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• Overview of numerical random matrix theory
• Numerical results
• “Generic” edge behaviour
• Algorithm:

• Computation of inverse Cauchy transforms
• Recovery of a measure from its inverse Cauchy transforms

• Finite n: invariant ensembles + free probability?
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Numerical random matrix theory
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Numerical results
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Numerics can lead to new theorems
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Numerical Free Probability
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• The challenge: 

• The measures typically have square root singularities

• Free probability is a nonlinear operation

• Representing the measures in a bad basis (like Fourier) will be too 
computational expensive
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Cauchy–Stieljes transform

• Associated with a measure is its Cauchy–Stieljes transform:

• This is analytic off the support of the measure
• Because we are working with probability measures, we have

• Therefore, the Cauchy–Stieljes transform is invertible near ∞

Gµ(z) =

�
1

z � x
dµ(x)

Gµ(z) =
1

z

�
z

z � x
dµ(x) � 1

z

�
dµ =

1

z
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Free probability algorithm

µA µB

µA � µB

G�1
µA

(y) G�1
µB

(y)

µA � µB
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µA

(y) + G�1
µB

(y) � 1

y
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Numerical Cauchy transforms and their inverse

• We will consider the following three types of measures:
• Point measures

• Measures with square root singularities (such as semicircle)

• Smoothly decaying measures (such as Gaussian)

dµ = �(x)
�

x � a
�

b � x dx

dµ = �(x) dx

dµ = �(x � x0) dx
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Numerical Cauchy transforms and their inverse

• We will consider the following three types of measures:
• Point measures

• Measures with square root singularities (such as semicircle)

• Smoothly decaying measures (such as Gaussian)

dµ = �(x)
�

x � a
�

b � x dx

dµ = �(x) dx

dµ = �(x � x0) dx

Assume 
Hölder–

continuous 
derivative
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Point measures

• Trivial:

Gµ(z) =

�
�(x � x0)

z � x
dx =

1

z � x0

• Thus the inverse is:

G�1
µ (w) =

1

w
+ x0
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Chebyshev series and function approximation
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Consider the Joukowski map from the unit circle to the unit interval

Functions analytic inside and outside the unit circle are mapped to 
functions analytic off the unit interval

J(z) =
1

2

✓
z +

1

z

◆
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We define four inverses to the Joukowski map:

J

�1
+ (x) = x�

p
x� 1

p
x+ 1

J

�1
� (x) = x+

p
x� 1

p
x+ 1

J

�1
" (x) = x+ i

p
1� x

p
1 + x

J

�1
# (x) = x� i

p
1� x

p
1 + x
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� *SV�WQSSXL � MR
µ = �(x)

�
x � 1

�
1 � x x

[I�[ERX�XS�½RH�E�VITVIWIRXEXMSR�XLEX GSRZIVKIW�VETMHP]

� ;I�GER�QET�XS�XLI YRMX�GMVGPI ERH�MR�I\TERH�MR�0EYVIRX�WIVMIW�

�(J(�)) = �

�
1

2

�
� +

1

�

��
=

��

k=��
�k�k

� �(J(�)) MW�WQSSXL��WS �k HIGE]W�JEWX�ERH�W]QQIXVMG��WS �k = ��k

� 8LYW�[I�KIX�XLI�VITVIWIRXEXMSR�

�(x) = �(J(J�1
� (x))) =

��

k=��
�kJ�1

� (x)k

= �0 +
��

k=1

�k

�
J�1

� (x)k + J�1
� (x)k

�

= �0 +
��

k=1

�kTk(x)

[LIVI Tk(x) = k x MW�XLI 'LIF]WLIZ�8 TSP]RSQMEP
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� ;I�EPWS�RIIH�XLI 'LIF]WLIZ�9 WIVMIW

� (I½RI Uk(x) F]

Uk(x) =
T �

k+1(x)

k + 1

� ;LIR�QETTIH�XS�XLI�YRMX�GMVGPI�XLMW�KMZIW

Uk(J(�)) =
1

J �(�)

(Tk+1(J(�)))�

k + 1
=

�k � ��k�2

1 � 1
�2

� +SMRK�FIX[IIR�'LIF]WLIZ�8 ERH�9 I\TERWMSRW�MW�JEWX�HYI�XS�

T0(x) = U0(x)

T1(x) =
U1(x)

2

Tk(x) =
Uk(x) � Uk�2(x)

2
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Plemelj’s lemma and square root decaying 
measures
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–1 1

� ;I�[ERX�XS�GEPGYPEXI Gµ(z) JSV

µ = �(x)
�

x � 1
�

1 � x x

6IGEPP�XLEX �(z) = � 1
2� Gµ(z) MW�EREP]XMG�SJJ (�1, 1)� ZERMWLIW�EX � ERH�WEXMW½IW

XLI�NYQT�

�+(x) � ��(x) = �(x)
�

x � 1
�

1 � x
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• We have expanded in Chebyshev U series �(x) =
��

k=0

�kUk(x)

• A simple calculation shows that

• So

�
J�1

+ (x)k+1
�+ �

�
J�1

+ (x)k+1
��

= J�1
� (x)k+1 � J�1

� (x)k+1

= �2iUk(x)
�

1 � x2

Gµ(z) = �
��

k=0

�kJ�1
+ (z)k+1

J

�1
+ (x) = x�

p
x� 1

p
x+ 1for
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• We have expanded in Chebyshev U series �(x) =
��

k=0

�kUk(x)

• A simple calculation shows that

• So

�
J�1

+ (x)k+1
�+ �

�
J�1

+ (x)k+1
��

= J�1
� (x)k+1 � J�1

� (x)k+1

= �2iUk(x)
�

1 � x2

Gµ(z) = �
��

k=0

�kJ�1
+ (z)k+1

J

�1
+ (x) = x�

p
x� 1

p
x+ 1for

Smoothness implies 
absolute convergence

Tuesday, 23 July 13



Inverting the Cauchy transform

• We want to solve

• We make the transformation back to the unit circle

z = J(�) =
1

2

�
� +

1

�

�
so that

• This is again a polynomial, and reliably solvable using eigenvalues of  
companion matrices!

Gµ(z) = �
��

k=0

�kJ�1
+ (z)k+1 = w

��

k=0

�k�k+1 = w
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Free probability algorithm
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Recovering endpoints of a square root measure

• Along (b,∞) and (a,∞), Gμ is 
real and tends to zero

• For x in (a,b),

• Because it is real in two different 
directions,         has a stationary 
point at Gμ(a) and Gμ(b)

• Thus we can compute them 
using bisection

Gµ(x + �i) = Gµ(x � �i)

G�1
µ

Gμ(a) Gμ(b)

0

G�
µ (suppµ)

G+
µ (suppµ)
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Recovering coefficients of a square root decaying measure

• We have

Whenever w is in the range of Gμ

• Thus given a sequence of points w1,…,wm in the range of Gμ, we can treat the 
problem as a linear least squares problem:

Gµ(G�1
µ (w)) = w

1

2

n�

k=1

ukJ�1
+ (M(G�1

µ (wj)))
k � wj
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Choosing 
wj

• We need to choose points that like in the image of Gμ

• Suppose we have a distribution of points y1,…,yM which cover 
(as M tends to ∞) a domain which contains the image of Gμ as 
a subset

• Note that 

Since u – x + iv is in the upper half plane for v positive, 

• Thus we choose wj as the yj such that 

Gµ(u + iv) =

�
1

u � x + iv
dµ

� 1

u � x + iv
< 0 � �Gµ(u + iv) < 0

sgn �wj �= sgn �G�1
µ (wj)
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Finite n:
Free Probability & Invariant Ensembles?
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Finite n is close to invariant ensemble
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GUE + Quartic 2 point correlation

Invariant ensembleMonte Carlo
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Satisfies Tracy–Widom!
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Conclusions

• Free probability operations can be accomplished numerically
• This can lead to a better understanding of free probability
• The approach can be generalized to multiple support intervals

• Not clear how to invert Cauchy transforms for multiple support intervals
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