motion. There exists a positive definite function on $\varphi_b : S_{\infty} \rightarrow \mathbb{R}$ which satisfies 1 and 2 such that

$$\tau(b_{I_n}\ldots b_{I_1}b_{I_{\sigma(1)}}\ldots b_{I_{\sigma(n)}})=\varphi(\sigma)$$

Note: Since the real-valued positive definite functions which satisfy 1 and 2 are closed under pointwise multiplication and convex combinations, we can construct new Brownian motions from old ones using these operations.

Let

$$B_t = (b_{ij}(t))_{1 \leq i,j \leq N}$$

where $b_{ij}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \overline{b_{ji}}$ for i > j.

In this case, $\psi(\nu) = N^{-g(\nu)}$ where g denotes the genus number of ν .

Let φ denote the restriction of ψ to permutations.

Let

$$B_t = (b_{ij}(t))_{1 \le i,j \le N}$$

where $b_{ij}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \overline{b_{ji}}$ for i > j.

In this case, $\psi(\nu) = N^{-g(\nu)}$ where g denotes the genus number of ν .

Let φ denote the restriction of ψ to permutations.

Let

$$B_t = (b_{ij}(t))_{1 \leq i,j \leq N}$$

where $b_{ij}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \overline{b_{ji}}$ for i > j.

In this case, $\psi(\nu) = N^{-g(\nu)}$ where g denotes the genus number of ν .

Let φ denote the restriction of ψ to permutations.

Let

$$B_t = (b_{ij}(t))_{1 \leq i,j \leq N}$$

where $b_{ij}(t)$ are independent complex-valued brownian motions for $i \leq j$ and $b_{ij} = \overline{b_{ji}}$ for i > j.

In this case, $\psi(\nu) = N^{-g(\nu)}$ where g denotes the genus number of ν .

Let φ denote the restriction of ψ to permutations.

Another Example (due to M. Guta)

Let ψ_1, \ldots, ψ_m be functions on pair partitions which arise as moments of brownian motions b_t^1, \ldots, b_t^m .

For a pair partition $\nu \in P_2(2n)$, define

$$\psi_1 *_q \psi_2 *_q \cdots *_q \psi_n(\nu) = m^{-n} \sum_{c:\nu \to \{1,\dots,m\}} q^{\iota(c,\nu)} \prod_j \psi_j(c^{-1}(j))$$

where $\iota(c,\nu) = \frac{1}{2} |(a,b)| a$ crosses $b, c(a) \neq c(b) \} |$.

For example, $\psi_{q_1} *_q \psi_{q_2}$ gives a brownian motion which does not come from the "naïve" construction.

Another Example (due to M. Guta)

Let ψ_1, \ldots, ψ_m be functions on pair partitions which arise as moments of brownian motions b_t^1, \ldots, b_t^m .

For a pair partition $\nu \in P_2(2n)$, define

$$\psi_1 *_q \psi_2 *_q \cdots *_q \psi_n(\nu) = m^{-n} \sum_{c:\nu \to \{1,\dots,m\}} q^{\iota(c,\nu)} \prod_j \psi_j(c^{-1}(j))$$

where $\iota(c, \nu) = \frac{1}{2} |(a, b)| a$ crosses $b, c(a) \neq c(b) \} |$.

For example, $\psi_{q_1} *_q \psi_{q_2}$ gives a brownian motion which does not come from the "naïve" construction.

Another Example (due to M. Guta)

Let ψ_1, \ldots, ψ_m be functions on pair partitions which arise as moments of brownian motions b_t^1, \ldots, b_t^m .

For a pair partition $\nu \in P_2(2n)$, define

$$\psi_1 *_q \psi_2 *_q \cdots *_q \psi_n(\nu) = m^{-n} \sum_{c:\nu \to \{1,...,m\}} q^{\iota(c,\nu)} \prod_j \psi_j(c^{-1}(j))$$

where $\iota(c, \nu) = \frac{1}{2} |(a, b)| a$ crosses $b, c(a) \neq c(b) \} |$.

For example, $\psi_{q_1} *_q \psi_{q_2}$ gives a brownian motion which does not come from the "naïve" construction.

(ロ)、

Thank You!