Structured Random Unitary Matrices and Asymptotic Freeness

Brendan Farrell

California Institute of Technology

July 2013

... Joint work with Greg Anderson

つくい

 $\Box\rightarrow\neg(\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}\Box\hspace{-0.14cm}D\rightarrow\neg(\Box\hspace{-0.14cm}\$

Theorem (D.-V. Voiculescu, 1991)

Let $\mathcal{U}_\mathcal{N}^{(1)}$ $\mathcal{U}_N^{(1)}$ and $\mathcal{U}_N^{(2)}$ N *be independent, Haar-distributed unitary matrices of size N* \times *N and* $\{A_N\}_{N=1}^{\infty}$ *and* $\{B_N\}_{N=1}^{\infty}$ *sequences of (nonrandom) uniformly bounded self-adjoint matrices of size* $N \times N$ with spectral measures converging to μ_A and μ_B . Then, as $N \rightarrow \infty$.

$$
\mathcal{U}_N^{(1)} A_N \mathcal{U}_N^{(1)*} \quad \text{and} \quad \mathcal{U}_N^{(2)} B_N \mathcal{U}_N^{(2)*}
$$

are asymptotically free.

$$
Gives a limit law for \qquad \mathcal{U}_N^{(1)} A_N \mathcal{U}_N^{(1)*} + \mathcal{U}_N^{(2)} B_N \mathcal{U}_N^{(2)*}
$$

and

$$
A_N \mathcal{U}_N^{(1)} B_N \mathcal{U}_N^{(1)*} A_N
$$

in terms of μ_A and μ_B .

ロトラ 風 トラミトラ ミュー

Simplest application:

$$
A:=P_2\mathcal{U}_N P_1\mathcal{U}_N^*P_2,
$$

*P*¹ and *P*² are orthogonal projections with ranks *pN* and *qN*. Let

$$
F(x)=\frac{1}{N}\sharp\{\lambda_i(A)\leq x\}.
$$

Wachter (1980): when $F(x)$ converges almost surely to the distribution function with density

$$
f(x) := \frac{\sqrt{(\lambda_{+}-x)(x-\lambda_{-})}}{2\pi x(1-x)} I_{[\lambda_{-},\lambda_{+}]}(x) + (1-\min(p,q))\delta_{0}(x) + (\max(p+q-1,0))\delta_{1}(x),
$$

where

$$
\lambda_{\pm}:=p+q-2pq\pm\sqrt{4pq(1-p)(1-q)}.
$$

Simplest example of multiplicative free convolution.

See Capitaine and Casalis (2004), B. Collins [\(2](#page-1-0)[00](#page-3-0)[5](#page-1-0)[\).](#page-2-0)

 $P, Q \in \mathbb{R}^{N \times N}$: random coordinate projections with independent diagonal entries:

- $P_{i,i} = 1$ with probability $(1-p)$
- $Q_{i,i} = 1$ with probability $(1 q)$.

 $F \in \mathbb{C}^{N \times N}$: discrete Fourier transform matrix

$$
F_{j,k} = \frac{1}{\sqrt{N}} e^{2\pi i j k/N}.
$$

Theorem (B.F., 2011)

The empirical eigenvalue distribution of PFQF∗*P converges almost surely to f .*

Same behavior as for *PUQU*∗*P* where *U* has Haar distribution.

Suggests behavior related to freeness.

CONTRACTOR AND RESPONDENT

Definition

The sequence of sets of unitary matrices $\big\{\big\{U_N^{(i)}\big\}$ (i) \
N } i∈I $\left\{ \right.$ ^N∈^N is *asymptotically liberating* if for all $i_1, \ldots, i_\ell \in I$ satisfying

$$
\ell \geq 2, \quad i_1 \neq i_2, \quad \ldots, \quad i_{\ell-1} \neq i_{\ell}, \quad i_{\ell} \neq i_1, \tag{1}
$$

there exists $c(i_1, \ldots, i_\ell)$ such that

$$
\left|\mathbb{E}\mathrm{tr}\left(U_{i_1}^{(N)}A_1U_{i_1}^{(N)*}\cdots U_{i_\ell}^{(N)}A_\ell U_{i_\ell}^{(N)*}\right)\right|\leq c(i_1,\ldots,i_\ell)\|A_1\|\cdots\|A_\ell\|
$$

for all constant matrices $A_1, \ldots, A_\ell \in \mathbb{C}^{N \times N}$ with trace zero.

 $\rightarrow \quad \left\langle \sqrt{2} \right\rangle \rightarrow \quad \left\langle \sqrt{2} \right\r$

- { $U_i^{(N)}$ $\{ \bigcup_{i=1}^{N+1} \}_{i \in I}$ set of random unitary matrices
- { $\{T_{i,j}^{(N)}\}$ $\{f^{(N)}_{i,j}\}_{j\in J_i}\}_{i\in I}$ set of bounded self-adjoint matrices
- A_N algebra of $N \times N$ random matrices defined on the same space as $\{U^{(N)}_j\}$ $\left\{\begin{matrix}i^{(n)} \\ i \end{matrix}\right\}$ i $\in I$.
- $\phi^{(N)}(A) = \frac{1}{N} \mathbb{E} \text{tr} A$
- \bullet $\tau_i^{(N)}$ $\mathcal{C}^{(N)}_i:\mathbb{C}\langle\{\textbf{X}_{i,j}\}_{j\in J_i}\rangle\rightarrow\mathbb{C}$, the joint law of $\{\,\mathcal{T}^{(N)}_{i,j}\}$ j,j } $j\in J_i$
- $\bullet \ \ \mu^{(N)}: \mathbb{C}\langle \{\{\mathbf{X}_{i,j}\}_{j\in J_i}\}_{i\in I}\rangle \rightarrow \mathbb{C},$ the joint law of

 $\{\{U_i^{(N)}\mathcal{T}_{i,j}^{(N)}U_i^{(N)}\}_{j\in J_i}\}_{i\in I}$

Lemma

Assume

- $\tau_i = \lim_{N \to \infty} \tau_i^{(N)}$ \sum_{i}^{N} exists for all $i \in I$
- sup_N max_{i∈I} max_{j∈J_i $\|T_{i,j}^{(N)}\|$} $\Vert f_{i,j}^{(N)} \Vert < \infty$
- \bullet {*{*U^(N)_{i,j}} i,j }j∈Jⁱ }i∈I *is asymptotically liberating*

Then $\mu = \lim_{N \to \infty} \mu^{(N)}$ exists and is tracial, and the rows of $\{\{\mathbf X_{i,j}\}_{j\in J_i}\}_{i\in I}$ $\{\{\mathbf X_{i,j}\}_{j\in J_i}\}_{i\in I}$ $\{\{\mathbf X_{i,j}\}_{j\in J_i}\}_{i\in I}$ are free from each other wit[h r](#page-4-0)e[sp](#page-6-0)[e](#page-4-0)[ct](#page-5-0) [t](#page-6-0)[o](#page-0-0) μ [.](#page-12-0)

 $W \in \mathbb{R}^{N \times N}$ is a *random signed permuation matrix* if

$$
W(i,j)=\epsilon_i\delta_{i,\sigma(j)},
$$

where $\epsilon_1, \ldots, \epsilon_N \in \{\pm 1\}$ and $\sigma \in S_N$ is a permutation.

Theorem (G. Anderson and B. Farrell, 2013) Let $\{U_{i\in I}^{(N)}\}$ i∈I } *be random unitary matrices. Assume:*

> • *For all N and deterministic signed permutation* (2) $\textit{matrix~W}, \left\{ W^* U_{ii'}^{(N)} W \right\}_{i,i' \in I}$ $\left\{ U_{ii'}^{(N)} \right\}_{\substack{i,i' \in I \\ \text{s.t. } i \neq j'}} \stackrel{d}{=} \left\{ U_{ii'}^{(N)} \right\}_{\substack{i,i' \in I \\ \text{s.t. } i \neq j}}$ $i, i' \in I$
s.t. $i \neq i'$

• For each positive integer
$$
\ell
$$
 (3)
\n
$$
\sup_{N=1}^{\infty} \max_{\substack{i,i'\in I \\ s.t. i\neq i'}} \frac{N}{\alpha,\beta=1} \sqrt{N} \left(\mathbb{E} \left| \left(U_i^{(N)*} U_{i'}^{(N)} \right) (\alpha,\beta) \right| \right)^{1/\ell} < \infty.
$$

Then the sequence of families $\{U_i^{(N)}\}$ i o i∈I $\int_{-\infty}^{\infty}$ N=1 *is asymptotically liberating.*

A matrix $H\in \mathbb{C}^{N\times N}$ is a *general Hadamard* matrix $\frac{1}{\sqrt{N}}$ $\frac{L}{N}$ H is unitary and $|H(i, j)| = 1$ for all $1 \le i, j \le N$.

Corollary

Assume:

- *I is a finite index set.*
- *H* (N) *is a general Hadamard matrix for each N.*
- $W^{(N)}$ is uniformly distributed on signed permutation matrices.
- { $D_i^{(N)}$ i }i∈^I *are i.i.d., uniformly distributed signed permutation matrices, independent of* $W^(N)$ *.*

Then the sequence

$$
\left\{\left\{W^{(N)}\right\}\cup\left\{\frac{H^{(N)}}{\sqrt{N}}W^{(N)}\right\}\cup\left\{D_i^{(N)}\frac{H^{(N)}}{\sqrt{N}}W^{(N)}\right\}_{i\in I}\right\}_{N=1}^{\infty} \quad (4)
$$

is asymptotically liberating.

ロン イタン イミン イミン

Corollary

Assume:

- *X and Y are bounded real random variables with distributions* νx and νy .
- \bullet $\{H^{(N)}\}_{N=1}^\infty$ is a sequence of N-by-N Hadamard matrices.
- \bullet $\{X^{(N)}\}_{N=1}^{\infty}$ and $\{Y^{(N)}\}_{N=1}^{\infty}$ are independent sequences of *N-by-N diagonal matrices with indep. copies of X and Y , respectively, on the diagonal.*
- ^A(N) *is the algebra of random N-by-N matrices with essentially bounded complex entries defined on the same probability space as X*(N) *and Y* (N)
- $\phi^{(N)}$ is the state on $\mathcal{A}^{(N)}$ defined by $\phi^{(N)}(A) = \mathbb{E} \frac{1}{N} \text{tr}A$.

Then

$$
X^{(N)} \quad \text{and} \quad \frac{1}{N} H^{(N)} Y^{(N)} H^{(N)*}
$$

are asymptotically free.

ロース 風 トラミン スキャー

From this we recover the earlier theorem.

 $P, Q \in \mathbb{R}^{N \times N}$: random coordinate projections with independent diagonal entries:

- $P_{i,i} = 1$ with probability $(1 p)$
- $Q_{i,i} = 1$ with probability $(1 q)$.

 $F \in \mathbb{C}^{N \times N}$: discrete Fourier transform matrix

$$
F_{j,k} = \frac{1}{\sqrt{N}} e^{2\pi i j k/N}.
$$

Theorem (B.F., 2011)

The empirical eigenvalue distribution of PFQF∗*P converges almost surely to f .*

 $\mathcal{L}^{\mathcal{A}}\left(\mathcal{A}^{\mathcal{B}}\right) = \mathcal{L}^{\mathcal{A}}\left(\mathcal{B}^{\mathcal{B}}\right) = \mathcal{L}^{\mathcal{A}}\left(\mathcal{B}^{\mathcal{B}}\right) = \mathcal{L}^{\mathcal{A}}\left(\mathcal{B}^{\mathcal{B}}\right) = \mathcal{L}^{\mathcal{A}}\left(\mathcal{B}^{\mathcal{B}}\right) = \mathcal{L}^{\mathcal{A}}\left(\mathcal{B}^{\mathcal{B}}\right) = \mathcal{L}^{\mathcal{A}}\left(\mathcal{B}^{\mathcal{B}}$

Two natural avenues to pursue from this point:

- Discrete uncertainty principles.
- Relationship to classical random matrix theory.

目

 OQ

 $\mathbf{A} = \mathbf{A} \mathbf{B} + \mathbf{A$

Relationship to uncertainty principles

U – unitary matrix P_1 and P_2 – coordinate projections with support sets S_1 and S_2 .

Suppose there exists *x* such that support $(x) \subset S_1$ and support $(Ux) \subset S_2$. Then

$$
||P_2UP_1x||_2=||P_2Ux||_2=||Ux||_2=||x||_2,
$$

so that $||P_2UP_1|| = 1$.

If no such *x* exists, then $||P_2UP_1|| < 1$.

Thus, coordinate projections (very simple matrices) allow us to address an uncertainty principle.

This is also the simplest instance of free multiplicative convolution.

 Ω

Classical random matrix theory

Figure: Plot[s](#page-11-0) for f_M fo[r p](#page-11-0)arameter pa[ir](#page-12-0)s p, q p, q p, q p, q

 OQ

目