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Introduction

Introduction: the spectrum of
permutation invariant random matrices
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Introduction

Intro: the large permutation invariant random matrices

A family AN = (Aj)j∈J of N by N random matrices is called permutation
invariant whenever

AN
L
= (UAjU

∗)j∈J

for any permutation matrix U.

Theorem (Weak-asymptotic freeness of permutation matrices)

Let A
(1)
N , . . . ,A

(p)
N be independent and permutation invariant families of N

by N matrices. Assuming a moment and a decorrelation hypothesis on
each family, we characterize the joint limiting ∗-distribution of

(A
(1)
N , . . . ,A

(p)
N )

The moment condition is the convergence of E
[

1
NTrt(A

(j)
N )
]

for
functionals t that generalize ∗-polynomials.
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Introduction

Interest:

1 Unified proof of the asymptotic ∗-freeness of Wigner, unitary invariant
and deterministic matrices.

2 Characterize the limiting distribution of ”heavy Wigner” and
deterministic matrices.

3 Rich connections with two theories of convergence of graphs (sparse
and dense graphs).

4 Based on the moments methods.

5 Can adapt the formalism depending on the problem to maximize the
expressiveness/additional-structure ratio.

Limitations: cannot be an analytic theory, need combinatorics (related to
Nica-Speicher obstruction of the existence of notions of
independence/freeness for n.c.r.v.)
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Introduction

Task of the talk: to present

1 the structure that enriches ∗-probability spaces,

2 the associated notion of freeness,

In order to formulate the Theorem in terms of convergence towards free
variables.

Technical aspects and proofs in two weeks.
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A new notion of variables

A new notion of variables

Camille Male (Paris 7, FSMP) Distribution of traffics July 2, 2013 6 / 21



A new notion of variables

Space of variables

A ∗-probability space is

1 a unital ∗-algebra A,

2 endowed with a unital, tracial linear form Φ

3 that satisfies the positivity condition Φ(a∗a) ≥ 0.

We consider ∗-probability with more structure, where

1 the space is an operad algebra over a space of new functionals the
∗-graph polynomials,

2 where Φ is written in terms of a functional τ ,

3 that satisfies a positivity condition.

Equivalently, item 1 means that A is a ∗-Frobenius object
(category-theoretical definition).
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A new notion of variables

New operations on matrices

∗-polynomials:

A1 × · · · × Ap(i , j) =
N∑

i2,...,ip−1=1

A1(i , i2) . . .Ap(ip−1, j).

x1 x2 xp

in

ou
t

We generalize the linear composition as follow (following Mingo and
Speicher)
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A new notion of variables

∗-graph polynomials: Let AN = (Aj)j∈J be a family of N × N matrices.
A ∗-graph monomial is the collection t of

1 A finite, connected graph (V ,E )

2 a labeling of the edges by indeterminates (xj , x
∗
j )j∈J

3 two marked vertices, the ”input’ and the ”output’

We then set t(AN) =
∑

φ:V→{1,...,N}
s.t.Φ(in)=i ,Φ(j)=out

∏
e=(v ,w)∈E A

ε(e)
γ(e)

(
φ(v), φ(w)

)

x

x

y

y

y

x

x

x

x

y

y

y

in

ou
t

Camille Male (Paris 7, FSMP) Distribution of traffics July 2, 2013 9 / 21



A new notion of variables

Examples of operations:

x1

x2

x1

x1

in

ou
t

in

ou
t

in

ou
t

t(AN)(i , j) = A1(i , j)× A2(i , j) ⇒ Hadamard (entry-wise) product.

t(AN)(i , j) = δi ,jA1(i , i) ⇒ Projection on the diagonal.

t(AN)(i , j) = δi ,j
∑N

k=1 A1(i , k)

⇒ t(AN) = diag
(∑N

k=1 A1(i , i)
)
i=1,...,N

= deg(AN).
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A new notion of variables

Structure of the space of ∗-graph polynomials

The space CG〈x, x∗〉 of ∗-graph polynomials is an operad, i.e. one can
replace the variables of a ∗-graph monomial by ∗-graph monomials and get
a new ∗-graph monomial.

y2

y1
r1

t P CGxx,x˚y

x1

x2

x3

x4

t1 P CGxy,y˚y t2 P CGxz, z˚y t3 P CGxs, s˚yt4 P CGxr, r˚y

z1
z2
z3

s1 s2

s3 s4

y1

y2

z1

z2

z3

r1

s1s2

s3

s4

t2

t1

t4

t3

x4

t4 r1“

in

ou
t

in

ou
t

glueing the vertices

in

ou
t in

ou
t

in
ou

t

in

ou
t

Substitution:
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A new notion of variables

A space of traffics is a ∗-probability where one can replace the variables of
a ∗-graph monomial by non commutative variables and get a new variable.

Examples:
1 The random matrices.
2 The random networks: given a possibly infinite set V, A is a family of

locally infinite matrices indexed in V2:

t(A)(v ,w) =
∑

φ:V→V
φ(in)=w , φ(out)=v

∏

e=(v ′,w ′)∈E

A
ε(e)
γ(e)

(
φ(v ′), φ(w ′)

)

3 The random rooted graphs with locally finite degree, for which
t(A)(v ,w) counts homomorphisms.

4 The random groups with given generators: for any ∗-graph monomial
t, ∃P,P1, . . . ,Pn such that for any group Γ with generators
γ = (γ1, . . . , γp)

t(γ) = P(γ)1P1(γ)=···=Pp(γ)=e .
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A new notion of variables

Traciality

The distribution of traffics of a family a = (aj)j∈J is the map t 7→ Φ(t)
defined on the space of ∗-graph polynomials.

Traciality: We assume that for ∗-graph monomials t, Φ(t) depends only
on the graph obtained by merging the input and the output.

x
x

Φ

ˆ ¸
“

ff
τ

«ff
“τ

«

Φpx1x2 . . . xnq “
ff

x1

x2

glueing the vertices

in

o
u
t

x3

x4

x1

x2

x3

x4

τ

«
“

glueing the vertices

xn

xn

. . .. . .

. . . . . .

For random graphs, traciality is related to the notion of unimodularity.
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A new notion of variables

The positivity condition

multi-rooted ∗-graph polynomials labelled graph with sequence of
in/outputs.

1 4

2

3

1

2

3

Given two n-rooted ∗-graph monomials t1 and t2, one obtains a labelled
graph T (t1, t2) as follow:

=

1

2 2

3 3

1 ¸
ÞÑ

˜
,

glueing the vertices

2

3

1

2

3

1

We assume τ
[
T (t∗, t)

]
≥ 0 for any n∗-graph polynomial t.
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A new notion of variables

Application:

Proposition (Degenerated traffic variables)

Let a be a traffic variable in a space of traffics with traffic state τ and
tracial state Φ. Then, the two following conditions are equivalent.

(1) For any ∗-test graph T in one variable and at least one edge, one has
τ
[
T (a)

]
= 0,

(2) Φ(a∗a) = Φ
(
deg(a)∗deg(a)

)
= Φ

(
deg(a∗)∗deg(a∗)

)
= 0.

Let JN be the matrix whose entries are 1
N . It converges in distribution of

traffics to a non trivial traffic-variable with null variance: for any ∗-test
graph T in one variable, one has

τN
[
T (JN)

]
−→
N→∞

1T is a tree.

Hence, JN converges in distribution of traffics to a non trivial limit who
has variance zero.
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Traffic-freeness

A new notion of freeness

Camille Male (Paris 7, FSMP) Distribution of traffics July 2, 2013 16 / 21



Traffic-freeness

An analogue of cumulants

Classical cumulants: linear maps (κ
(1)
m )m≥1 given by

E(X1 . . .Xn) =
∑

π∈P(n)

∏

B={i1<···<im}∈π

κ
(1)
m (Xi1 , . . . ,Xim).

Free cumulants: linear maps (κ
(2)
m )m≥1 given by

Φ(a1 . . . an) =
∑

π∈NCP(n)

∏

B={i1<···<im}∈π

κ
(2)
m (ai1 , . . . , aim).
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Traffic-freeness

Analogue for traffic: linear map τ0 defined on labelled graphs given by

τ
[
T (a)

]
=

∑

π∈P(V )

τ0
[
Tπ(a)

]
,

where Tπ is obtained by merging the vertices of T that belong to a same
block of π.

1

2

3

4

5

6 7

8
9

10

11

12
T =

Tπ =

T test graph on V = {1, . . . , 12} π =
{
{1, 3}, {2, 4, 8}, {5, 7}, {6}, {9, 11}, {10}, {12}

}

=1

2

3

4

5

6 7

8
9

10

11

12
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Traffic-freeness

Free cumulants = partitions of edges
Traffic analogue = partitions of vertices

Φpx1x2 . . . xnq “
ř
πPPpnq τ

0

«
“π

ff

x1

x2

x1

x2

x3

x4 x5

x6

x7

x8

x3

x4

x5

x6

x7x8

Related to free cumulants by the Kreweras duality.
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Traffic-freeness

Free product of distributions of traffics

A labelled graph T in families of variables x1, . . . , xp (with pairwise
different indeterminates) is called a free product whenever the reduced
graph T̄ is a tree:

T̄ =

x1
x2

x3

x4

x5

x1

x2

x3

x4

x5

y1
y2 y3

y1

y2 y3

z1
z2

z3

z4

z1
z2

z3

z4

T = = ,
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Traffic-freeness

Definition (Traffic-freeness)

Families of traffic variables a1, . . . , ap are traffic free whenever: for any T

τ0
[
T (a1, . . . , ap)

]
=

{ ∏
T̃ τ

0
[
T̃ (aiT̃

)
]

if T free product in x1, . . . , xp
0 otherwise,

where the product is over the colored connected components.

⇒ Families of independent and permutation invariant families of matrices
(with a technical condition) that converge in distribution of traffics
converge joint to traffic-free families of traffics.
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Traffic-freeness

Thank you for you attention
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