Block modifications of the Wishart ensemble and operator-valued free multiplicative convolution

Carlos Vargas Obieta

joint work with

S. Belinschi, R. Speicher, J. Treilhard (arXiv:1209.3508)

O. Arizmendi, I. Nechita (on going)

Universität des Saarlandes, Saarbrücken

Toronto, July 4th, 2013

1986 Voiculescu: Addition of free random variables. $G_x \rightsquigarrow \phi_x$ $\phi_x(z) + \phi_y(z) = \phi_{x+y}(z) \rightsquigarrow G_{x+y}(z)$

1991 - : First results on asymptotic freeness
1995 - : Operator-valued random variables
1996 Shlyakthenko: Band matrices
2007 Helton, Rashidi Far, Speicher: Operator-valued semicirculars
2008 Rashidi Far, Oraby, Bryc, Speicher: Block matrices
2009 Benaych-Georges: Rectangular matrices

1986 Voiculescu: Addition of free random variables.

1991 - : First results on asymptotic freeness $X_1^{(N)}, X_2^{(N)}, \ldots, X_p^{(N)}$ Independent Gaussian (or H. U.) matrices $N \to \infty$

 $\rightarrow s_1, s_2, \ldots, s_p$ Free semicircular random variables

1995 - : Operator-valued random variables
1996 Shlyakthenko: Band matrices
2007 Helton, Rashidi Far, Speicher: Operator-valued semicirculars
2008 Rashidi Far, Oraby, Bryc, Speicher: Block matrices
2009 Benaych-Georges: Rectangular matrices

(some) Previous work

1986 Voiculescu: Addition of free random variables. 1991 - : First results on asymptotic freeness

1995 - : Operator-valued random variables Replace the state

 $\tau:\mathcal{M}\to\mathbb{C}$

by a (unit preserving) conditional expectation

 $\mathbb{E}:\mathcal{M}\to\mathcal{B}\supseteq\mathbb{C}$

1996 Shlyakthenko: Band matrices

2007 Helton, Rashidi Far, Speicher: Operator-valued semicirculars 2008 Rashidi Far, Oraby, Bryc, Speicher: Block matrices 2009 Benaych-Georges: Rectangular matrices

(some) Previous work

1986 Voiculescu: Addition of free random variables.

- 1991 : First results on asymptotic freeness
- 1995 : Operator-valued random variables

1996 Shlyakthenko: Band matrices 2007 Helton, Rashidi Far, Speicher: Operator-valued semicirculars 2008 Rashidi Far, Oraby, Bryc, Speicher: Block matrices $(\mathcal{M}, \tau_N) \mathcal{M}$: random $N \times N$ matrices.

$$\begin{array}{cccc} \mathbb{E} : M_2(\mathcal{M}) & \to & M_2(\mathbb{C}) \\ \begin{pmatrix} X_1 & X_2 \\ X_2 & X_1 \end{pmatrix} & \mapsto & \begin{pmatrix} \tau_{\mathcal{N}}(X_1) & \tau_{\mathcal{N}}(X_2) \\ \tau_{\mathcal{N}}(X_2) & \tau_{\mathcal{N}}(X_1) \end{pmatrix} \\ & \to & \begin{pmatrix} s_1 & s_2 \\ s_2 & s_1 \end{pmatrix} \end{array}$$

2009 Benaych-Georges: Rectangular matrices

1986 Voiculescu: Addition of free random variables.
1991 - : First results on asymptotic freeness
1995 - : Operator-valued random variables
1996 Shlyakthenko: Band matrices
2007 Helton, Rashidi Far, Speicher: Operator-valued semicirculars
2008 Rashidi Far, Oraby, Bryc, Speicher: Block matrices

2009 Benaych-Georges: Rectangular matrices $\mathbb{E}: \mathcal{M} \rightarrow < p_1, \dots, p_k >$ Let W be a $dn \times dn$ self-adjoint random matrix

э

Let W be a $dn \times dn$ self-adjoint random matrix and let $\varphi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ be a self-adjoint linear map.

∢ ≣ ▶

 $W^{\varphi} := (\mathit{id}_d \otimes \varphi)(W).$

$$W^{\varphi} := (id_d \otimes \varphi)(W).$$

We want to understand the asymptotic eigenvalue distribution of W^{φ} .

$$W^{\varphi} := (id_d \otimes \varphi)(W).$$

We want to understand the asymptotic eigenvalue distribution of W^{φ} .

W Wishart and $\varphi(A) = A^t$ (Aubrun 2012).

$$W^{\varphi} := (id_d \otimes \varphi)(W).$$

We want to understand the asymptotic eigenvalue distribution of W^{φ} .

W Wishart and $\varphi(A) = A^t$ (Aubrun 2012). φ "planar"

$$W^{\varphi} := (id_d \otimes \varphi)(W).$$

We want to understand the asymptotic eigenvalue distribution of W^{φ} .

W Wishart and $\varphi(A) = A^t$ (Aubrun 2012). φ "planar" $W^{\varphi} \rightarrow$ free compound Poissons (Banica, Nechita 2012).

$$\varphi(A) = \sum_{i,j,k,l=1}^{n} \alpha_{kl}^{ij} E_{ij} A E_{kl},$$

where $E_{ij} \in \mathcal{M}_n(\mathbb{C})$ are matrix units.

- (注) - (注) - ()

3

$$\varphi(A) = \sum_{i,j,k,l=1}^{n} \alpha_{kl}^{ij} E_{ij} A E_{kl},$$

where $E_{ij} \in \mathcal{M}_n(\mathbb{C})$ are matrix units. Then we can express

$$W^{\varphi} = \sum_{i,j,k,l=1}^{n} \alpha_{kl}^{ij} (I_d \otimes E_{ij}) W(I_d \otimes E_{kl}),$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

э

$$\varphi(A) = \sum_{i,j,k,l=1}^{n} \alpha_{kl}^{ij} E_{ij} A E_{kl},$$

where $E_{ij} \in \mathcal{M}_n(\mathbb{C})$ are matrix units. Then we can express

$$W^{\varphi} = \sum_{i,j,k,l=1}^{n} \alpha_{kl}^{ij} (I_d \otimes E_{ij}) W(I_d \otimes E_{kl}),$$

As $d \to \infty$, by Voiculescu's asymptotic freeness results $(I_d \otimes E_{ij})_{i,j=1}^n$ and W are asymptotically free

$$\varphi(A) = \sum_{i,j,k,l=1}^{n} \alpha_{kl}^{ij} E_{ij} A E_{kl},$$

where $E_{ij} \in \mathcal{M}_n(\mathbb{C})$ are matrix units. Then we can express

$$W^{\varphi} = \sum_{i,j,k,l=1}^{n} \alpha_{kl}^{ij} (I_d \otimes E_{ij}) W(I_d \otimes E_{kl}),$$

As $d \to \infty$, by Voiculescu's asymptotic freeness results $(I_d \otimes E_{ij})_{i,j=1}^n$ and W are asymptotically free (W Wishart, Wigner, or randomly rotated).

æ

≣ ।•

< ≣ >

 $(I_d \otimes E_{jl})_{i,j=1}^n$ by an abstract collection $(e_{ij})_{i,j\leq n}$ of matrix units in a non-commutative probability space (\mathcal{A}, τ) .

 $(I_d \otimes E_{jl})_{i,j=1}^n$ by an abstract collection $(e_{ij})_{i,j\leq n}$ of matrix units in a non-commutative probability space (\mathcal{A}, τ) . i.e.

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad \tau(e_{ij}) = n^{-1}\delta_{ij}, \quad \sum_{i=1}^{n}e_{ii} = 1, \quad e_{ij}^{*} = e_{ji}.$$

 $(I_d \otimes E_{jl})_{i,j=1}^n$ by an abstract collection $(e_{ij})_{i,j\leq n}$ of matrix units in a non-commutative probability space (\mathcal{A}, τ) . i.e.

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad \tau(e_{ij}) = n^{-1}\delta_{ij}, \quad \sum_{i=1}^{n}e_{ii} = 1, \quad e_{ij}^* = e_{ji}.$$

W by an element $w \in A$ which is free from $(e_{ij})_{i,j \leq n}$ such that $(dn)^{-1}\mathbb{E} \circ Tr(W^k) \to \tau(w)$.

 $(I_d \otimes E_{jl})_{i,j=1}^n$ by an abstract collection $(e_{ij})_{i,j\leq n}$ of matrix units in a non-commutative probability space (\mathcal{A}, τ) . i.e.

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad \tau(e_{ij}) = n^{-1}\delta_{ij}, \quad \sum_{i=1}^{n}e_{ii} = 1, \quad e_{ij}^* = e_{ji}.$$

W by an element $w \in A$ which is free from $(e_{ij})_{i,j \leq n}$ such that $(dn)^{-1} \mathbb{E} \circ Tr(W^k) \to \tau(w)$. Then

$$W^{\varphi}
ightarrow w^{\varphi} := \sum_{i,j,k,l=1}^{n} lpha_{kl}^{ij} e_{ij} w e_{kl}.$$

 $(I_d \otimes E_{jl})_{i,j=1}^n$ by an abstract collection $(e_{ij})_{i,j\leq n}$ of matrix units in a non-commutative probability space (\mathcal{A}, τ) . i.e.

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad \tau(e_{ij}) = n^{-1}\delta_{ij}, \quad \sum_{i=1}^{n}e_{ii} = 1, \quad e_{ij}^* = e_{ji}.$$

W by an element $w \in A$ which is free from $(e_{ij})_{i,j \leq n}$ such that $(dn)^{-1} \mathbb{E} \circ Tr(W^k) \rightarrow \tau(w)$. Then

$$W^{\varphi}
ightarrow w^{\varphi} := \sum_{i,j,k,l=1}^{n} lpha_{kl}^{ij} e_{ij} w e_{kl}.$$

Note: The (e_{ij}) are not free among themselves!

< ∃ →

ъ

э

$$\alpha^2 e_{ij} w e_{kl} + \bar{\alpha^2} e_{lk} w e_{ji}$$

3

$$\alpha^{2} e_{ij} w e_{kl} + \bar{\alpha^{2}} e_{lk} w e_{ji}$$

$$= (\alpha e_{ij} + \bar{\alpha} e_{lk}) w (\bar{\alpha} e_{ji} + \alpha e_{kl})$$

$$- \|\alpha\|^{2} e_{ij} w e_{ji} - \|\alpha\|^{2} e_{lk} w e_{kl}$$

< ∃ →

ъ

э

$$\alpha^{2} e_{ij} w e_{kl} + \overline{\alpha^{2}} e_{lk} w e_{ji}$$

$$= (\alpha e_{ij} + \overline{\alpha} e_{lk}) w (\overline{\alpha} e_{ji} + \alpha e_{kl})$$

$$- \|\alpha\|^{2} e_{ij} w e_{ji} - \|\alpha\|^{2} e_{lk} w e_{kl}$$

$$= (f_{kl}^{ij}) w (f_{kl}^{ij})^{*} - \|\alpha\|^{2} e_{ij} w e_{ji} - \|\alpha\|^{2} e_{lk} w e_{kl}$$

< ∃ →

ъ

э

$$\alpha^{2} e_{ij} w e_{kl} + \bar{\alpha^{2}} e_{lk} w e_{ji}$$

$$= (\alpha e_{ij} + \bar{\alpha} e_{lk}) w (\bar{\alpha} e_{ji} + \alpha e_{kl})$$

$$- \|\alpha\|^{2} e_{ij} w e_{ji} - \|\alpha\|^{2} e_{lk} w e_{kl}$$

$$= (f_{kl}^{ij}) w (f_{kl}^{ij})^{*} - \|\alpha\|^{2} e_{ij} w e_{ji} - \|\alpha\|^{2} e_{lk} w e_{kl}$$

so that

$$w^{\varphi} = \sum_{\substack{1 \le i, j, k, l \le n \\ (i, j) \le (l, k)}} (f_{kl}^{ij}) \varepsilon_{kl}^{ij} w (f_{kl}^{ij})^*$$

-

$$\alpha^{2} e_{ij} we_{kl} + \overline{\alpha^{2}} e_{lk} we_{ji}$$

$$= (\alpha e_{ij} + \overline{\alpha} e_{lk}) w(\overline{\alpha} e_{ji} + \alpha e_{kl})$$

$$- \|\alpha\|^{2} e_{ij} we_{ji} - \|\alpha\|^{2} e_{lk} we_{kl}$$

$$= (f_{kl}^{ij}) w(f_{kl}^{ij})^{*} - \|\alpha\|^{2} e_{ij} we_{ji} - \|\alpha\|^{2} e_{lk} we_{kl}$$

so that

$$w^{\varphi} = \sum_{\substack{1 \le i, j, k, l \le n \\ (i,j) \le (l,k)}} (f_{kl}^{ij}) \varepsilon_{kl}^{ij} w (f_{kl}^{ij})^*$$
(1)

From the elements f_{kl}^{ij} , $(i,j) \le (l,k)$ we build a vector $f = (f_{11}^{11}, f_{12}^{11}, \dots, f_{nn}^{nn})$ of size $m := n^2(n^2 + 1)/2$.

$$\alpha^{2} e_{ij} we_{kl} + \overline{\alpha^{2}} e_{lk} we_{ji}$$

$$= (\alpha e_{ij} + \overline{\alpha} e_{lk}) w(\overline{\alpha} e_{ji} + \alpha e_{kl})$$

$$- \|\alpha\|^{2} e_{ij} we_{ji} - \|\alpha\|^{2} e_{lk} we_{kl}$$

$$= (f_{kl}^{ij}) w(f_{kl}^{ij})^{*} - \|\alpha\|^{2} e_{ij} we_{ji} - \|\alpha\|^{2} e_{lk} we_{kl}$$

so that

$$w^{\varphi} = \sum_{\substack{1 \le i, j, k, l \le n \\ (i, j) \le (l, k)}} (f_{kl}^{ij}) \varepsilon_{kl}^{ij} w(f_{kl}^{ij})^*$$
(1)

From the elements f_{kl}^{ij} , $(i,j) \le (l,k)$ we build a vector $f = (f_{11}^{11}, f_{12}^{11}, \dots, f_{nn}^{nn})$ of size $m := n^2(n^2 + 1)/2$.

We consider also the diagonal matrix $\tilde{w} = diag(\varepsilon_{11}^{11}w, \varepsilon_{12}^{11}w, \dots, \varepsilon_{nn}^{nn}w)$, so that $f\tilde{w}f^* = w^{\varphi}$. The desired distribution is the same (modulo a dirac mass at zero of weight 1 - 1/m) as the distribution of $f^*f\tilde{w}$ in the C^* -probability space $(M_m(\mathbb{C}) \otimes \mathcal{A}, tr_m \otimes \tau)$.

The desired distribution is the same (modulo a dirac mass at zero of weight 1 - 1/m) as the distribution of $f^*f\tilde{w}$ in the C^* -probability space $(M_m(\mathbb{C}) \otimes \mathcal{A}, tr_m \otimes \tau)$.

Moreover, since w and (e_{kl}^{ij}) are free, the matrices f^*f and \tilde{w} are free with amalgamation over $M_m(\mathbb{C})$ (with respect to the conditional expectation $\mathbb{E} := id_m \otimes \tau$).

The desired distribution is the same (modulo a dirac mass at zero of weight 1 - 1/m) as the distribution of $f^*f\tilde{w}$ in the C^* -probability space $(M_m(\mathbb{C}) \otimes \mathcal{A}, tr_m \otimes \tau)$.

Moreover, since w and (e_{kl}^{ij}) are free, the matrices f^*f and \tilde{w} are free with amalgamation over $M_m(\mathbb{C})$ (with respect to the conditional expectation $\mathbb{E} := id_m \otimes \tau$).

Q: Can we compute the $(M_m(\mathbb{C})$ -valued Cauchy transforms G_{f^*f} and $G_{\tilde{w}}$?

э

-

Q: Can we compute the $(M_m(\mathbb{C})$ -valued Cauchy transforms G_{f^*f} and $G_{\tilde{w}}$? yes!

 Q: Can we compute the $(M_m(\mathbb{C})$ -valued Cauchy transforms G_{f^*f} and $G_{\tilde{w}}$? yes! G_{f^*f} is easy:

$$G_{f^*f}(b) = \mathbb{E}((f^*f - b)^{-1}) = tr_n \otimes id_m((f^*f - I_n \otimes b)^{-1})$$

- ∢ ≣ ▶

æ

Since \tilde{w} has such a nice form, its Cauchy transform can be obtained by essentially imputing matrices to the scalar valued Cauchy transform of w

Since \tilde{w} has such a nice form, its Cauchy transform can be obtained by essentially imputing matrices to the scalar valued Cauchy transform of w

(the computation is inspired by the work of Helton, Rashidi-Far and Speicher on operator valued semicirculars).

Since \tilde{w} has such a nice form, its Cauchy transform can be obtained by essentially imputing matrices to the scalar valued Cauchy transform of w(the computation is inspired by the work of Helton, Rashidi-Far and Speicher on operator valued semicirculars).

We can compute, at least for the case that w is arcsine, semicircular or Marcenko-Pastur distributed.

Since \tilde{w} has such a nice form, its Cauchy transform can be obtained by essentially imputing matrices to the scalar valued Cauchy transform of w(the computation is inspired by the work of Helton, Rashidi-Far and Speicher on operator valued semicirculars).

We can compute, at least for the case that w is arcsine, semicircular or Marcenko-Pastur distributed.

If we manage to compute matrix-valued free multiplicative convolutions, we would obtain the distribution of w^φ

Since \tilde{w} has such a nice form, its Cauchy transform can be obtained by essentially imputing matrices to the scalar valued Cauchy transform of w(the computation is inspired by the work of Helton, Rashidi-Far and Speicher on operator valued semicirculars).

We can compute, at least for the case that w is arcsine, semicircular or Marcenko-Pastur distributed.

If we manage to compute matrix-valued free multiplicative convolutions, we would obtain the distribution of w^{φ} for ALL self-adjoint maps.

1987 Voiculescu : Multiplication of free random variables. $G_x \rightsquigarrow S_x$ $S_x(z)S_y(z) = S_{xy}(z) \rightsquigarrow G_{xy}(z)$

1987 Voiculescu : Multiplication of free random variables. $G_x \rightsquigarrow S_x$ $S_x(z)S_y(z) = S_{xy}(z) \rightsquigarrow G_{xy}(z)$

1998 Biane : Multiplicative subordination. $G_x \rightarrow \eta_x$ $\eta_y(\omega_2(z)) = \eta_{xy}(z) \rightarrow G_{xy}(z)$

1987 Voiculescu : Multiplication of free random variables. $G_x \rightsquigarrow S_x$ $S_x(z)S_y(z) = S_{xy}(z) \rightsquigarrow G_{xy}(z)$

1998 Biane : Multiplicative subordination.

$$G_x o \eta_x \ \eta_y(\omega_2(z)) = \eta_{xy}(z) o G_{xy}(z)$$

2007 Belinschi, Bercovici : Iterative analytic map approach to FMC $\omega_2(z) = \lim_{n \to \infty} g_z^{\circ n}(w)$

1987 Voiculescu : Multiplication of free random variables. $G_x \rightsquigarrow S_x$ $S_x(z)S_y(z) = S_{xy}(z) \rightsquigarrow G_{xy}(z)$

1998 Biane : Multiplicative subordination. $G_x \rightarrow \eta_x$ $\eta_y(\omega_2(z)) = \eta_{xy}(z) \rightarrow G_{xy}(z)$

2007 Belinschi, Bercovici : Iterative analytic map approach to FMC $\omega_2(z) = \lim_{n \to \infty} g_z^{\circ n}(w)$

2002 Voiculescu : Operator valued analytic subordination.

1987 Voiculescu : Multiplication of free random variables. $G_x \rightsquigarrow S_x$ $S_x(z)S_y(z) = S_{xy}(z) \rightsquigarrow G_{xy}(z)$

1998 Biane : Multiplicative subordination. $G_x \rightarrow \eta_x$ $\eta_y(\omega_2(z)) = \eta_{xy}(z) \rightarrow G_{xy}(z)$

2007 Belinschi, Bercovici : Iterative analytic map approach to FMC $\omega_2(z) = \lim_{n \to \infty} g_z^{\circ n}(w)$

2002 Voiculescu : Operator valued analytic subordination.

2006 Dykema : Operator valued S-Transform.

1987 Voiculescu : Multiplication of free random variables. $G_x \rightsquigarrow S_x$ $S_x(z)S_y(z) = S_{xy}(z) \rightsquigarrow G_{xy}(z)$

1998 Biane : Multiplicative subordination. $G_x \rightarrow \eta_x$ $\eta_y(\omega_2(z)) = \eta_{xy}(z) \rightarrow G_{xy}(z)$

2007 Belinschi, Bercovici : Iterative analytic map approach to FMC $\omega_2(z) = \lim_{n \to \infty} g_z^{\circ n}(w)$

2002 Voiculescu : Operator valued analytic subordination.

2006 Dykema : Operator valued S-Transform.

2012 (pre-print) Belinschi, Speicher, Treilhard, V.: Iterative analytic map approach to OVFMC

Operator-Valued free probability

An operator-valued non-commutative probability space is a triple $(\mathcal{M}, \mathbb{E}, B)$,

∃ >

An operator-valued non-commutative probability space is a triple $(\mathcal{M}, \mathbb{E}, B)$, where \mathcal{M} is a C^* -algebra,

An operator-valued non-commutative probability space is a triple $(\mathcal{M}, \mathbb{E}, B)$, where \mathcal{M} is a C^* -algebra, $B \subseteq \mathcal{M}$ is a C^* -subalgebra containing the unit of \mathcal{M} ,

An operator-valued non-commutative probability space is a triple $(\mathcal{M}, \mathbb{E}, B)$, where \mathcal{M} is a C^* -algebra, $B \subseteq \mathcal{M}$ is a C^* -subalgebra containing the unit of \mathcal{M} , and $\mathbb{E} \colon \mathcal{M} \to B$ is a unit-preserving conditional expectation. $(\mathbb{E}(bab') = b\mathbb{E}(a)b')$

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$

- ▲ 문 ► ▲ 문 ►

_ ₽ ▶

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$, where $\mathcal{M} = M_2(\mathbb{C}) \otimes \mathcal{A}$

伺 ト く ヨ ト く ヨ ト

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$, where $\mathcal{M} = M_2(\mathbb{C}) \otimes \mathcal{A}$, $B = M_2(\mathbb{C})$ and

伺 ト く ヨ ト く ヨ ト

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$, where $\mathcal{M} = M_2(\mathbb{C}) \otimes \mathcal{A}$, $B = M_2(\mathbb{C})$ and

$$\mathbb{E}:\mathcal{M} \to M_2(\mathbb{C})$$

伺 ト く ヨ ト く ヨ ト

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$, where $\mathcal{M} = M_2(\mathbb{C}) \otimes \mathcal{A}$, $B = M_2(\mathbb{C})$ and

$$\begin{array}{cccc} \mathbb{E}: \mathcal{M} & \to & M_2(\mathbb{C}) \\ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} & \mapsto & \begin{pmatrix} \tau(a_1) & \tau(a_2) \\ \tau(a_3) & \tau(a_4) \end{pmatrix} \end{array}$$

伺 ト く ヨ ト く ヨ ト

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$, where $\mathcal{M} = M_2(\mathbb{C}) \otimes \mathcal{A}$, $B = M_2(\mathbb{C})$ and

$$\begin{array}{cccc} \mathbb{E}: \mathcal{M} & \to & M_2(\mathbb{C}) \\ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} & \mapsto & \begin{pmatrix} \tau(a_1) & \tau(a_2) \\ \tau(a_3) & \tau(a_4) \end{pmatrix} \end{array}$$

or maybe $B = D_2(\mathbb{C})$ and

伺 ト く ヨ ト く ヨ ト

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$, where $\mathcal{M} = M_2(\mathbb{C}) \otimes \mathcal{A}$, $B = M_2(\mathbb{C})$ and

$$\begin{array}{cccc} \mathbb{E}: \mathcal{M} & \to & M_2(\mathbb{C}) \\ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} & \mapsto & \begin{pmatrix} \tau(a_1) & \tau(a_2) \\ \tau(a_3) & \tau(a_4) \end{pmatrix} \end{array}$$

or maybe $B = D_2(\mathbb{C})$ and

$$\mathbb{E}: \mathcal{M} \rightarrow D_2(\mathbb{C})$$

伺 ト く ヨ ト く ヨ ト

If (\mathcal{A}, τ) is a (scalar) C^* probability space, we may consider $(\mathcal{M}, \mathbb{E}, B)$, where $\mathcal{M} = M_2(\mathbb{C}) \otimes \mathcal{A}$, $B = M_2(\mathbb{C})$ and

$$\begin{array}{cccc} \mathbb{E}: \mathcal{M} & \to & M_2(\mathbb{C}) \\ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} & \mapsto & \begin{pmatrix} \tau(a_1) & \tau(a_2) \\ \tau(a_3) & \tau(a_4) \end{pmatrix} \end{array}$$

or maybe $B = D_2(\mathbb{C})$ and

$$\mathbb{E}: \mathcal{M} \rightarrow D_2(\mathbb{C}) \ egin{pmatrix} a_1 & a_2 \ a_3 & a_4 \end{pmatrix} \ \mapsto \ egin{pmatrix} au(a_1) & 0 \ 0 & au(a_4) \end{pmatrix}$$

Definition

Two algebras $A_1, A_2 \subseteq \mathcal{M}$ containing B are called *free with amalgamation over* B with respect to \mathbb{E} (or just *free over* B)

Definition

Two algebras $A_1, A_2 \subseteq \mathcal{M}$ containing B are called *free with* amalgamation over B with respect to \mathbb{E} (or just *free over* B) if for any tuple $x_1, \ldots x_n$, such that $x_j \in A_{i_j}$ and $i_j \neq i_{j+1}$

$$\mathbb{E}[\bar{x}_1\bar{x}_2\cdots\bar{x}_n]=0$$

where $\bar{x} := x - \mathbb{E}(x)$

For a fixed $x \in \mathcal{M}$, we define $G_x(b) = \mathbb{E}\left[(b-x)^{-1}\right]$ for all $b \in B$ so that b-x is invertible in \mathcal{M} .

For a fixed $x \in \mathcal{M}$, we define $G_x(b) = \mathbb{E}\left[(b-x)^{-1}\right]$ for all $b \in B$ so that b-x is invertible in \mathcal{M} . If we also have scalar valued structure $(\mathcal{M}, \mathbb{E}, B)$, such that $\tau \circ \mathbb{E} = \tau$,

For a fixed $x \in \mathcal{M}$, we define $G_x(b) = \mathbb{E}\left[(b-x)^{-1}\right]$ for all $b \in B$ so that b-x is invertible in \mathcal{M} . If we also have scalar valued structure $(\mathcal{M}, \mathbb{E}, B)$, such that $\tau \circ \mathbb{E} = \tau$, then

$$\tau((z1_B - x)^{-1}) = \tau(\mathbb{E}((z1_B - x)^{-1}))$$

Freeness with amalgamation is less restrictive than scalar freeness.

Freeness with amalgamation is less restrictive than scalar freeness. For example, if $A_1, A_2 \subset A$ are free (w.r.t τ), Freeness with amalgamation is less restrictive than scalar freeness. For example, if $A_1, A_2 \subset A$ are free (w.r.t τ), then the algebras

$$M_n(\mathbb{C})\otimes A_1, M_n(\mathbb{C})\otimes A_2\subset M_n(\mathbb{C})\otimes \mathcal{A}$$

are free with amalgamation over $M_n(\mathbb{C})$ (w.r.t $id_n \otimes \tau$).

Freeness with amalgamation is less restrictive than scalar freeness. For example, if $A_1, A_2 \subset A$ are free (w.r.t τ), then the algebras

$$M_n(\mathbb{C})\otimes A_1, M_n(\mathbb{C})\otimes A_2\subset M_n(\mathbb{C})\otimes \mathcal{A}$$

are free with amalgamation over $M_n(\mathbb{C})$ (w.r.t $id_n \otimes \tau$). In general, they are NOT free over \mathbb{C} (w.r.t. $\frac{1}{n}\tau \circ Tr$).

Main Definitions and Transforms

We shall use the following analytic mappings, all defined on $\mathbb{H}^+(B)$. in all formulas below, $x = x^*$ is fixed in \mathcal{M} :

The reciprocal Cauchy transform:

$$F_{x}(b) = \mathbb{E}\left[(b-x)^{-1}\right]^{-1} = G_{x}(b)^{-1};$$
(2)

The eta transform (Boolean cumulant series):

$$\eta_{x}(b) = 1 - b\mathbb{E}\left[(b^{-1} - x)^{-1}\right]^{-1} = 1 - bF_{x}(b^{-1}); \quad (3)$$

We use an auxiliary "h transform:"

$$h_{x}(b) = b^{-1}\eta_{x}(b) = b^{-1} - \mathbb{E}\left[(b^{-1} - x)^{-1}\right]^{-1} = b^{-1} - F_{x}(b^{-1});$$
(4)

Theorem (Belinschi, Speicher, Treilhard, V. 2012)

Let $x > 0, y = y^* \in \mathcal{M}$ be two random variables with invertible expectations, free over B. There exists a Fréchet holomorphic map ω_2 : $\{b \in B: \Im(bx) > 0\} \to \mathbb{H}^+(B)$, such that 1 $\eta_y(\omega_2(b)) = \eta_{xy}(b), \Im(bx) > 0;$ 2 $\omega_2(b)$ and $b^{-1}\omega_2(b)$ are analytic around zero; 3 For any $b \in B$ so that $\Im(bx) > 0$, the map $g_b: \mathbb{H}^+(B) \to \mathbb{H}^+(B), g_b(w) = bh_x(h_y(w)b)$ is well-defined, analytic and

$$\omega_2(b) = \lim_{n \to \infty} g_b^{\circ n}(w),$$

for any fixed $w \in \mathbb{H}^+(B)$.

Moreover, if one defines $\omega_1(b) := h_y(\omega_2(b))b$, then

$$\eta_{xy}(b)=\omega_2(b)\eta_x(\omega_1(b))\omega_2^{-1}(b),\quad\Im(bx)>0.$$

Theorem (Belinschi, Speicher, Treilhard, V. 2012)

Let B be finite-dimensional. For any $x \ge 0$, $y = y^*$ free over B, there exists a domain $\mathcal{D} \subset B$ containing $\mathbb{C}^+ \cdot 1$ and an analytic map $\omega_2 \colon \mathcal{D} \to \mathbb{H}^+(B)$ so that

$$\eta_y(\omega_2(b)) = \eta_{xy}(b) \text{ and } g_b(\omega_2(b)) = \omega_2(b), \quad b \in \mathcal{D}.$$

Moreover, if $g_b \colon \mathbb{H}^+(B) \to \mathbb{H}^+(B)$, $g_b(w) = bh_x(h_y(w)b)$, then $\omega_2(b) = \lim_{n \to \infty} g_b^{\circ n}(w)$, for any $w \in \mathbb{H}^+(B)$, $b \in \mathcal{D}$.

Example: product of (shifted) operator valued semicirculars

Let s_1 , s_2 , s_3 , and s_4 be free, semi-circular random variables, in some scalar-valued non-commutative probability space (\mathcal{A}, τ) . Consider the matrices S_1 and S_2 defined by:

$$S_1 = \begin{pmatrix} s_1 & s_1 \\ s_1 & s_2 \end{pmatrix}, \ S_2 = \begin{pmatrix} s_3 + s_4 & 2s_4 \\ 2s_4 & s_3 - 3s_4 \end{pmatrix}$$
 (5)

Matrices S_1 and S_2 represent limits of random matrices, where s_1, \ldots, s_4 are replaced by independent Gaussian random matrices.

Numerical Implementation: Op-val Semicirculars

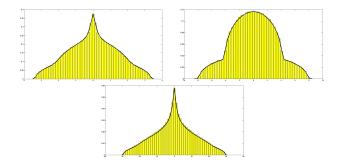


Figure: Spectral distributions of S_1 (left), S_2 (right), and $(S_2 + 8.5I_2)^{1/2}S_1(S_2 + 8.5I_2)^{1/2}$ (center)

...back to our block modified matrices

э

(★ 문 ► ★ 문 ►

...back to our block modified matrices At least for the case that w is arcsine, semicircular or Marcenko-Pastur distributed, ...back to our block modified matrices At least for the case that w is arcsine, semicircular or Marcenko-Pastur distributed, we can compute the distribution of w^{φ} for ALL self-adjoint maps.

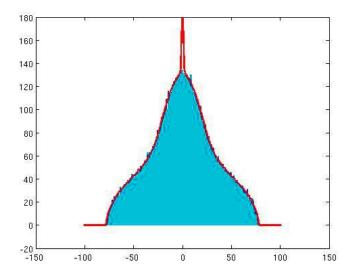


Figure: Block-modified Wigner matrix

문 🛌 문

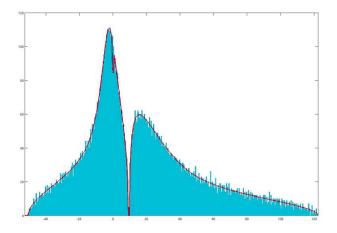


Figure: Block-modified Wishart matrix

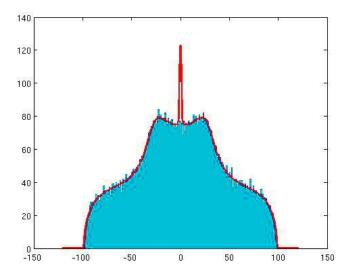


Figure: Block-modification of a rotated arcsine matrix

Reminder: Soccer at 3:00 pm

э

Reminder: Soccer at 3:00 pm

Thanks for your attention!