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We are interested in the limiting eigenvalue distribution of an

N ×N random matrix for N →∞.

Typical phenomena for basic random matrix ensembles:

• almost sure convergence to a deterministic limit eigenvalue

distribution

• this limit distribution can be effectively calculated



The Cauchy (or Stieltjes) Transform

For any probability measure µ on R we define its Cauchy trans-

form

G(z) :=
∫
R

1

z − t
dµ(t)

This is an analytic function G : C+ → C− and we can recover µ

from G by Stieltjes inversion formula

dµ(t) = −
1

π
lim
ε→0
=G(t+ iε)dt



Wigner random matrix Wishart random matrix
and and

Wigner’s semicircle Marchenko-Pastur distribution

G(z) = z−
√
z2−4
2 G(z) = z+1−λ−

√
(z−(1+λ))2−4λ

2z
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We are now interested in the limiting eigenvalue distribution of

general selfadjoint polynomials p(X1, . . . , Xk)

of several independent N ×N random matrices X1, . . . , Xk

Typical phenomena:

• almost sure convergence to a deterministic limit eigenvalue
distribution

• this limit distribution can be effectively calculated only in
very simple situations



for X Wigner, Y Wishart

p(X,Y ) = X + Y p(X,Y ) = XY + Y X +X2

G(z) = GWishart(z −G(z)) ????

−2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35



Existing Results for Calculations of the Limit

Eigenvalue Distribution

• Marchenko, Pastur 1967: general Wishart matrices ADA∗

• Pastur 1972: deterministic + Wigner (deformed semicircle)

• Speicher, Nica 1998; Vasilchuk 2003: commutator or anti-
commutator: X1X2 ±X2X1

• more general models in wireless communications (Tulino,
Verdu 2004; Couillet, Debbah, Silverstein 2011):

RADA∗R∗ or
∑
i

RiAiDiA
∗
iR
∗
i



Asymptotic Freeness of Random Matrices

Basic result of Voiculescu (1991):

Large classes of independent random matrices (like Wigner or

Wishart matrices) become asymptoticially freely independent,

with respect to ϕ = 1
NTr, if N →∞.



Consequence: Reduction of Our Random

Matrix Problem to the Problem of Polynomial in

Freely Independent Variables

If the random matrices X1, . . . , Xk are asymptotically freely inde-

pendent, then the distribution of a polynomial p(X1, . . . , Xk) is

asymptotically given by the distribution of p(x1, . . . , xk), where

• x1, . . . , xk are freely independent variables, and

• the distribution of xi is the asymptotic distribution of Xi



Can We Actually Calculate Polynomials in

Freely Independent Variables?

Free probability can deal effectively with simple polynomials

• the sum of variables (Voiculescu 1986, R-transform)

p(x, y) = x+ y

• the product of variables (Voiculescu 1987, S-transform)

p(x, y) = xy (=
√
xy
√
x)

• the commutator of variables (Nica, Speicher 1998)

p(x, y) = xy − yx



There is no hope to calculate effectively more

complicated or general polynomials in freely

independent variables with usual free probability

theory ...

...but there is a possible way around this:

linearize the problem!!!
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The Linearization Philosophy:

In order to understand polynomials in non-commuting variables,

it suffices to understand matrices of linear polynomials in those

variables.

• Voiculescu 1987: motivation

• Haagerup, Thorbjørnsen 2005: largest eigenvalue

• Anderson 2012: the selfadjoint version

a (based on Schur complement)



Consider a polynomial p in non-commuting variables x and y.
A linearization of p is an N×N matrix (with N ∈ N) of the form

p̂ =

(
0 u
v Q

)
,

where

• u, v,Q are matrices of the following sizes: u is 1× (N − 1); v
is (N − 1)×N ; and Q is (N − 1)× (N − 1)

• each entry of u, v, Q is a polynomial in x and y,
each of degree ≤ 1

• Q is invertible and we have

p = −uQ−1v



Let

p̂ =

(
0 u
v Q

)
be a linearization of p.

For z ∈ C put b =

(
z 0
0 0

)

Then we have

b− p̂ =

(
z −u
−v −Q

)
=

(
1 uQ−1

0 1

)(
z − p 0

0 −Q

)(
1 0

Q−1v 1

)

hence

z − p invertible ⇐⇒ b− p̂ invertible



Actually,

(b− p̂)−1 =

(
1 0

−Q−1v 1

)(
(z − p)−1 0

0 −Q−1

)(
1 −uQ−1

0 1

)

=

(
(z − p)−1 ∗
∗ ∗

)

and we can get

Gp(z) = ϕ((z − p)−1)

as the (1,1)-entry of the operator-valued Cauchy-transform

Gp̂(b) = id⊗ ϕ((b− p̂)−1) =

(
ϕ((z − p)−1) ϕ(∗)

ϕ(∗) ϕ(∗)

)



Theorem (Anderson 2012): One has

• for each p there exists a linearization p̂

(with an explicit algorithm for finding those)

• if p is selfadjoint, then this p̂ is also selfadjoint



The selfadjoint linearization of

p = xy + yx+ x2 is p̂ =


0 x y + x

2

x 0 −1

y + x
2 −1 0


because we have

(
x 1

2x+ y
)( 0 −1
−1 0

)(
x

1
2x+ y

)
= −(xy + yx+ x2)



This means: the Cauchy transform Gp(z) of p = xy + yx + x2

is given as the (1,1)-entry of the operator-valued (3× 3 matrix)

Cauchy transform of p̂:

Gp̂(b) = id⊗ϕ
[
(b− p̂)−1

]
=

Gp(z) ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 for b =

z 0 0
0 0 0
0 0 0

 ,
where

p̂ =

0 0 0
0 0 −1
0 −1 0

+

0 1 1
2

1 0 0
1
2 0 0

⊗ x+

0 0 1
0 0 0
1 0 0

⊗ y

is a linear polynomial, but with matrix-valued coefficients.



p̂ =

0 0 0
0 0 −1
0 −1 0

+

0 1 1
2

1 0 0
1
2 0 0

⊗ x+

0 0 1
0 0 0
1 0 0

⊗ y

In order to understand p̂, we have to calculate the free convolu-
tion of

x̂ =

0 1 1
2

1 0 0
1
2 0 0

⊗ x and ŷ :=

0 0 1
0 0 0
1 0 0

⊗ y

with respect to E = id⊗ ϕ

E is not an expectation, but a conditional expectation (e.g.,
partial trace).



Let B ⊂ A. A linear map

E : A → B

is a conditional expectation if

E[b] = b ∀b ∈ B

and

E[b1ab2] = b1E[a]b2 ∀a ∈ A, ∀b1, b2 ∈ B

An operator-valued probability space consists of B ⊂ A and a

conditional expectation E : A → B



Consider an operator-valued probability space (A, E : A → B).

Random variables xi ∈ A (i ∈ I) are free with respect to E (or

free with amalgamation over B) if

E[a1 · · · an] = 0

whenever ai ∈ B〈xj(i)〉 are polynomials in some xj(i) with coeffi-

cients from B and

E[ai] = 0 ∀i and j(1) 6= j(2) 6= · · · 6= j(n).



Consider E : A → B.

Define free cumulants

κBn : An → B
by

E[a1 · · · an] =
∑

π∈NC(n)

κBπ [a1, . . . , an]

• arguments of κBπ are distributed according to blocks of π

• but now: cumulants are nested inside each other according
to nesting of blocks of π



Example:

π =
{
{1,10}, {2,5,9}, {3,4}, {6}, {7,8}

}
∈ NC(10),

a1 a2 a3 a4 a5 a6 a7 a8 a9a10

κBπ [a1, . . . , a10]

= κB2

(
a1 · κB3

(
a2 · κB2(a3, a4), a5 · κB1(a6) · κB2(a7, a8), a9

)
, a10

)



For a ∈ A define its operator-valued Cauchy transform

Ga(b) := E[
1

b− a
] =

∑
n≥0

E[b−1(ab−1)n]

and operator-valued R-transform

Ra(b) : =
∑
n≥0

κBn+1(ab, ab, . . . , ab, a)

= κB1(a) + κB2(ab, a) + κB3(ab, ab, a) + · · ·

Then

bG(b) = 1 +R(G(b)) ·G(b) or G(b) =
1

b−R(G(b))



If x and y are free over B, then

• mixed B-valued cumulants in x and y vanish

• Rx+y(b) = Rx(b) +Ry(b)

• we have the subordination Gx+y(z) = Gx(ω(z))



Theorem (Belinschi, Mai, Speicher 2013): Let x and y be
selfadjoint operator-valued random variables free over B. Then
there exists a Fréchet analytic map ω : H+(B)→ H+(B) so that

Gx+y(b) = Gx(ω(b)) for all b ∈ H+(B).

Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of
the map

fb : H+(B)→ H+(B), fb(w) = hy(hx(w) + b) + b,

and

ω(b) = lim
n→∞ f

◦n
b (w) for any w ∈ H+(B).

where

H+(B) := {b ∈ B | (b− b∗)/(2i) > 0}, h(b) :=
1

G(b)
− b



If the random matrices X1, . . . , Xk are asymptotically freely inde-

pendent, then the distribution of a polynomial p(X1, . . . , Xk) is

asymptotically given by the distribution of p(x1, . . . , xk), where

• x1, . . . , xk are freely independent variables, and

• the distribution of xi is the asymptotic distribution of Xi

Problem: How do we deal with a polynomial p in free variables?

Idea: Linearize the polynomial and use operator-valued convolu-

tion for the linearization p̂!



The linearization of p = xy + yx+ x2 is given by

p̂ =


0 x y + x

2

x 0 −1

y + x
2 −1 0



This means that the Cauchy transform Gp(z) is given as the

(1,1)-entry of the operator-valued (3× 3 matrix) Cauchy trans-

form of p̂:

Gp̂(b) = id⊗ϕ
[
(b− p̂)−1

]
=

Gp(z) ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 for b =

z 0 0
0 0 0
0 0 0

 .



But

p̂ =


0 x y + x

2

x 0 −1

y + x
2 −1 0

 = x̂+ ŷ

with

x̂ =


0 x x

2

x 0 0

x
2 0 0

 and ŷ =


0 0 y

0 0 −1

y −1 0

 .



So p̂ is just the sum of two operator-valued variables

p̂ =


0 x x

2

x 0 0

x
2 0 0

 +


0 0 y

0 0 −1

y −1 0



• where we understand the operator-valued distributions of x̂
and of ŷ

• and x̂ and ŷ are operator-valued freely independent!

So we can use operator-valued free convolution to calculate the
operator-valued Cauchy transform of x̂+ ŷ.



So we can use operator-valued free convolution to calculate the

operator-valued Cauchy transform of p̂ = x̂+ ŷ in the subordina-

tion form

Gp̂(b) = Gx̂(ω(b)),

where ω(b) is the unique fixed point in the upper half plane

H+(M3(C) of the iteration

w 7→ Gŷ(b+Gx̂(w)−1 − w)−1 − (Gx̂(w)−1 − w)



Input: p(x, y), Gx(z), Gy(z)

↓

Linearize p(x, y) to p̂ = x̂+ ŷ

↓

Gx̂(b) out of Gx(z) and Gŷ(b) out of Gy(z)

↓

Get w(b) as the fixed point of the iteration
w 7→ Gŷ(b+Gx̂(w)−1 − w)−1 − (Gx̂(w)−1 − w)

↓

Gp̂(b) = Gx̂(ω(b))

↓

Recover Gp(z) as one entry of Gp̂(b)



P (X,Y ) = XY + Y X + X2

for independent X,Y ; X is Wigner and Y is Wishart
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p(x, y) = xy + yx + x2

for free x, y; x is semicircular and y is Marchenko-Pastur



P (X1, X2, X3) = X1X2X1 + X2X3X2 + X3X1X3
for independent X1, X2, X3; X1, X2 Wigner, X3 Wishart
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for free x1, x2, x3; x1, x2 semicircular, x3 Marchenko-Pastur



Theorem (Belinschi, Mai, Speicher 2012):

Combining the selfadjoint linearization trick with our

new analysis of operator-valued free convolution we

can provide an efficient and analytically controllable

algorithm for calculating the asymptotic eigenvalue

distribution of

any selfadjoint polynomial in

asymptotically free random matrices.



Outlook: How about the case of non selfadjoint

polynomials?

Drop in for Belinschi’s talk on Friday!


