Operator-valued free probability theory and the self-adjoint linearization trick

Tobias Mai

Saarland University

Workshop on Analytic, Stochastic, and Operator Algebraic Aspects of Noncommutative Distributions and Free Probability

Fields Institute, Toronto - July 25, 2013

Contents

A quick reminder on...

- ...Anderson's self-adjoint version of the linearization trick
- ...operator-valued free probability theory
- 2 First application: Polynomials in free random variables
- 3 Second application: Multivariate free Berry-Esseen

Definition

Let $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ be given. A matrix

$$L_p := \begin{bmatrix} 0 & u \\ v & Q \end{bmatrix} \in \mathcal{M}_N(\mathbb{C}\langle X_1, \dots, X_n \rangle),$$

of dimension $N \in \mathbb{N}$, where

- u and v are row and column vectors, respectively, both of dimension N-1 with entries in $\mathbb{C}\langle X_1,\ldots,X_n\rangle$ and
- $Q \in \mathcal{M}_{N-1}(\mathbb{C}\langle X_1, \dots, X_n \rangle)$ is invertible,

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition

Let $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ be given. A matrix

$$L_p := \begin{bmatrix} 0 & u \\ v & Q \end{bmatrix} \in \mathcal{M}_N(\mathbb{C}\langle X_1, \dots, X_n \rangle),$$

of dimension $N \in \mathbb{N}$, where

- u and v are row and column vectors, respectively, both of dimension N-1 with entries in $\mathbb{C}\langle X_1,\ldots,X_n\rangle$ and
- $Q \in \mathcal{M}_{N-1}(\mathbb{C}\langle X_1, \dots, X_n \rangle)$ is invertible,

is called a linearization of p, if the following conditions are satisfied:

(i) There are matrices $b_0,\ldots,b_n\in\mathrm{M}_N(\mathbb{C})$, such that

$$L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \dots + b_n \otimes X_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \dots, X_n \rangle.$$

(ii) It holds true that $p = -uQ^{-1}v$.

《曰》 《聞》 《臣》 《臣》 三臣

Tobias Mai (Saarland University) Th

◆□ > → @ > → 注 > → 注 >

(i) Consider a polynomial $p\in\mathbb{C}\langle X_1,\ldots,X_n
angle$ with linearization

 $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \dots + b_n \otimes X_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \dots, X_n \rangle.$

(i) Consider a polynomial $p \in \mathbb{C}\langle X_1, \dots, X_n
angle$ with linearization

 $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \dots + b_n \otimes X_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \dots, X_n \rangle.$

Let $\mathcal A$ be a complex unital algebra and let $x_1,\ldots,x_n\in\mathcal A$ be given. Put $P:=p(x_1,\ldots,x_n)$ and

 $L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \dots + b_n \otimes x_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}.$

(i) Consider a polynomial $p \in \mathbb{C}\langle X_1, \dots, X_n
angle$ with linearization

 $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \dots + b_n \otimes X_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \dots, X_n \rangle.$

Let $\mathcal A$ be a complex unital algebra and let $x_1,\ldots,x_n\in\mathcal A$ be given. Put $P:=p(x_1,\ldots,x_n)$ and

$$L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \dots + b_n \otimes x_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}.$$

By using the notation $\Lambda(z):=\operatorname{diag}(z,0,\ldots,0)\in\operatorname{M}_N(\mathbb{C})$, we get

z-P is invertible in $\mathcal{A}\iff \Lambda(z)-L_P$ is invertible in $\mathrm{M}_N(\mathbb{C})\otimes\mathcal{A}$

and moreover:
$$[(\Lambda(z) - L_P)^{-1}]_{1,1} = (z - P)^{-1}$$

- (i) Consider a polynomial $p\in\mathbb{C}\langle X_1,\ldots,X_n
 angle$ with linearization
 - $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \dots + b_n \otimes X_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \dots, X_n \rangle.$

Let \mathcal{A} be a complex unital algebra and let $x_1, \ldots, x_n \in \mathcal{A}$ be given. Put $P := p(x_1, \ldots, x_n)$ and

$$L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \dots + b_n \otimes x_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}.$$

By using the notation $\Lambda(z):=\operatorname{diag}(z,0,\ldots,0)\in\operatorname{M}_N(\mathbb{C})$, we get

z-P is invertible in $\mathcal{A}\iff \Lambda(z)-L_P$ is invertible in $\mathrm{M}_N(\mathbb{C})\otimes\mathcal{A}$

and moreover: $[(\Lambda(z) - L_P)^{-1}]_{1,1} = (z - P)^{-1}$ (ii) Any polynomial $p \in \mathbb{C}\langle X_1, \dots, X_n \rangle$ has a linearization L_p .

- (i) Consider a polynomial $p\in\mathbb{C}\langle X_1,\ldots,X_n
 angle$ with linearization
 - $L_p = b_0 \otimes 1 + b_1 \otimes X_1 + \dots + b_n \otimes X_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathbb{C} \langle X_1, \dots, X_n \rangle.$

Let $\mathcal A$ be a complex unital algebra and let $x_1,\ldots,x_n\in\mathcal A$ be given. Put $P:=p(x_1,\ldots,x_n)$ and

$$L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \dots + b_n \otimes x_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}.$$

By using the notation $\Lambda(z):=\operatorname{diag}(z,0,\ldots,0)\in\operatorname{M}_N(\mathbb{C})$, we get

z-P is invertible in $\mathcal{A}\iff \Lambda(z)-L_P$ is invertible in $\mathrm{M}_N(\mathbb{C})\otimes\mathcal{A}$

and moreover: $[(\Lambda(z) - L_P)^{-1}]_{1,1} = (z - P)^{-1}$

(ii) Any polynomial $p \in \mathbb{C}\langle X_1, \dots, X_n \rangle$ has a linearization L_p . If p is self-adjoint, L_p can be chosen to be self-adjoint as well.

Definition

An operator-valued C^* -probability space $(\mathcal{A}, E, \mathcal{B})$ consists of

- ullet a unital C^* -algebra \mathcal{A} ,
- ullet a unital C^* -subalgebra ${\mathcal B}$ of ${\mathcal A}$ and
- a conditional expectation $E: \mathcal{A} \to \mathcal{B}$, i.e. a positive and unital map satisfying

$$E[b]=b$$
 for all $b\in \mathcal{B}$ and

 $E[b_1ab_2] = b_1E[a]b_2$ for all $a \in \mathcal{A}$, $b_1, b_2 \in \mathcal{A}$.

Definition

An operator-valued C^* -probability space $(\mathcal{A}, E, \mathcal{B})$ consists of

- ullet a unital C^* -algebra ${\mathcal A}$,
- ullet a unital C^* -subalgebra ${\mathcal B}$ of ${\mathcal A}$ and
- a conditional expectation $E:\mathcal{A}\to\mathcal{B},$ i.e. a positive and unital map satisfying

$$E[b]=b$$
 for all $b\in \mathcal{B}$ and

 $E[b_1ab_2] = b_1E[a]b_2$ for all $a \in \mathcal{A}$, $b_1, b_2 \in \mathcal{A}$.

Example

Let (\mathcal{A}_0,ϕ) be a C^* -probability space. Then

$$\mathcal{A} := \mathrm{M}_N(\mathbb{C}) \otimes \mathcal{A}_0, \qquad \mathcal{B} := \mathrm{M}_N(\mathbb{C}) \qquad ext{and} \qquad E := \mathrm{id}_{\mathrm{M}_N(\mathbb{C})} \otimes \phi$$

gives an operator-valued C^* -probability space $(\mathcal{A}, E, \mathcal{B})$.

Definition

Let $(\mathcal{A}, E, \mathcal{B})$ be an operator-valued C^* -probability space. We call

$$\mathbb{H}^{\pm}(\mathcal{B}) := \{ b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \ge \varepsilon 1 \}$$

the upper and lower half-plane, respectively, where we use the notation

$$\Im(b) := \frac{1}{2i}(b - b^*).$$

Definition

Let $(\mathcal{A}, E, \mathcal{B})$ be an operator-valued C^* -probability space. We call

$$\mathbb{H}^{\pm}(\mathcal{B}) := \{ b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \ge \varepsilon 1 \}$$

the upper and lower half-plane, respectively, where we use the notation

$$\Im(b) := \frac{1}{2i}(b - b^*).$$

For $x = x^* \in \mathcal{A}$, we introduce

• the Cauchy transform G_x : $\mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^-(\mathcal{B}), \ G_x(b) := E[(b-x)^{-1}],$

Definition

Let $(\mathcal{A}, E, \mathcal{B})$ be an operator-valued C^* -probability space. We call

$$\mathbb{H}^{\pm}(\mathcal{B}) := \{ b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \ge \varepsilon 1 \}$$

the upper and lower half-plane, respectively, where we use the notation

$$\Im(b) := \frac{1}{2i}(b - b^*).$$

For $x = x^* \in \mathcal{A}$, we introduce

- the Cauchy transform G_x : $\mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^-(\mathcal{B}), \ G_x(b) := E[(b-x)^{-1}],$
- the F-transform $F_x: \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B}), \ F_x(b) := G_x(b)^{-1}$

Definition

Let $(\mathcal{A}, E, \mathcal{B})$ be an operator-valued C^* -probability space. We call

$$\mathbb{H}^{\pm}(\mathcal{B}) := \{ b \in \mathcal{B} | \exists \varepsilon > 0 : \pm \Im(b) \ge \varepsilon 1 \}$$

the upper and lower half-plane, respectively, where we use the notation

$$\Im(b) := \frac{1}{2i}(b - b^*).$$

For $x = x^* \in \mathcal{A}$, we introduce

• the Cauchy transform $G_x: \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^-(\mathcal{B}), \ G_x(b) := E[(b-x)^{-1}],$

• the F-transform $F_x: \ \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B}), \ F_x(b) := G_x(b)^{-1}$ and

• the *h*-transform h_x : $\mathbb{H}^+(\mathcal{B}) \to \overline{\mathbb{H}^+(\mathcal{B})}, h_x(b) := F_x(b) - b.$

Let (\mathcal{A}, ϕ) be a C^* -probability space and let $x_1, \ldots, x_n \in \mathcal{A}$ be self-adjoint and freely independent.

Question

Given a self-adjoint non-commutative polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$. How can we calculate the distribution of $p(x_1, \ldots, x_n)$ out of the given distributions of x_1, \ldots, x_n ?

Let (\mathcal{A}, ϕ) be a C^* -probability space and let $x_1, \ldots, x_n \in \mathcal{A}$ be self-adjoint and freely independent.

Question

Given a self-adjoint non-commutative polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$. How can we calculate the distribution of $p(x_1, \ldots, x_n)$ out of the given distributions of x_1, \ldots, x_n ?

Solution (Belinschi, M., Speicher, 2013)

Combine the linearization trick in its self-adjoint version by Anderson with results about the operator-valued free additive convolution in the setting of operator-valued C^* -probability spaces.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let (\mathcal{A}, ϕ) be a C^* -probability space and let $x_1, \ldots, x_n \in \mathcal{A}$ be self-adjoint and freely independent.

Question

Given a self-adjoint non-commutative polynomial $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$. How can we calculate the distribution of $p(x_1, \ldots, x_n)$ out of the given distributions of x_1, \ldots, x_n ?

Solution (Belinschi, M., Speicher, 2013)

Combine the linearization trick in its self-adjoint version by Anderson with results about the operator-valued free additive convolution in the setting of operator-valued C^* -probability spaces.

This gives an algorithmic solution for the question above, which is moreover easily accessible for numerical computations!

Linearization leads to an operator-valued problem

Linearization leads to an operator-valued problem Let (\mathcal{A}, ϕ) be a C^* -probability space.

Consider $P := p(x_1, \ldots, x_n)$, where $x_1, \ldots, x_n \in \mathcal{A}$ are self-adjoint and freely independent and $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ is a self-adjoint polynomial.

Anderson's linearization trick shows that there is an self-adjoint operator

$$L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \dots + b_n \otimes x_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}_p$$

such that we have with respect to $E = \mathrm{id}_{\mathrm{M}_N(\mathbb{C})} \otimes \phi$ for all $z \in \mathbb{C}^+$

$$G_P(z) = \left[E\left[(\Lambda(z) - L_P)^{-1} \right] \right]_{1,1}$$

Linearization leads to an operator-valued problem Let (\mathcal{A}, ϕ) be a C^* -probability space.

Consider $P := p(x_1, \ldots, x_n)$, where $x_1, \ldots, x_n \in \mathcal{A}$ are self-adjoint and freely independent and $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ is a self-adjoint polynomial.

Anderson's linearization trick shows that there is an self-adjoint operator

$$L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \dots + b_n \otimes x_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}_n$$

such that we have with respect to $E = \operatorname{id}_{\operatorname{M}_N(\mathbb{C})} \otimes \phi$ for all $z \in \mathbb{C}^+$

$$G_P(z) = \left[E \left[(\Lambda(z) - L_P)^{-1} \right] \right]_{1,1} = \lim_{\varepsilon \searrow 0} \left[E \left[(\Lambda_{\varepsilon}(z) - L_P)^{-1} \right] \right]_{1,1},$$

where $\Lambda_{\varepsilon}(z) := \operatorname{diag}(z, i\varepsilon, \dots, i\varepsilon) \in \mathbb{H}^+(\mathcal{M}_N(\mathbb{C})).$

Linearization leads to an operator-valued problem Let (\mathcal{A}, ϕ) be a C^* -probability space.

Consider $P := p(x_1, \ldots, x_n)$, where $x_1, \ldots, x_n \in \mathcal{A}$ are self-adjoint and freely independent and $p \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ is a self-adjoint polynomial.

Anderson's linearization trick shows that there is an self-adjoint operator

$$L_P := b_0 \otimes 1 + b_1 \otimes x_1 + \dots + b_n \otimes x_n \in \mathcal{M}_N(\mathbb{C}) \otimes \mathcal{A}_n$$

such that we have with respect to $E = \operatorname{id}_{\operatorname{M}_N(\mathbb{C})} \otimes \phi$ for all $z \in \mathbb{C}^+$

$$G_P(z) = \left[E \left[(\Lambda(z) - L_P)^{-1} \right] \right]_{1,1} = \lim_{\varepsilon \searrow 0} \left[E \left[(\Lambda_{\varepsilon}(z) - L_P)^{-1} \right] \right]_{1,1},$$

where $\Lambda_{\varepsilon}(z) := \operatorname{diag}(z, i\varepsilon, \dots, i\varepsilon) \in \mathbb{H}^+(\mathcal{M}_N(\mathbb{C})).$

Observation

 $b_1\otimes x_1,\ldots,b_n\otimes x_n$ are free with amalgamation over $\mathrm{M}_N(\mathbb{C}).$

Tobias Mai (Saarland University)

July 25, 2013 8 / 14

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal{A}, E, \mathcal{B})$ is an operator-valued C^* -probability space. If $x, y \in \mathcal{A}$ are free with respect to E, then there exists a unique pair of (Fréchet-)holomorphic maps

$$\omega_1, \omega_2: \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B})$$

such that

$$G_x(\omega_1(b)) = G_y(\omega_2(b)) = G_{x+y}(b), \quad b \in \mathbb{H}^+(\mathcal{B})$$

< ロ > < 同 > < 回 > < 回 >

Theorem (Belinschi, M., Speicher, 2013)

Assume that $(\mathcal{A}, E, \mathcal{B})$ is an operator-valued C^* -probability space. If $x, y \in \mathcal{A}$ are free with respect to E, then there exists a unique pair of (Fréchet-)holomorphic maps

$$\omega_1, \omega_2: \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B})$$

such that

$$G_x(\omega_1(b)) = G_y(\omega_2(b)) = G_{x+y}(b), \quad b \in \mathbb{H}^+(\mathcal{B}).$$

Moreover, ω_1 and ω_2 can easily be calculated via the following fixed point iterations on $\mathbb{H}^+(\mathcal{B})$:

$$\begin{array}{ll} w & \mapsto & h_y(b+h_x(w))+b & \quad \mbox{for } \omega_1(b) \\ w & \mapsto & h_x(b+h_y(w))+b & \quad \mbox{for } \omega_2(b) \end{array}$$

э

< ロ > < 同 > < 回 > < 回 >

Appetizer (coming from free stochastic integrals)

3 x 3

< □ ► < 🗇 ►

Appetizer (coming from free stochastic integrals) Consider

$$p(X_1, X_2) = \frac{1}{2}(X_1^3 + X_1X_2X_1 + X_2X_1X_2 + X_2^3) - (X_1 + X_2).$$

3 x 3

Appetizer (coming from free stochastic integrals) Consider

$$p(X_1, X_2) = \frac{1}{2}(X_1^3 + X_1X_2X_1 + X_2X_1X_2 + X_2^3) - (X_1 + X_2).$$

Let s_1, s_2 be two free (0, 1)-semicircular elements.

э

Appetizer (coming from free stochastic integrals) Consider

$$p(X_1, X_2) = \frac{1}{2}(X_1^3 + X_1X_2X_1 + X_2X_1X_2 + X_2^3) - (X_1 + X_2).$$

Let s_1, s_2 be two free (0, 1)-semicircular elements.

The density of the distribution of $p(s_1, s_2)$ looks like:

Tobias Mai (Saarland University)

Tobias Mai (Saarland University) The self-adjoint linearization trick

э

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

э

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

• Let $\{x_{j,n} | j = 1, ..., d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in \mathcal{A} such that the following conditions are satisfied:

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{j,n} | j = 1, ..., d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in \mathcal{A} such that the following conditions are satisfied:
 - The (x_{1,n},...,x_{d,n})'s have the same distribution with respect to φ and they satisfy φ(x_{j,n}) = 0 for j = 1,...,d.

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{j,n} | j = 1, ..., d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in \mathcal{A} such that the following conditions are satisfied:
 - ► The (x_{1,n},...,x_{d,n})'s have the same distribution with respect to φ and they satisfy φ(x_{j,n}) = 0 for j = 1,...,d.
 - The sets $\{x_{j,n} | j = 1, \dots, d\}$ are free with respect to ϕ .

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{j,n} | j = 1, ..., d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in \mathcal{A} such that the following conditions are satisfied:
 - ► The $(x_{1,n}, \ldots, x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n}) = 0$ for $j = 1, \ldots, d$.

(本語) (本語) (本語) (二語)

11 / 14

- The sets $\{x_{j,n} | j = 1, \dots, d\}$ are free with respect to ϕ .

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{j,n} | j = 1, ..., d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in \mathcal{A} such that the following conditions are satisfied:
 - ► The (x_{1,n},..., x_{d,n})'s have the same distribution with respect to φ and they satisfy φ(x_{j,n}) = 0 for j = 1,..., d.
 - The sets $\{x_{j,n} | j = 1, \dots, d\}$ are free with respect to ϕ .
 - $\sum_{n \in \mathbb{N}} \max_{j=1,\ldots,d} \|x_{j,n}\| < \infty.$

• We put
$$\sigma_{j,N}:=rac{1}{\sqrt{N}}\sum_{n=1}^N x_{j,n}.$$

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

. .

- Let $\{x_{j,n} | j = 1, ..., d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in \mathcal{A} such that the following conditions are satisfied:
 - ► The (x_{1,n},..., x_{d,n})'s have the same distribution with respect to φ and they satisfy φ(x_{j,n}) = 0 for j = 1,..., d.
 - The sets $\{x_{j,n} | j = 1, \dots, d\}$ are free with respect to ϕ .
 - $\sup_{n \in \mathbb{N}} \max_{j=1,\ldots,d} \|x_{j,n}\| < \infty.$

• We put
$$\sigma_{j,N} := \frac{1}{\sqrt{N}} \sum_{n=1}^{N} x_{j,n}$$
.
 $\Rightarrow (\sigma_{1,N}, \dots, \sigma_{d,N}) \xrightarrow[N \to \infty]{\text{dist}} (s_1, \dots, s_d)$,
where (s_1, \dots, s_d) is a semicircular family.

Let (\mathcal{A}, ϕ) be a C^* -probability space with faithful state ϕ .

- Let $\{x_{j,n} | j = 1, ..., d\}$ for $n \in \mathbb{N}$ be sets of self-adjoint elements in \mathcal{A} such that the following conditions are satisfied:
 - ► The $(x_{1,n}, \ldots, x_{d,n})$'s have the same distribution with respect to ϕ and they satisfy $\phi(x_{j,n}) = 0$ for $j = 1, \ldots, d$.
 - The sets $\{x_{j,n} | j = 1, \dots, d\}$ are free with respect to ϕ .
 - $\sup_{n \in \mathbb{N}} \max_{j=1,\ldots,d} \|x_{j,n}\| < \infty.$

• We put
$$\sigma_{j,N}:=rac{1}{\sqrt{N}}\sum_{n=1}^N x_{j,n}.$$

$$\Rightarrow (\sigma_{1,N}, \dots, \sigma_{d,N}) \xrightarrow[N \to \infty]{\text{dist}} (s_1, \dots, s_d),$$

where (s_1, \dots, s_d) is a semicircular family.

$$\Rightarrow p(\sigma_{1,N},\ldots,\sigma_{d,N}) \xrightarrow[N \to \infty]{\text{dist}} p(s_1,\ldots,s_d),$$

for any (self-adjoint) polynomial $p \in \mathbb{C}\langle X_1,\ldots,X_d$

Linearization leads again to an operator-valued problem

Tobias Mai (Saarland University) The self-adjoint linearization trick

 $X_n := b_1 \otimes x_{1,n} + \dots + b_d \otimes x_{d,n}, \qquad n \in \mathbb{N}.$

 $X_n := b_1 \otimes x_{1,n} + \dots + b_d \otimes x_{d,n}, \qquad n \in \mathbb{N}.$

Then $(X_n)_{n \in \mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C}) \otimes \mathcal{A}$, which are identically distributed and free with respect to $E = \mathrm{id}_{M_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$.

12 / 14

 $X_n := b_1 \otimes x_{1,n} + \dots + b_d \otimes x_{d,n}, \qquad n \in \mathbb{N}.$

Then $(X_n)_{n\in\mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C}) \otimes \mathcal{A}$, which are identically distributed and free with respect to $E = \mathrm{id}_{M_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$. Hence,

$$\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n$$

converges as $N\to\infty$ in distribution (with respect to E) to the operator-valued semicircular element

$$S:=b_1\otimes s_1+\cdots+b_d\otimes s_d,$$

 $X_n := b_1 \otimes x_{1,n} + \dots + b_d \otimes x_{d,n}, \qquad n \in \mathbb{N}.$

Then $(X_n)_{n\in\mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C}) \otimes \mathcal{A}$, which are identically distributed and free with respect to $E = \mathrm{id}_{M_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$. Hence,

$$\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n = b_1 \otimes \sigma_{1,N} + \dots + b_d \otimes \sigma_{d,N}$$

converges as $N\to\infty$ in distribution (with respect to E) to the operator-valued semicircular element

$$S:=b_1\otimes s_1+\cdots+b_d\otimes s_d,$$

$$X_n := b_1 \otimes x_{1,n} + \dots + b_d \otimes x_{d,n}, \qquad n \in \mathbb{N}.$$

Then $(X_n)_{n\in\mathbb{N}}$ are self-adjoint elements in $M_k(\mathbb{C}) \otimes \mathcal{A}$, which are identically distributed and free with respect to $E = \mathrm{id}_{M_k(\mathbb{C})} \otimes \phi$ with $E[X_n] = 0$ for all $n \in \mathbb{N}$. Hence,

$$\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n = b_1 \otimes \sigma_{1,N} + \dots + b_d \otimes \sigma_{d,N}$$

converges as $N\to\infty$ in distribution (with respect to E) to the operator-valued semicircular element

$$S:=b_1\otimes s_1+\cdots+b_d\otimes s_d,$$

Note that we have

$$L_p(s_1,\ldots,s_n) = b_0 \otimes 1 + S$$
 and $L_p(\sigma_{1,N},\ldots,\sigma_{d,N}) = b_0 \otimes 1 + \sum_N \sum_{n \in \mathbb{N}} \sum_{i=1}^n \sum_{j \in \mathbb{N}} \sum_{j \in \mathbb{N}} \sum_{j \in \mathbb{N}} \sum_{i=1}^n \sum_{j \in \mathbb{N}} \sum_{j$

Theorem (M., Speicher, 2013)

Tobias Mai (Saarland University) The self-adjoint linearization trick July 25, 2013

イロト イポト イヨト イヨト

э

13 / 14

Theorem (M., Speicher, 2013)

Let $(\mathcal{A}, E, \mathcal{B})$ be an operator-valued C^* -probability space with faithful conditional expectation E and let $(X_n)_{n \in \mathbb{N}}$ be a sequence of identically distributed and self-adjoint elements in \mathcal{A} , satisfying $E[X_n] = 0$, which are free with respect to E. Then

$$\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n$$

converges as $N \to \infty$ in distribution to an operator-valued semicircular element S and we have for all $b \in \mathbb{H}^+(\mathcal{B})$

$$\|G_{\Sigma_N}(b) - G_S(b)\| \le \frac{2}{\sqrt{N}} \|\Im(b)^{-1}\|^4 \sqrt{(2\|m_2^{X_n}\|^2 + \|m_4^{X_n}\|)\|m_2^{X_n}\|}.$$

Theorem (M., Speicher, 2013)

Let $(\mathcal{A}, E, \mathcal{B})$ be an operator-valued C^* -probability space with faithful conditional expectation E and let $(X_n)_{n\in\mathbb{N}}$ be a sequence of identically distributed and self-adjoint elements in \mathcal{A} , satisfying $E[X_n] = 0$, which are free with respect to E. Then

$$\Sigma_N := \frac{1}{\sqrt{N}} \sum_{n=1}^N X_n$$

converges as $N \to \infty$ in distribution to an operator-valued semicircular element S and we have for all $b \in \mathbb{H}^+(\mathcal{B})$

$$\|G_{\Sigma_N}(b) - G_S(b)\| \le \frac{2}{\sqrt{N}} \|\Im(b)^{-1}\|^4 \sqrt{(2\|m_2^{X_n}\|^2 + \|m_4^{X_n}\|)\|m_2^{X_n}\|}.$$

We use the notation $m_n^X(b_1, \dots, b_{n-1}) := E[Xb_1X \dots Xb_{n-1}X]$ and $\|m_n^X\| := \sup_{\|b_1\| \le 1, \dots, \|b_{n-1}\| \le 1} \|m_n^X(b_1, \dots, b_{n-1})\| \le \|X\|^n.$

Tobias Mai (Saarland University)

July 25, 2013 13 / 14

э

Corollary

For each self-adjoint $p\in \mathbb{C}\langle X_1,\ldots,X_d
angle$, there are M,C>0 such that

$$|G_{p(\sigma_{1,N},\dots,\sigma_{d,N})}(z) - G_{p(s_1,\dots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2} \right)$$

holds for all $z \in \mathbb{C}^+$ and all $N \in \mathbb{N}$ with $N > \frac{1}{\Im(z)^{10}}$.

14 / 14

Corollary

For each self-adjoint $p\in \mathbb{C}\langle X_1,\ldots,X_d
angle$, there are M,C>0 such that

$$|G_{p(\sigma_{1,N},\dots,\sigma_{d,N})}(z) - G_{p(s_1,\dots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2} \right)$$

holds for all $z \in \mathbb{C}^+$ and all $N \in \mathbb{N}$ with $N > \frac{1}{\Im(z)^{10}}$.

Remark

• This is ongoing work: The order of convergence $N^{-\frac{1}{10}}$ is (surely) not optimal. There are many promising possibilities to improve the result.

14 / 14

Corollary

For each self-adjoint $p\in \mathbb{C}\langle X_1,\ldots,X_d
angle$, there are M,C>0 such that

$$|G_{p(\sigma_{1,N},\dots,\sigma_{d,N})}(z) - G_{p(s_1,\dots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2} \right)$$

holds for all $z \in \mathbb{C}^+$ and all $N \in \mathbb{N}$ with $N > \frac{1}{\Im(z)^{10}}$.

Remark

• This is ongoing work: The order of convergence $N^{-\frac{1}{10}}$ is (surely) not optimal. There are many promising possibilities to improve the result.

14 / 14

• The main statement here is: "Linearization is the right tool!"

Corollary

For each self-adjoint $p\in \mathbb{C}\langle X_1,\ldots,X_d
angle$, there are M,C>0 such that

$$|G_{p(\sigma_{1,N},\dots,\sigma_{d,N})}(z) - G_{p(s_1,\dots,s_d)}(z)| \le N^{-\frac{1}{10}} \left(M + \frac{C}{\Im(z)^2} \right)$$

holds for all $z \in \mathbb{C}^+$ and all $N \in \mathbb{N}$ with $N > \frac{1}{\Im(z)^{10}}$.

Remark

- This is ongoing work: The order of convergence $N^{-\frac{1}{10}}$ is (surely) not optimal. There are many promising possibilities to improve the result.
- The main statement here is: "Linearization is the right tool!"

Thank you!