Strong Asymptotic Freeness for Free Orthogonal Qauntum Groups

> Michael Brannan University of Illinois at Urbana-Champaign

> > Fields Institute. July 22, 2013.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation: Polynomial Integrals Over O_N

Consider the $N \times N$ orthogonal group

$$O_N = \{g = [g_{ij}] \in M_N(\mathbb{C}) \mid g \text{ unitary } \& g^T = g^*\}$$

and the basic coordinate functions

 $v_{ij} \in C(O_N); \quad v_{ij}(g) = g_{ij} \qquad (g \in O_N, \ 1 \leq i, j \leq N).$

Basic Problem Given any polynomial function

$$f \in \mathsf{Pol}(\mathcal{O}_{\mathcal{N}}) := * - \mathsf{Alg}(\mathsf{v}_{ij} : 1 \leq i, j \leq \mathcal{N}) \subset C(\mathcal{O}_{\mathcal{N}}),$$

compute the Haar integral

$$h_{O_N}(f) = \int_{O_N} f(g) dg.$$

Equivalently, compute all joint moments of random variables

$$\{v_{ij}\}_{1\leq i,j\leq N}\subset L^{\infty}(O_N,dg).$$

Motivation: Polynomial Integrals Over O_N

- The need to compute polynomial integrals arises in many contexts: random matrices, (free) probability, QIT, physics...
- ► Bad News: Polynomial integrals over O_N are generally hard to explicitly compute (or even estimate).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Good News: Often, one is interested in the polynomial integrals in the large N limit. In this setting, some simplifications occur. More precisely:

Motivation: Polynomial Integrals Over O_N

- The need to compute polynomial integrals arises in many contexts: random matrices, (free) probability, QIT, physics...
- ► Bad News: Polynomial integrals over O_N are generally hard to explicitly compute (or even estimate).
- Good News: Often, one is interested in the polynomial integrals in the large N limit. In this setting, some simplifications occur. More precisely:

Theorem (Attributed to many)

Let $W = \{w_{ij}\}_{i,j\in\mathbb{N}}$ be an i.i.d. array of N(0,1) real Gaussian RVs over a probability space (Ω, P) . Then the normalized coordinates $\{\sqrt{N}v_{ij}\}_{1\leq i,j\leq N}$ converge in distribution to \mathcal{G} . I.e., for any fixed *k*-tuples $i, j : [k] \to \mathbb{N}$,

$$\lim_{N\to\infty}h_{\mathcal{O}_N}(\sqrt{N}v_{i(1)j(1)}\ldots\sqrt{N}v_{i(k)j(k)})=\int_{\Omega}w_{i(1)j(1)}\ldots w_{i(k)j(k)}dP.$$

The Free Orthogonal Quantum Group $\mathbb{F}O_N$

We want to consider a "free version" of O_N , denoted by $\mathbb{F}O_N$.

・ロト・日本・モト・モート ヨー うへで

The Free Orthogonal Quantum Group $\mathbb{F}O_N$

We want to consider a "free version" of O_N , denoted by $\mathbb{F}O_N$. Define a universal unital *-algebra

 $\mathsf{Pol}(\mathbb{F}O_N) := *-\mathsf{Alg}(\{u_{ij}\}_{1 \le i,j \le N} | U = [u_{ij}] \text{ is unitary } \& U = \overline{U} := [u_{ij}^*])$

 $Pol(\mathbb{F}O_N)$ is actually Hopf *-algebra with coproduct, counit and antipode determined by:

$$egin{aligned} \Delta(u_{ij}) &= \sum_{k=1}^N u_{ik} \otimes u_{kj} \ \epsilon(u_{ij}) &= \delta_{ij} \ S(u_{ij}) &= u_{ji} \ & (1 \leq i,j \leq N) \end{aligned}$$

 $Pol(\mathbb{F}O_N)$ together with Δ, ϵ, S yields a compact quantum group the free orthogonal quantum group $\mathbb{F}O_N$.

Polynomial Integrals Over $\mathbb{F}O_N$

Since $\mathbb{F}O_N$ is a compact quantum group, there is a (faithful) Δ -invariant Haar state¹:

 $h = h_{\mathbb{F}O_N} : \mathsf{Pol}(\mathbb{F}O_N) \to \mathbb{C}; \quad (h \otimes \mathsf{id})\Delta = (\mathsf{id} \otimes h)\Delta = h(\cdot)1_{\mathsf{Pol}(\mathbb{F}O_N)}.$

Thus we can talk about polynomial integrals over $\mathbb{F}O_N$:

 $\text{For each } P \in \mathbb{C}\langle X_{ij} : 1 \leq i,j \leq N \rangle \quad \text{evaluate} \quad h_{\mathbb{F}O_N}\big(P(\{u_{ij}\}_{1 \leq i,j \leq N})\big) \\$

GNS Construction: Put $L^2(\mathbb{F}O_N) := L^2(\text{Pol}(\mathbb{F}O_N), h)$ and

$$L^{\infty}(\mathbb{F}O_N) = \operatorname{Pol}(\mathbb{F}O_N)'' \subseteq \mathcal{B}(L^2(\mathbb{F}O_N)).$$

The von Neumann algebra $L^{\infty}(\mathbb{F}O_N)$ is completely determined by the above polynomial integrals.

¹h is tracial.

Integrals via Weingarten Calculus

- Fix k ∈ N and let NC₂(k) = set of non-crossing pairings of [k] = {1, 2, ..., k}.
- ▶ For each $i : [k] \to \mathbb{N}$, $\pi \in \mathit{NC}_2(k)$, put

 $\delta_{\pi}(i) = egin{cases} 1 & ext{if } i ext{ is constant on each block of } \pi \\ 0 & ext{otherwise} \end{cases}$

Example: $\delta_{\sqcup \sqcup}(i) = 1$ iff i(1) = i(2)&i(3) = i(4).

▶ Finally define a matrix $W_{k,N} \in M_{NC_2(k) \times NC_2(k)}(\mathbb{C})$ by

$$W_{k,N}^{-1} = [N^{\#(\pi \vee \sigma)}]_{\pi,\sigma \in NC_2(k)}.$$

Theorem (Banica-Collins '07)

$$h_{\mathbb{F}O_N}(u_{i(1)j(1)}\ldots u_{i(k)j(k)}) = \sum_{\pi,\sigma\in N_2(k)} \delta_{\pi}(i)\delta_{\sigma}(j)W_{k,N}(\pi,\sigma).$$

Observation: $W_{k,N}(\pi,\sigma) = N^{-k/2} (\delta_{\pi,\sigma} + O(N^{-1})).$

Asymptotic Freeness

Corollary (Banica-Collins '07)

Let $S = \{s_{ij}\}_{i,j\in\mathbb{N}}$ be a free semicircular system in a finite von Neumann algebra (M, τ) Then the the normalized coordinates $S_N = \{\sqrt{N}u_{ij}\}_{1\leq i,j\leq N}$ converge in distribution to S.

Asymptotic Freeness

Corollary (Banica-Collins '07)

Let $S = \{s_{ij}\}_{i,j\in\mathbb{N}}$ be a free semicircular system in a finite von Neumann algebra (M, τ) Then the the normalized coordinates $S_N = \{\sqrt{N}u_{ij}\}_{1\leq i,j\leq N}$ converge in distribution to S.

Proof.

Use the asymptotics $W_{k,N}(\pi,\sigma) = N^{-k/2}(\delta_{\pi,\sigma} + O(N^{-1}))$:

$$\begin{split} h_{\mathbb{F}O_{N}}(\sqrt{N}u_{i(1)j(1)}\dots\sqrt{N}u_{i(k)j(k)}) \\ &= N^{k/2}\sum_{\pi,\sigma\in N_{2}(k)}\delta_{\pi}(i)\delta_{\sigma}(j)W_{k,N}(\pi,\sigma) = \sum_{\pi\in N_{2}(k)}\delta_{\pi}(i)\delta_{\pi}(j) + O(N^{-1}) \\ &= \#\{\pi \mid i,j \text{ constant on blocks of } \pi\} + O(N^{-1}) \\ &= \tau(s_{i(1)j(1)}\dots s_{i(k)j(k)}) + O(N^{-1}). \end{split}$$

Thus the generators $\{\sqrt{N}u_{ij}\}_{1 \le i,j \le N}$ of the von Neumann algebra $L^{\infty}(\mathbb{F}O_N)$ are asymptotically free and semicircular.

Strong Asymptotic Freeness

Question

Can we say anything more about the mode of convergence of

$$S_N = \{\sqrt{N}u_{ij}\}_{1 \le i,j \le N} \longrightarrow S?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Strong Asymptotic Freeness

Question

Can we say anything more about the mode of convergence of

$$S_N = \{\sqrt{N}u_{ij}\}_{1 \le i,j \le N} \longrightarrow S?$$

Theorem (B. '13)

 S_N is strongly asymptotically free and semicircular. I.e., for any non-commutative polynomial $P \in \mathbb{C}\langle X_{ij} : i, j \in \mathbb{N} \rangle$,

 $h_{\mathbb{F}O_N}(P(S_N)) \longrightarrow \tau(P(S)) \& \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} \longrightarrow \|P(S)\|_{L^{\infty}(M,\tau)}.$

Remark: Using standard C*-algebraic techniques, a similar result also holds for matrix-valued polynomials $P \in M_k(\mathbb{C}) \otimes \mathbb{C}\langle X_{ij} : i, j \in \mathbb{N} \rangle.$

The One Variable Case: Superconvergence of $\sqrt{N}u_{11}$

The one-variable version of the above theorem was already known. Theorem (Banica-Collins-Zinn Justin '09) Let μ_N be the spectral measure of $\sqrt{N}u_{11} \in L^{\infty}(\mathbb{F}O_N)$. Then

•
$$\mu_N$$
 is atomless and $supp\mu_N = \left\lfloor -2\sqrt{\frac{N}{N+2}}, 2\sqrt{\frac{N}{N+2}} \right\rfloor$.

•
$$\frac{d\mu_N}{dt}$$
 is analytic on $\left(-2\sqrt{\frac{N}{N+2}}, 2\sqrt{\frac{N}{N+2}}\right)$ and converges uniformly to $\frac{\sqrt{4-t^2}}{2\pi} = \frac{d(\text{semicircle law})}{dt}$.

The proof involves modeling u_{11} as a certain variable over Woronowicz' $SU_q(2)$ quantum group $(N = -q - q^{-1})$, and exploiting the structure there.

For the Multivariate Setting...

We work with moments. Fix $P \in \mathbb{C}\langle X_{ij} : i, j \in \mathbb{N} \rangle$. Recall that

$$\begin{split} \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} &= \lim_{q \to \infty} \|P(S_N)\|_{L^q(\mathbb{F}O_N)},\\ \lim_{N \to \infty} \|P(S_N)\|_{L^q(\mathbb{F}O_N)} &= \|P(S)\|_{L^q(M,\tau)} \quad (q \in 2\mathbb{N}).\\ \text{Consequently, } \lim \inf_{N \to \infty} \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} &\geq \|P(S)\|_{L^{\infty}(M,\tau)}.\\ \text{We want:} \quad \limsup_{N \to \infty} \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} &\leq \|P(S)\|_{L^{\infty}(M,\tau)}. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For the Multivariate Setting...

C

We work with moments. Fix $P \in \mathbb{C}\langle X_{ij} : i, j \in \mathbb{N} \rangle$. Recall that

$$\begin{split} \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} &= \lim_{q \to \infty} \|P(S_N)\|_{L^q(\mathbb{F}O_N)},\\ \lim_{N \to \infty} \|P(S_N)\|_{L^q(\mathbb{F}O_N)} &= \|P(S)\|_{L^q(M,\tau)} \quad (q \in 2\mathbb{N}).\\ \text{onsequently, } \lim\inf_{N \to \infty} \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} &\geq \|P(S)\|_{L^{\infty}(M,\tau)}.\\ \text{We want:} \quad \limsup_{N \to \infty} \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} &\leq \|P(S)\|_{L^{\infty}(M,\tau)}. \end{split}$$

Proposition (Uniform $L^q - L^\infty$ estimates for $\mathbb{F}O_N$) For any $\epsilon > 0$, there is a $q = q(P, \epsilon) > 0$ such that

 $\|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} \leq (1+\epsilon)\|P(S_N)\|_{L^q(\mathbb{F}O_N)} \qquad UNIFORMLY \text{ in } N.$

Letting $N \to \infty, q \to \infty, \epsilon \to 0$, we get

 $\limsup_{N\to\infty} \|P(S_N)\|_{L^{\infty}(\mathbb{F}O_N)} \leq \|P(S)\|_{L^{\infty}(M,\tau)}.$

Uniform L^q - L^∞ estimate

We use Vergnioux's property of rapid decay for the dual quantum groups $\widehat{\mathbb{F}O_N}$.

▶ Inductively define subspaces $\{H_k\}_{k\geq 0}$ of $Pol(\mathbb{F}O_N)$ where

$$\begin{aligned} & H_0(N) = \mathbb{C}1, \quad H_1(N) = \text{span}\{u_{ij}\}_{1 \le i,j \le N} \\ \text{and} \quad H_k(N) = \text{span}\{H_1(N)H_{k-1}(N)\} \ominus H_{k-2}(N) \qquad (k \ge 2). \end{aligned}$$

Peter-Weyl/ "Fock" decomposition (Banica '95):

$$\operatorname{Pol}(\mathbb{F}O_N) = L^2 - \bigoplus_{k \geq 0} H_k(N).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Uniform L^q - L^∞ estimate

We use Vergnioux's property of rapid decay for the dual quantum groups $\widehat{\mathbb{F}O_N}$.

▶ Inductively define subspaces $\{H_k\}_{k\geq 0}$ of $Pol(\mathbb{F}O_N)$ where

$$\begin{aligned} & H_0(N) = \mathbb{C}1, \quad H_1(N) = \text{span}\{u_{ij}\}_{1 \le i,j \le N} \\ \text{and} \quad H_k(N) = \text{span}\{H_1(N)H_{k-1}(N)\} \ominus H_{k-2}(N) \qquad (k \ge 2). \end{aligned}$$

Peter-Weyl/ "Fock" decomposition (Banica '95):

$$\operatorname{Pol}(\mathbb{F}O_N) = L^2 - \bigoplus_{k \ge 0} H_k(N).$$

Theorem ("Property RD" Vergnioux '07) Let $P_k : Pol(\mathbb{F}O_N) \to H_k(N)$ be the \perp -projection. Then there is a constant $D_N > 1$ (only depending on N) such that for any $k, l, n \in \mathbb{N}$

 $\|P_k(xy)\|_{L^2} \leq D_N \|x\|_{L^2} \|y\|_{L^2}$ $(x \in H_l(N), y \in H_n(N)).$

For our polynomial $P(S_N)$, we have

$$P(S_N) \in \bigoplus_{k=0}^{\deg P} H_k(N)$$

and property RD + some book-keeping implies

$$\|P(S_N)\|_{L^{\infty}} \leq D_N (\deg P + 1)^{3/2} \|P(S_N)\|_{L^2}.$$

・ロト・日本・モト・モート ヨー うへで

For our polynomial $P(S_N)$, we have

$$P(S_N) \in igoplus_{k=0}^{\deg P} H_k(N)$$

and property RD + some book-keeping implies

$$\|P(S_N)\|_{L^{\infty}} \leq D_N (\deg P + 1)^{3/2} \|P(S_N)\|_{L^2}.$$

Replacing P by $(P^*P)^m$ $(m \in \mathbb{N})$, we get an $L^{4m}-L^{\infty}$ estimate:

$$\begin{split} \|(P^*P)^m(S_N)\|_{L^{\infty}} &\leq D_N(\underbrace{\deg(P^*P)^m}_{\leq 2m \deg P} + 1)^{3/2} \|(P^*P)^m(S_N)\|_{L^2} \\ & \Longrightarrow \|P(S_N)\|_{L^{\infty}} \leq D_N^{1/2m} (2m \deg P + 1)^{3/4m} \|P(S_N)\|_{L^{4m}} \qquad (m \in \mathbb{N}). \end{split}$$

To conclude, one just needs to show that

$$\lim_{m\to\infty} D_N^{1/2m} (2m \deg P + 1)^{3/4m} = 1 \qquad \text{uniformly in } N.$$

This is established by proving that $\{D_N\}_{N\geq 3}$ is bounded.

Some Applications

- Since strong convergence is stable with respect to taking reduced free products (Skoufranis '12), get strong asymptotic freeness for the free unitary quantum groups FUN from FON.
- ► Can deduce well known L²-L[∞] inequalities for polynomials in semicircular systems from the corresponding ones for L[∞](FO_N) given by property RD.