Commutators in semicircular systems

Robin Langer, Institut Gaspard Monge, Paris Est July 17, 2013

[Commutators in semicircular systems](#page-9-0)

Given a Hilbert space space H with distinguished vector $Ω$ satisfying:

$$
\langle \Omega \, | \, \Omega \rangle = 1
$$

A random variable is simply a self-adjoint operator X acting on H .

The *moments* of the random variable X are given by:

$$
\tau(X^n) = \langle X^n \Omega \, | \, \Omega \rangle
$$

The random variables which we are interested in are uniquely determined by their moments.

Semicircular random variable

Let H denote the set of all real functions $f : [-2, 2] \rightarrow [-2, 2]$ which satisfy:

$$
\frac{1}{2\pi} \int_{-2}^{2} f(x)^2 \sqrt{4 - x^2} \, dx < \infty
$$

 H is a Hilbert space with inner product:

$$
\langle f|g\rangle = \frac{1}{2\pi} \int_{-2}^{2} f(x)g(x)\sqrt{4-x^2} dx
$$

We shall chose as distinguished vector the function $f(x) = 1$. The operator "multiplication by x " is self-adjoint and thus constitues a random variable. Its moments are given by the *catalan numbers*:

$$
\frac{1}{2\pi} \int_{-2}^{2} x^{2n} \sqrt{4 - x^2} dx = \frac{1}{n+1} {2n \choose n}
$$

Let us define:

$$
P(x, z) = \frac{1}{1 - xz + z^2} = \sum_{n} P_n(x) z^n
$$

One may check that:

$$
\langle P_n(x), P_m(x) \rangle = \delta_{n,m}
$$

The Chebysheff polynomials satisfy the following three term recurrence:

$$
xP_n(x) = P_{n+1}(x) + P_{n-1}(x)
$$

Fock space

Fix a finite dimensional inner product space H with orthonormal basis ${e_1, e_2, \ldots, e_n}$ Define the full Fock space of H to be the metric completion of:

$$
\mathcal{T}(H)=\mathbb{C}\Omega\oplus_{n\geq 1}H^{\otimes n}
$$

For each i let a_i be the operator:

$$
a_i[v] = a_i \otimes v
$$

The adjoint operator a_i^* acts via:

$$
a_i^*[\Omega] = 0
$$

$$
a_i^*[\nu_1 \otimes \nu_2 \otimes \cdots \otimes \nu_n] = \langle e_i | \nu_i \rangle \nu_2 \otimes \cdots \otimes \nu_n
$$

The operators $A_i = a_i + a_i^*$ are self-adjoint. It is not hard to convince oneself that:

$$
\left\langle A_i^{2n}\Omega|\Omega\right\rangle = \frac{1}{n+1}\begin{pmatrix} 2n\\n \end{pmatrix}
$$

Let $\mathfrak A$ denote the *Von Neumann algebra* generated by the $A_i = a_i + a_i^*$. We have:

$$
P_{i_1}(A_{j_1})P_{i_2}(A_{j_2})\cdots P_{i_k}(A_{j_k})\Omega = e_{i_1}^{\otimes j_1} \otimes e_{i_2}^{\otimes j_2} \otimes \cdots \otimes e_{i_k}^{\otimes j_k}
$$

For $j_1, j_2, \ldots, j_k \in \{1, 2, \ldots, n\}$ and $i_1, i_2, \ldots, i_k \in \mathbb{N}_{>0}$ with $j_\ell \neq j_{\ell+1}$ for all $\ell \in \{1, \ldots, k-1\}.$

The state τ is a *trace*, that is:

$$
\tau(XY) = \tau(YX) \text{ for all } X, Y \in \mathfrak{A}
$$

We wish to show that for any $t\in\{1,2,\ldots n\}$, the commutant of X_t is the subalgebra generated by $X_{t}.$

$$
\boxed{X'_t = \mathsf{alg}(X_t)}
$$

Observe firstly that:

$$
\tau(a[X_t, b]) = \tau(b[a, X_t])
$$

This implies that elements of the form $[b,X_t]$ are orthogonal to the commutant of X_t .

$$
\{[b, X_t], b \in \mathfrak{A}\} \subseteq (X_t')^{\perp}
$$

We shall show that any element in the orthogonal complement of the commutant of alg(X_t) can be approximated by commutators of the form $[b, X_t]$

$$
(\mathsf{alg}(\mathcal{X}_t))^\perp \subseteq \overline{\{[b,X_t],b\in\mathfrak{A}\}} \subseteq (\mathcal{X}'_t)^\perp
$$

Fix some $t \in \{1, 2, ..., n\}$. Let S be any element of the form:

$$
P_{i_1}(X_{j_1})P_{i_2}(X_{j_2})\cdots P_{i_k}(X_{j_k})
$$

with $j_1 \neq t \neq i_k$. For each n, k let:

$$
S_{n,k}=P_n(X_t)\,S\,P_k(X_t)
$$

We have:

$$
S = \lim_{m \to \infty} \frac{1}{2m+3} \sum_{k=0}^{m-1} (m-k) ([S_{k,k+1}, X_t] - [S_{k+1,k}, X_t])
$$

If a commutes with x then:

$$
[x, ab] = a[x, b]
$$

since multiplication is commutative, it follows that:

$$
S_{n,k} = \lim_{m \to \infty} \frac{1}{2m+3} \sum_{i=0}^{m-1} P_n(X_t) ([S_{i,i+1}, X_t] - [S_{i+1,i}, X_t]) P_k(X_t)
$$

=
$$
\lim_{m \to \infty} \frac{1}{2m+3} \sum_{i=0}^{m-1} ([P_n(X_t)S_{i,i+1}P_k(X_t), X_t] - [P_n(X_t)S_{i+1,i}P_k(X_t), X_t])
$$

We have shown that for each $t \in \{1, \ldots, n\}$ we have:

$$
\boxed{X'_t = \mathsf{alg}(X_t)}
$$

In particular, this implies that the center of $\mathfrak A$ is trivial.