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A quick reminder on... ...Anderson's self-adjoint version of the linearization trick

De�nition

Let p ∈ C〈X1, . . . , Xn〉 be given. A matrix

Lp :=

[
0 u
v Q

]
∈ MN (C〈X1, . . . , Xn〉),

of dimension N ∈ N, where
u and v are row and column vectors, respectively, both of dimension

N − 1 with entries in C〈X1, . . . , Xn〉 and
Q ∈ MN−1(C〈X1, . . . , Xn〉) is invertible,

is called a linearization of p, if the following conditions are satis�ed:

(i) There are matrices b0, . . . , bn ∈ MN (C), such that

Lp = b0 ⊗ 1 + b1 ⊗X1 + · · ·+ bn ⊗Xn ∈ MN (C)⊗ C〈X1, . . . , Xn〉.

(ii) It holds true that p = −uQ−1v.

Tobias Mai (Saarland University) The self-adjoint linearization trick July 25, 2013 3 / 14



A quick reminder on... ...Anderson's self-adjoint version of the linearization trick

De�nition

Let p ∈ C〈X1, . . . , Xn〉 be given. A matrix

Lp :=

[
0 u
v Q

]
∈ MN (C〈X1, . . . , Xn〉),

of dimension N ∈ N, where
u and v are row and column vectors, respectively, both of dimension

N − 1 with entries in C〈X1, . . . , Xn〉 and
Q ∈ MN−1(C〈X1, . . . , Xn〉) is invertible,

is called a linearization of p, if the following conditions are satis�ed:

(i) There are matrices b0, . . . , bn ∈ MN (C), such that

Lp = b0 ⊗ 1 + b1 ⊗X1 + · · ·+ bn ⊗Xn ∈ MN (C)⊗ C〈X1, . . . , Xn〉.

(ii) It holds true that p = −uQ−1v.

Tobias Mai (Saarland University) The self-adjoint linearization trick July 25, 2013 3 / 14



A quick reminder on... ...Anderson's self-adjoint version of the linearization trick

Theorem (Anderson, 2012)

(i) Consider a polynomial p ∈ C〈X1, . . . , Xn〉 with linearization

Lp = b0 ⊗ 1 + b1 ⊗X1 + · · ·+ bn ⊗Xn ∈ MN (C)⊗ C〈X1, . . . , Xn〉.

Let A be a complex unital algebra and let x1, . . . , xn ∈ A be given.

Put P := p(x1, . . . , xn) and

LP := b0 ⊗ 1 + b1 ⊗ x1 + · · ·+ bn ⊗ xn ∈ MN (C)⊗A.

By using the notation Λ(z) := diag(z, 0, . . . , 0) ∈ MN (C), we get

z − P is invertible in A ⇐⇒ Λ(z)− LP is invertible in MN (C)⊗A

and moreover: [(Λ(z)− LP )−1]1,1 = (z − P )−1

(ii) Any polynomial p ∈ C〈X1, . . . , Xn〉 has a linearization Lp.
If p is self-adjoint, Lp can be chosen to be self-adjoint as well.
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A quick reminder on... ...operator-valued free probability theory

Operator-valued free probability theory I

De�nition

An operator-valued C∗-probability space (A, E,B) consists of

a unital C∗-algebra A,
a unital C∗-subalgebra B of A and

a conditional expectation E : A → B, i.e. a positive and unital map
satisfying

I E[b] = b for all b ∈ B and
I E[b1ab2] = b1E[a]b2 for all a ∈ A, b1, b2 ∈ A.

Example

Let (A0, φ) be a C∗-probability space. Then

A := MN (C)⊗A0, B := MN (C) and E := idMN (C)⊗φ

gives an operator-valued C∗-probability space (A, E,B).
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A quick reminder on... ...operator-valued free probability theory

Operator-valued free probability theory II

De�nition

Let (A, E,B) be an operator-valued C∗-probability space. We call

H±(B) := {b ∈ B| ∃ε > 0 : ±=(b) ≥ ε1}

the upper and lower half-plane, respectively, where we use the notation

=(b) :=
1

2i
(b− b∗).

For x = x∗ ∈ A, we introduce

the Cauchy transform Gx : H+(B)→ H−(B), Gx(b) := E[(b−x)−1],

the F -transform Fx : H+(B)→ H+(B), Fx(b) := Gx(b)−1 and

the h-transform hx : H+(B)→ H+(B), hx(b) := Fx(b)− b.
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First application: Polynomials in free random variables

First application: Polynomials in free random variables

Let (A, φ) be a C∗-probability space and let x1, . . . , xn ∈ A be self-adjoint

and freely independent.

Question

Given a self-adjoint non-commutative polynomial p ∈ C〈X1, . . . , Xn〉.
How can we calculate the distribution of p(x1, . . . , xn) out of the given

distributions of x1, . . . , xn?

Solution (Belinschi, M., Speicher, 2013)

Combine the linearization trick in its self-adjoint version by Anderson with

results about the operator-valued free additive convolution in the setting of

operator-valued C∗-probability spaces.

This gives an algorithmic solution for the question above, which is

moreover easily accessible for numerical computations!
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First application: Polynomials in free random variables

Linearization leads to an operator-valued problem

Let (A, φ) be a C∗-probability space.

Consider P := p(x1, . . . , xn), where x1, . . . , xn ∈ A are self-adjoint and

freely independent and p ∈ C〈X1, . . . , Xn〉 is a self-adjoint polynomial.

Anderson's linearization trick shows that there is an self-adjoint operator

LP := b0 ⊗ 1 + b1 ⊗ x1 + · · ·+ bn ⊗ xn ∈ MN (C)⊗A,

such that we have with respect to E = idMN (C)⊗φ for all z ∈ C+

GP (z) =
[
E
[
(Λ(z)− LP )−1

]]
1,1

= lim
ε↘0

[
E
[
(Λε(z)− LP )−1

]]
1,1
,

where Λε(z) := diag(z, iε, . . . , iε) ∈ H+(MN (C)).

Observation

b1 ⊗ x1, . . . , bn ⊗ xn are free with amalgamation over MN (C).
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First application: Polynomials in free random variables

Theorem (Belinschi, M., Speicher, 2013)

Assume that (A, E,B) is an operator-valued C∗-probability space.

If x, y ∈ A are free with respect to E, then there exists a unique pair of

(Fréchet-)holomorphic maps

ω1, ω2 : H+(B)→ H+(B)

such that

Gx(ω1(b)) = Gy(ω2(b)) = Gx+y(b), b ∈ H+(B).

Moreover, ω1 and ω2 can easily be calculated via the following �xed point

iterations on H+(B):

w 7→ hy(b+ hx(w)) + b for ω1(b)

w 7→ hx(b+ hy(w)) + b for ω2(b)
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First application: Polynomials in free random variables

Appetizer (coming from free stochastic integrals)

Consider

p(X1, X2) =
1

2
(X3

1 +X1X2X1 +X2X1X2 +X3
2 )− (X1 +X2).

Let s1, s2 be two free (0, 1)-semicircular elements.

The density of the distribution of p(s1, s2) looks like:
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Second application: Multivariate free Berry-Esseen

Linearization leads again to an operator-valued problem

Take a self-adjoint linearization Lp = b0 ⊗ 1 + b1 ⊗X1 + · · ·+ bd ⊗Xd of

the self-adjoint polynomial p ∈ C〈X1, . . . , Xd〉. We put

Xn := b1 ⊗ x1,n + · · ·+ bd ⊗ xd,n, n ∈ N.

Then (Xn)n∈N are self-adjoint elements in Mk(C)⊗A, which are

identically distributed and free with respect to E = idMk(C)⊗φ with

E[Xn] = 0 for all n ∈ N. Hence,

ΣN :=
1√
N

N∑
n=1

Xn = b1 ⊗ σ1,N + · · ·+ bd ⊗ σd,N

converges as N →∞ in distribution (with respect to E) to the

operator-valued semicircular element

S := b1 ⊗ s1 + · · ·+ bd ⊗ sd,
Note that we have

Lp(s1, . . . , sn) = b0⊗1+S and Lp(σ1,N , . . . , σd,N ) = b0⊗1+ΣN .
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Second application: Multivariate free Berry-Esseen

Theorem (M., Speicher, 2013)

Let (A, E,B) be an operator-valued C∗-probability space with faithful

conditional expectation E and let (Xn)n∈N be a sequence of identically

distributed and self-adjoint elements in A, satisfying E[Xn] = 0, which are

free with respect to E. Then

ΣN :=
1√
N

N∑
n=1

Xn

converges as N →∞ in distribution to an operator-valued semicircular

element S and we have for all b ∈ H+(B)

‖GΣN
(b)−GS(b)‖ ≤ 2√

N
‖=(b)−1‖4

√
(2‖mXn

2 ‖2 + ‖mXn
4 ‖)‖m

Xn
2 ‖.

We use the notation mX
n (b1, . . . , bn−1) := E[Xb1X . . .Xbn−1X] and

‖mX
n ‖ := sup

‖b1‖≤1,...,‖bn−1‖≤1
‖mX

n (b1, . . . , bn−1)‖ ≤ ‖X‖n.

Tobias Mai (Saarland University) The self-adjoint linearization trick July 25, 2013 13 / 14



Second application: Multivariate free Berry-Esseen

Theorem (M., Speicher, 2013)

Let (A, E,B) be an operator-valued C∗-probability space with faithful

conditional expectation E and let (Xn)n∈N be a sequence of identically

distributed and self-adjoint elements in A, satisfying E[Xn] = 0, which are

free with respect to E. Then

ΣN :=
1√
N

N∑
n=1

Xn

converges as N →∞ in distribution to an operator-valued semicircular

element S and we have for all b ∈ H+(B)

‖GΣN
(b)−GS(b)‖ ≤ 2√

N
‖=(b)−1‖4

√
(2‖mXn

2 ‖2 + ‖mXn
4 ‖)‖m

Xn
2 ‖.

We use the notation mX
n (b1, . . . , bn−1) := E[Xb1X . . .Xbn−1X] and

‖mX
n ‖ := sup

‖b1‖≤1,...,‖bn−1‖≤1
‖mX

n (b1, . . . , bn−1)‖ ≤ ‖X‖n.

Tobias Mai (Saarland University) The self-adjoint linearization trick July 25, 2013 13 / 14



Second application: Multivariate free Berry-Esseen

Theorem (M., Speicher, 2013)

Let (A, E,B) be an operator-valued C∗-probability space with faithful

conditional expectation E and let (Xn)n∈N be a sequence of identically

distributed and self-adjoint elements in A, satisfying E[Xn] = 0, which are

free with respect to E. Then

ΣN :=
1√
N

N∑
n=1

Xn

converges as N →∞ in distribution to an operator-valued semicircular

element S and we have for all b ∈ H+(B)

‖GΣN
(b)−GS(b)‖ ≤ 2√

N
‖=(b)−1‖4

√
(2‖mXn

2 ‖2 + ‖mXn
4 ‖)‖m

Xn
2 ‖.

We use the notation mX
n (b1, . . . , bn−1) := E[Xb1X . . .Xbn−1X] and

‖mX
n ‖ := sup

‖b1‖≤1,...,‖bn−1‖≤1
‖mX

n (b1, . . . , bn−1)‖ ≤ ‖X‖n.

Tobias Mai (Saarland University) The self-adjoint linearization trick July 25, 2013 13 / 14



Second application: Multivariate free Berry-Esseen

Back to the multivariate case

Corollary

For each self-adjoint p ∈ C〈X1, . . . , Xd〉, there are M,C > 0 such that

|Gp(σ1,N ,...,σd,N )(z)−Gp(s1,...,sd)(z)| ≤ N−
1
10

(
M +

C

=(z)2

)
holds for all z ∈ C+ and all N ∈ N with N > 1

=(z)10
.

Remark

This is ongoing work: The order of convergence N−
1
10 is (surely) not

optimal. There are many promising possibilities to improve the result.

The main statement here is: "Linearization is the right tool!"

Thank you!
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Back to the multivariate case

Corollary

For each self-adjoint p ∈ C〈X1, . . . , Xd〉, there are M,C > 0 such that

|Gp(σ1,N ,...,σd,N )(z)−Gp(s1,...,sd)(z)| ≤ N−
1
10

(
M +

C

=(z)2

)
holds for all z ∈ C+ and all N ∈ N with N > 1

=(z)10
.
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