Operator-valued free probability theory and the self-adjoint linearization trick

Tobias Mai

Saarland University

Workshop on Analytic, Stochastic, and Operator Algebraic Aspects of Noncommutative Distributions and Free Probability

Fields Institute, Toronto July 25, 2013

 Ω

Contents

1 [A quick reminder on...](#page-2-0)

- [...Anderson's self-adjoint version of the linearization trick](#page-2-0)
- [...operator-valued free probability theory](#page-10-0)

2 [First application: Polynomials in free random variables](#page-18-0)

[Second application: Multivariate free Berry-Esseen](#page-32-0)

 Ω

Definition

Let $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ be given. A matrix

$$
L_p := \begin{bmatrix} 0 & u \\ v & Q \end{bmatrix} \in M_N(\mathbb{C}\langle X_1, \ldots, X_n \rangle),
$$

of dimension $N \in \mathbb{N}$, where

- \bullet u and v are row and column vectors, respectively, both of dimension $N-1$ with entries in $\mathbb{C}\langle X_1,\ldots, X_n\rangle$ and
- $Q \in M_{N-1}(\mathbb{C}\langle X_1, \ldots, X_n \rangle)$ is invertible,

 QQ

Definition

Let $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ be given. A matrix

$$
L_p := \begin{bmatrix} 0 & u \\ v & Q \end{bmatrix} \in M_N(\mathbb{C}\langle X_1, \ldots, X_n \rangle),
$$

of dimension $N \in \mathbb{N}$, where

- \bullet u and v are row and column vectors, respectively, both of dimension $N-1$ with entries in $\mathbb{C}\langle X_1,\ldots, X_n\rangle$ and
- $Q \in M_{N-1}(\mathbb{C}\langle X_1, \ldots, X_n \rangle)$ is invertible,

is called a linearization of p , if the following conditions are satisfied:

(i) There are matrices $b_0, \ldots, b_n \in M_N(\mathbb{C})$, such that

$$
L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_n \otimes X_n \in M_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \ldots, X_n \rangle.
$$

(ii) It holds true that $p = -uQ^{-1}v$.

 QQ

Tobias Mai (Saarland University) [The self-adjoint linearization trick](#page-0-0) July 25, 2013 4 / 14

 299

メロメ メ都 メメ きょうくぼん

(i) Consider a polynomial $p \in \mathbb{C}\langle X_1,\ldots,X_n \rangle$ with linearization

 $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_n \otimes X_n \in M_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \ldots, X_n \rangle.$

B

 QQ

(i) Consider a polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ with linearization

 $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_n \otimes X_n \in M_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \ldots, X_n \rangle$.

Let A be a complex unital algebra and let $x_1, \ldots, x_n \in A$ be given. Put $P := p(x_1, \ldots, x_n)$ and

 $L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \cdots + b_n \otimes x_n \in M_N(\mathbb{C}) \otimes A$.

 QQ

(i) Consider a polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ with linearization

 $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_n \otimes X_n \in M_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \ldots, X_n \rangle$.

Let A be a complex unital algebra and let $x_1, \ldots, x_n \in A$ be given. Put $P := p(x_1, \ldots, x_n)$ and

$$
L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \cdots + b_n \otimes x_n \in M_N(\mathbb{C}) \otimes A.
$$

By using the notation $\Lambda(z) := \text{diag}(z, 0, \ldots, 0) \in M_N(\mathbb{C})$, we get

 $z-P$ is invertible in $\mathcal{A} \iff \Lambda(z)-L_P$ is invertible in $\mathrm{M}_N(\mathbb{C})\otimes \mathcal{A}$

and moreover:
$$
[(\Lambda(z) - L_P)^{-1}]_{1,1} = (z - P)^{-1}
$$

 QQ

(i) Consider a polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ with linearization

 $L_n = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_n \otimes X_n \in M_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \ldots, X_n \rangle.$

Let A be a complex unital algebra and let $x_1, \ldots, x_n \in A$ be given. Put $P := p(x_1, \ldots, x_n)$ and

$$
L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \cdots + b_n \otimes x_n \in M_N(\mathbb{C}) \otimes A.
$$

By using the notation $\Lambda(z) := \text{diag}(z, 0, \ldots, 0) \in M_N(\mathbb{C})$, we get

 $z-P$ is invertible in $\mathcal{A} \iff \Lambda(z)-L_P$ is invertible in $\mathrm{M}_N(\mathbb{C})\otimes \mathcal{A}$

and moreover: $[(\Lambda(z)-L_P)^{-1}]_{1,1}=(z-P)^{-1}$

(ii) Any polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ has a linearization L_p .

 QQ

イロト イ押 トイヨ トイヨ トーヨ

- (i) Consider a polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ with linearization
	- $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_n \otimes X_n \in M_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \ldots, X_n \rangle$.

Let A be a complex unital algebra and let $x_1, \ldots, x_n \in A$ be given. Put $P := p(x_1, \ldots, x_n)$ and

$$
L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \cdots + b_n \otimes x_n \in M_N(\mathbb{C}) \otimes A.
$$

By using the notation $\Lambda(z) := \text{diag}(z, 0, \ldots, 0) \in M_N(\mathbb{C})$, we get

 $z-P$ is invertible in $\mathcal{A} \iff \Lambda(z)-L_P$ is invertible in $\mathrm{M}_N(\mathbb{C})\otimes\mathcal{A}$

and moreover: $[(\Lambda(z)-L_P)^{-1}]_{1,1}=(z-P)^{-1}$

(ii) Any polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ has a linearization L_p . If p is self-adjoint, L_p can be chosen to be self-adjoint as well.

 QQ

イロト イ押 トイヨ トイヨ トーヨ

◆ ロ ▶ → 伊

 \sim Э× Þ

-41

 $2Q$

Definition

An <mark>operator-valued C^* -probability space</mark> $(\mathcal{A}, E, \mathcal{B})$ consists of

- a unital C^* -algebra \mathcal{A} ,
- a unital C^* -subalgebra ${\mathcal{B}}$ of ${\mathcal{A}}$ and \bullet
- a conditional expectation $E : \mathcal{A} \rightarrow \mathcal{B}$, i.e. a positive and unital map \bullet satisfying

$$
\;\;\vdash\; E[b] = b \;\mathsf{for\;all}\; b \in \mathcal{B} \;\mathsf{and}\;\
$$

 $E[b_1ab_2] = b_1E[a]b_2$ for all $a \in \mathcal{A}$, $b_1, b_2 \in \mathcal{A}$.

 Ω

Definition

An <mark>operator-valued C^* -probability space</mark> $(\mathcal{A}, E, \mathcal{B})$ consists of

- a unital C^* -algebra \mathcal{A} ,
- a unital C^* -subalgebra ${\mathcal{B}}$ of ${\mathcal{A}}$ and
- a conditional expectation $E : A \rightarrow B$, i.e. a positive and unital map \bullet satisfying

$$
\;\;\vdash\; E[b] = b \text{ for all } b \in \mathcal{B} \text{ and }
$$

 $E[b_1ab_2] = b_1E[a]b_2$ for all $a \in \mathcal{A}$, $b_1, b_2 \in \mathcal{A}$.

Example

Let (\mathcal{A}_0, ϕ) be a C^* -probability space. Then

 $\mathcal{A} := \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}_0, \qquad \mathcal{B} := \mathcal{M}_N(\mathbb{C}) \qquad \text{and} \qquad E := \mathrm{id}_{\mathcal{M}_N(\mathbb{C})} \otimes \phi$

gives an operator-valued C^* -probability space $(\mathcal{A}, E, \mathcal{B})$.

◆ ロ ▶ → 伊

 \sim Э× Þ

 \sim

 $2Q$

Definition

Let $(\mathcal A,E,\mathcal B)$ be an operator-valued C^* -probability space. We call

$$
\mathbb{H}^{\pm}(\mathcal{B}) := \{b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \geq \varepsilon 1\}
$$

the upper and lower half-plane, respectively, where we use the notation

$$
\Im(b) := \frac{1}{2i}(b - b^*).
$$

 Ω

Definition

Let $(\mathcal A,E,\mathcal B)$ be an operator-valued C^* -probability space. We call

$$
\mathbb{H}^{\pm}(\mathcal{B}) := \{b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \geq \varepsilon 1\}
$$

the upper and lower half-plane, respectively, where we use the notation

$$
\Im(b) := \frac{1}{2i}(b - b^*).
$$

For $x = x^* \in \mathcal{A}$, we introduce

the Cauchy transform $G_x:\; \mathbb{H}^+({\mathcal B}) \to \mathbb{H}^-({\mathcal B}),\; G_x(b):=E[(b-x)^{-1}],$

 QQ

Definition

Let $(\mathcal A,E,\mathcal B)$ be an operator-valued C^* -probability space. We call

$$
\mathbb{H}^{\pm}(\mathcal{B}) := \{b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \geq \varepsilon 1\}
$$

the upper and lower half-plane, respectively, where we use the notation

$$
\Im(b) := \frac{1}{2i}(b - b^*).
$$

For $x = x^* \in \mathcal{A}$, we introduce

- the Cauchy transform $G_x:\; \mathbb{H}^+({\mathcal B}) \to \mathbb{H}^-({\mathcal B}),\; G_x(b):=E[(b-x)^{-1}],$
- the F -transform $F_x:\; \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B}),\; F_x(b):=G_x(b)^{-1}$

4 日 1 4 母

 QQ

Definition

Let $(\mathcal A,E,\mathcal B)$ be an operator-valued C^* -probability space. We call

$$
\mathbb{H}^{\pm}(\mathcal{B}) := \{b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \geq \varepsilon 1\}
$$

the upper and lower half-plane, respectively, where we use the notation

$$
\Im(b) := \frac{1}{2i}(b - b^*).
$$

For $x = x^* \in \mathcal{A}$, we introduce

the Cauchy transform $G_x:\; \mathbb{H}^+({\mathcal B}) \to \mathbb{H}^-({\mathcal B}),\; G_x(b):=E[(b-x)^{-1}],$

the F -transform $F_x:\; \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B}),\; F_x(b):=G_x(b)^{-1}$ and

• the h-transform h_x : $\mathbb{H}^+(\mathcal{B}) \to \overline{\mathbb{H}^+(\mathcal{B})}$, $h_x(b) := F_x(b) - b$.

 Ω

←ロト イ母ト イヨト イヨト

Tobias Mai (Saarland University) [The self-adjoint linearization trick](#page-0-0) July 25, 2013 7 / 14

э

Э× Þ $2Q$

Kロト K同

Let (\mathcal{A},ϕ) be a C^* -probability space and let $x_1,\ldots,x_n\in\mathcal{A}$ be self-adjoint and freely independent.

Question

Given a self-adjoint non-commutative polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n\rangle$. How can we calculate the distribution of $p(x_1, \ldots, x_n)$ out of the given distributions of x_1, \ldots, x_n ?

 Ω

Let (\mathcal{A},ϕ) be a C^* -probability space and let $x_1,\ldots,x_n\in\mathcal{A}$ be self-adjoint and freely independent.

Question

Given a self-adjoint non-commutative polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n\rangle$. How can we calculate the distribution of $p(x_1, \ldots, x_n)$ out of the given distributions of x_1, \ldots, x_n ?

Solution (Belinschi, M., Speicher, 2013)

Combine the linearization trick in its self-adjoint version by Anderson with results about the operator-valued free additive convolution in the setting of operator-valued C^* -probability spaces.

 QQ

Let (\mathcal{A},ϕ) be a C^* -probability space and let $x_1,\ldots,x_n\in\mathcal{A}$ be self-adjoint and freely independent.

Question

Given a self-adjoint non-commutative polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n\rangle$. How can we calculate the distribution of $p(x_1, \ldots, x_n)$ out of the given distributions of x_1, \ldots, x_n ?

Solution (Belinschi, M., Speicher, 2013)

Combine the linearization trick in its self-adjoint version by Anderson with results about the operator-valued free additive convolution in the setting of operator-valued C^* -probability spaces.

This gives an algorithmic solution for the question above, which is moreover easily accessible for numerical computations!

 QQ

イロト イ押ト イヨト イヨト

Þ

◆ ロ ▶ → 伊

 $2Q$

Linearization leads to an operator-valued problem Let (\mathcal{A},ϕ) be a C^* -probability space.

Consider $P := p(x_1, \ldots, x_n)$, where $x_1, \ldots, x_n \in A$ are self-adjoint and freely independent and $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ is a self-adjoint polynomial.

Anderson's linearization trick shows that there is an self-adjoint operator

$$
L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \cdots + b_n \otimes x_n \in M_N(\mathbb{C}) \otimes A,
$$

such that we have with respect to $E = \mathrm{id}_{\mathrm{M}_N(\mathbb{C})} \otimes \phi$ for all $z \in \mathbb{C}^+$

$$
G_P(z) = \left[E\left[(\Lambda(z) - L_P)^{-1} \right] \right]_{1,1}
$$

 Ω

Linearization leads to an operator-valued problem Let (\mathcal{A},ϕ) be a C^* -probability space.

Consider $P := p(x_1, \ldots, x_n)$, where $x_1, \ldots, x_n \in A$ are self-adjoint and freely independent and $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ is a self-adjoint polynomial.

Anderson's linearization trick shows that there is an self-adjoint operator

$$
L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \cdots + b_n \otimes x_n \in M_N(\mathbb{C}) \otimes A,
$$

such that we have with respect to $E = \mathrm{id}_{\mathrm{M}_N(\mathbb{C})} \otimes \phi$ for all $z \in \mathbb{C}^+$

$$
G_P(z) = \left[E\big[(\Lambda(z) - L_P)^{-1} \big] \right]_{1,1} = \lim_{\varepsilon \searrow 0} \left[E\big[(\Lambda_\varepsilon(z) - L_P)^{-1} \big] \right]_{1,1},
$$

where $\Lambda_{\varepsilon}(z) := \text{diag}(z, i\varepsilon, \dots, i\varepsilon) \in \mathbb{H}^+(M_N(\mathbb{C}))$.

 Ω

Linearization leads to an operator-valued problem Let (\mathcal{A},ϕ) be a C^* -probability space.

Consider $P := p(x_1, \ldots, x_n)$, where $x_1, \ldots, x_n \in A$ are self-adjoint and freely independent and $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ is a self-adjoint polynomial.

Anderson's linearization trick shows that there is an self-adjoint operator

$$
L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \cdots + b_n \otimes x_n \in M_N(\mathbb{C}) \otimes A,
$$

such that we have with respect to $E = \mathrm{id}_{\mathrm{M}_N(\mathbb{C})} \otimes \phi$ for all $z \in \mathbb{C}^+$

$$
G_P(z) = \left[E\big[(\Lambda(z) - L_P)^{-1} \big] \right]_{1,1} = \lim_{\varepsilon \searrow 0} \left[E\big[(\Lambda_\varepsilon(z) - L_P)^{-1} \big] \right]_{1,1},
$$

where $\Lambda_{\varepsilon}(z) := \text{diag}(z, i\varepsilon, \dots, i\varepsilon) \in \mathbb{H}^+(M_N(\mathbb{C}))$.

Observation

 $b_1 \otimes x_1, \ldots, b_n \otimes x_n$ are free with amalgamation over $M_N(\mathbb{C})$.

Tobias Mai (Saarland University) [The self-adjoint linearization trick](#page-0-0) July 25, 2013 8 / 14

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal A,E,\mathcal B)$ is an operator-valued C^* -probability space. If $x, y \in A$ are free with respect to E, then there exists a unique pair of (Fréchet-)holomorphic maps

$$
\omega_1, \omega_2: \ \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B})
$$

such that

$$
G_x(\omega_1(b)) = G_y(\omega_2(b)) = G_{x+y}(b), \quad b \in \mathbb{H}^+(\mathcal{B}).
$$

 QQ

 $\rightarrow \pm +$

4 F F 4 F F 4 F F

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal A,E,\mathcal B)$ is an operator-valued C^* -probability space. If $x, y \in A$ are free with respect to E, then there exists a unique pair of (Fréchet-)holomorphic maps

$$
\omega_1, \omega_2: \ \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B})
$$

such that

$$
G_x(\omega_1(b)) = G_y(\omega_2(b)) = G_{x+y}(b), \quad b \in \mathbb{H}^+(\mathcal{B}).
$$

Moreover, ω_1 and ω_2 can easily be calculated via the following fixed point iterations on $\mathbb{H}^+(\mathcal{B})$:

$$
w \mapsto h_y(b + h_x(w)) + b \quad \text{for } \omega_1(b)
$$

$$
w \mapsto h_x(b + h_y(w)) + b \quad \text{for } \omega_2(b)
$$

 Ω

4 F F 4 F F 4 F F

Appetizer (coming from free stochastic integrals)

Þ

 $2Q$

Þ

Э× \mathcal{A}

K ロ ▶ K 伊 ▶ K

Appetizer (coming from free stochastic integrals) Consider

$$
p(X_1, X_2) = \frac{1}{2}(X_1^3 + X_1X_2X_1 + X_2X_1X_2 + X_2^3) - (X_1 + X_2).
$$

Þ

 $2Q$

Þ

ミッ \sim

K ロ ト K 伊 ト K

Appetizer (coming from free stochastic integrals) Consider

$$
p(X_1, X_2) = \frac{1}{2}(X_1^3 + X_1X_2X_1 + X_2X_1X_2 + X_2^3) - (X_1 + X_2).
$$

Let s_1, s_2 be two free $(0, 1)$ -semicircular elements.

 Ω

 \leftarrow \Box

Appetizer (coming from free stochastic integrals) Consider

$$
p(X_1, X_2) = \frac{1}{2}(X_1^3 + X_1X_2X_1 + X_2X_1X_2 + X_2^3) - (X_1 + X_2).
$$

Let s_1, s_2 be two free $(0, 1)$ -semicircular elements.

The density of the distribution of $p(s_1, s_2)$ looks like:

Þ

B

 $2Q$

4日下

Second application: Multivariate free Berry-Esseen Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

4 17 18 Ω Tobias Mai (Saarland University) [The self-adjoint linearization trick](#page-0-0) July 25, 2013 11 / 14

Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

• Let $\{x_{j,n} | j = 1, \ldots, d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in A such that the following conditions are satisfied:

 Ω

 $+$

Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{i,n}|\ j=1,\ldots,d\}$ for $n\in\mathbb{N}$ be sets of self-adjoint elements in A such that the following conditions are satisfied:
	- \blacktriangleright The $(x_{1,n},\ldots,x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n}) = 0$ for $j = 1, \ldots, d$.

 Ω

Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{i,n}|\ j=1,\ldots,d\}$ for $n\in\mathbb{N}$ be sets of self-adjoint elements in A such that the following conditions are satisfied:
	- \blacktriangleright The $(x_{1,n},\ldots,x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n})=0$ for $j=1,\ldots,d$.
	- \blacktriangleright The sets $\{x_{j,n} | j = 1, \ldots, d\}$ are free with respect to ϕ .

 Ω

Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{i,n}|\ j=1,\ldots,d\}$ for $n\in\mathbb{N}$ be sets of self-adjoint elements in A such that the following conditions are satisfied:
	- \blacktriangleright The $(x_{1,n},\ldots,x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n}) = 0$ for $j = 1, \ldots, d$.
	- \blacktriangleright The sets $\{x_{j,n} | j = 1, \ldots, d\}$ are free with respect to ϕ .
	- ► sup $\max_{n \in \mathbb{N}} \max_{j=1,\dots,d} ||x_{j,n}|| < \infty$.

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{i,n}|\ j=1,\ldots,d\}$ for $n\in\mathbb{N}$ be sets of self-adjoint elements in A such that the following conditions are satisfied:
	- \blacktriangleright The $(x_{1,n},\ldots,x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n}) = 0$ for $j = 1, \ldots, d$.
	- \blacktriangleright The sets $\{x_{j,n} | j = 1, \ldots, d\}$ are free with respect to ϕ .
	- ► sup $\max_{n \in \mathbb{N}} \max_{j=1,\dots,d} ||x_{j,n}|| < \infty$.

• We put
$$
\sigma_{j,N} := \frac{1}{\sqrt{N}} \sum_{n=1}^{N} x_{j,n}
$$
.

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

N

- Let $\{x_{i,n}|\ j=1,\ldots,d\}$ for $n\in\mathbb{N}$ be sets of self-adjoint elements in A such that the following conditions are satisfied:
	- \blacktriangleright The $(x_{1,n},\ldots,x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n}) = 0$ for $j = 1, \ldots, d$.
	- \blacktriangleright The sets $\{x_{j,n} | j = 1, \ldots, d\}$ are free with respect to ϕ .
	- ► sup $\max_{n \in \mathbb{N}} \max_{j=1,\dots,d} ||x_{j,n}|| < \infty$.

• We put
$$
\sigma_{j,N} := \frac{1}{\sqrt{N}} \sum_{n=1}^{N} x_{j,n}.
$$

\n $\Rightarrow (\sigma_{1,N}, \dots, \sigma_{d,N}) \xrightarrow[N \to \infty]{\text{dist}} (s_1, \dots, s_d),$
\nwhere (s_1, \dots, s_d) is a semicircular family.

イロト イ押 トイヨ トイヨ トーヨ

 Ω

Let (\mathcal{A},ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{i,n}|\ j=1,\ldots,d\}$ for $n\in\mathbb{N}$ be sets of self-adjoint elements in A such that the following conditions are satisfied:
	- \blacktriangleright The $(x_{1,n},\ldots,x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n}) = 0$ for $j = 1, \ldots, d$.
	- \blacktriangleright The sets $\{x_{j,n} | j = 1, \ldots, d\}$ are free with respect to ϕ .
	- ► sup $\max_{n \in \mathbb{N}} \max_{j=1,\dots,d} ||x_{j,n}|| < \infty$.

• We put
$$
\sigma_{j,N} := \frac{1}{\sqrt{N}} \sum_{n=1}^N x_{j,n}
$$
.

$$
\Rightarrow (\sigma_{1,N}, \ldots, \sigma_{d,N}) \xrightarrow[N \to \infty]{\text{dist}} (s_1, \ldots, s_d),
$$

where (s_1, \ldots, s_d) is a semicircular family.

$$
\Rightarrow p(\sigma_{1,N},\ldots,\sigma_{d,N}) \xrightarrow[N\to\infty]{\text{dist}} p(s_1,\ldots,s_d),
$$

for any (self-adjoint) polynomial $p \in \mathbb{C}\langle X_1,\ldots,X_d \rangle$.

N

 Ω

Tobias Mai (Saarland University) [The self-adjoint linearization trick](#page-0-0) July 25, 2013 12 / 14

∍

4 0 8

 $2Q$

Take a self-adjoint linearization $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_d \otimes X_d$ of the self-adjoint polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_d\rangle$.

 Ω

◆ ロ ▶ → 伊

Take a self-adjoint linearization $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_d \otimes X_d$ of the self-adjoint polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_d \rangle$. We put

 $X_n := b_1 \otimes x_{1,n} + \cdots + b_d \otimes x_{d,n}, \quad n \in \mathbb{N}.$

 Ω

4 日 1 4 母

Take a self-adjoint linearization $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_d \otimes X_d$ of the self-adjoint polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_d\rangle$. We put

 $X_n := b_1 \otimes x_{1,n} + \cdots + b_d \otimes x_{d,n}, \quad n \in \mathbb{N}.$

Then $(X_n)_{n\in\mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C})\otimes\mathcal{A}$, which are identically distributed and free with respect to $E = id_{\text{M}_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$.

 200

Take a self-adjoint linearization $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_d \otimes X_d$ of the self-adjoint polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_d\rangle$. We put

 $X_n := b_1 \otimes x_{1,n} + \cdots + b_d \otimes x_{d,n}, \quad n \in \mathbb{N}.$

Then $(X_n)_{n\in\mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C})\otimes\mathcal{A}$, which are identically distributed and free with respect to $E = id_{\text{M}_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$. Hence,

$$
\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n
$$

converges as $N\rightarrow\infty$ in distribution (with respect to E) to the operator-valued semicircular element

$$
S := b_1 \otimes s_1 + \cdots + b_d \otimes s_d,
$$

 Ω

Take a self-adjoint linearization $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_d \otimes X_d$ of the self-adjoint polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_d\rangle$. We put

 $X_n := b_1 \otimes x_{1,n} + \cdots + b_d \otimes x_{d,n}, \quad n \in \mathbb{N}.$

Then $(X_n)_{n\in\mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C})\otimes\mathcal{A}$, which are identically distributed and free with respect to $E = id_{\text{M}_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$. Hence,

$$
\Sigma_N:=\frac{1}{\sqrt{N}}\sum_{n=1}^N X_n=b_1\otimes\sigma_{1,N}+\cdots+b_d\otimes\sigma_{d,N}
$$

converges as $N\rightarrow\infty$ in distribution (with respect to E) to the operator-valued semicircular element

$$
S := b_1 \otimes s_1 + \cdots + b_d \otimes s_d,
$$

 Ω

Take a self-adjoint linearization $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \cdots + b_d \otimes X_d$ of the self-adjoint polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_d\rangle$. We put

 $X_n := b_1 \otimes x_{1,n} + \cdots + b_d \otimes x_{d,n}, \quad n \in \mathbb{N}.$

Then $(X_n)_{n\in\mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C})\otimes\mathcal{A}$, which are identically distributed and free with respect to $E = id_{\text{M}_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$. Hence,

$$
\Sigma_N:=\frac{1}{\sqrt{N}}\sum_{n=1}^NX_n=b_1\otimes\sigma_{1,N}+\cdots+b_d\otimes\sigma_{d,N}
$$

converges as $N\rightarrow\infty$ in distribution (with respect to E) to the operator-valued semicircular element

$$
S := b_1 \otimes s_1 + \cdots + b_d \otimes s_d,
$$

Note that we have

$$
L_p(s_1,\ldots,s_n)=b_0\otimes 1+S\qquad\text{and}\qquad L_p(\sigma_{1,N},\ldots,\sigma_{d,N})=b_0\otimes 1+\Sigma_N.
$$

Theorem (M., Speicher, 2013)

 299

イロト イ母ト イミト イミト

Theorem (M., Speicher, 2013)

Let $(\mathcal A,E,\mathcal B)$ be an operator-valued C^* -probability space with faithful conditional expectation E and let $(X_n)_{n\in\mathbb{N}}$ be a sequence of identically distributed and self-adjoint elements in \mathcal{A} , satisfying $E[X_n] = 0$, which are free with respect to E Then

$$
\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n
$$

converges as $N\rightarrow\infty$ in distribution to an operator-valued semicircular element S and we have for all $b \in \mathbb{H}^+(\mathcal{B})$

$$
||G_{\Sigma_N}(b) - G_S(b)|| \leq \frac{2}{\sqrt{N}} ||\Im(b)^{-1}||^4 \sqrt{(2||m_2^{X_n}||^2 + ||m_4^{X_n}||) ||m_2^{X_n}||}.
$$

つのへ

Theorem (M., Speicher, 2013)

Let $(\mathcal A,E,\mathcal B)$ be an operator-valued C^* -probability space with faithful conditional expectation E and let $(X_n)_{n\in\mathbb{N}}$ be a sequence of identically distributed and self-adjoint elements in \mathcal{A} , satisfying $E[X_n] = 0$, which are free with respect to E Then

$$
\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n
$$

converges as $N\rightarrow\infty$ in distribution to an operator-valued semicircular element S and we have for all $b \in \mathbb{H}^+(\mathcal{B})$

$$
||G_{\Sigma_N}(b) - G_S(b)|| \leq \frac{2}{\sqrt{N}} ||\Im(b)^{-1}||^4 \sqrt{(2||m_2^{X_n}||^2 + ||m_4^{X_n}||) ||m_2^{X_n}||}.
$$

We use the notation $m_n^X(b_1,\ldots,b_{n-1}) := E[Xb_1X\ldots Xb_{n-1}X]$ and $||m_n^X|| := \sup_{||b_1|| \leq 1,\dots,||b_{n-1}|| \leq 1}$ $||m_n^X(b_1,\ldots,b_{n-1})|| \leq ||X||^n.$

Tobias Mai (Saarland University) [The self-adjoint linearization trick](#page-0-0) July 25, 2013 13 / 14

 QQ

B

 $2Q$

Þ

← ロ → → 伊

 \mathbf{p} э \sim \mathcal{A} .

Corollary

For each self-adjoint $p \in \mathbb{C}\langle X_1,\ldots,X_d\rangle$, there are $M, C > 0$ such that

$$
|G_{p(\sigma_{1,N},\ldots,\sigma_{d,N})}(z) - G_{p(s_1,\ldots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2}\right)
$$

holds for all $z\in\mathbb{C}^+$ and all $N\in\mathbb{N}$ with $N>\frac{1}{\Im(z)^{10}}.$

つくい

Corollary

For each self-adjoint $p \in \mathbb{C}\langle X_1,\ldots,X_d\rangle$, there are $M, C > 0$ such that

$$
|G_{p(\sigma_{1,N},\ldots,\sigma_{d,N})}(z) - G_{p(s_1,\ldots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2}\right)
$$

holds for all $z\in\mathbb{C}^+$ and all $N\in\mathbb{N}$ with $N>\frac{1}{\Im(z)^{10}}.$

Remark

This is ongoing work: The order of convergence $N^{-\frac{1}{10}}$ is (surely) not optimal. There are many promising possibilities to improve the result.

つのへ

Corollary

For each self-adjoint $p \in \mathbb{C}\langle X_1,\ldots,X_d\rangle$, there are $M, C > 0$ such that

$$
|G_{p(\sigma_{1,N},\ldots,\sigma_{d,N})}(z) - G_{p(s_1,\ldots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2}\right)
$$

holds for all $z\in\mathbb{C}^+$ and all $N\in\mathbb{N}$ with $N>\frac{1}{\Im(z)^{10}}.$

Remark

- This is ongoing work: The order of convergence $N^{-\frac{1}{10}}$ is (surely) not optimal. There are many promising possibilities to improve the result.
- The main statement here is: "Linearization is the right tool!"

Corollary

For each self-adjoint $p \in \mathbb{C}\langle X_1,\ldots,X_d\rangle$, there are $M, C > 0$ such that

$$
|G_{p(\sigma_{1,N},\ldots,\sigma_{d,N})}(z) - G_{p(s_1,\ldots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2}\right)
$$

holds for all $z\in\mathbb{C}^+$ and all $N\in\mathbb{N}$ with $N>\frac{1}{\Im(z)^{10}}.$

Remark

- This is ongoing work: The order of convergence $N^{-\frac{1}{10}}$ is (surely) not optimal. There are many promising possibilities to improve the result.
- The main statement here is: "Linearization is the right tool!"

Thank you!