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Vlasov-Dirac and Vlasov

∂t f (t, x , v) + v∂x f (t, x , v)− ∂xρf (t, x)∂v f (t, x , v) = 0 ,

ρf (t, x) =

∫
R
f (t, x , v)dv .
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Similarities: Liouville, Energy, Hamiltonian.

∂t f + v · ∇x f + E · ∇v f = 0 ,

E = −∇x

∫
Rd

V (x − y)
(∫

Rd
f (t, y , v)dv − 1

)
dy ,

ẋ(t) = v(t) , v̇(t) = −
∫

Rd
∇xV (x(t)− y)

(∫
Rd

f (t, y ,w)dw − 1
)
dy .

E(f ) =

∫
Rd×Rd

|v |2

2
f (t, x , v)dxdv

+
1
2

∫
Rd×Rd×Rd×Rd

V (x − y)f (t, x , v)f (t, y ,w)dwdydxdv .

∂t f + {E , f } = 0 .
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Differences

∂t f + v · ∇x f −∇xρf · ∇v f = 0 ρf (x , t) =

∫
Rv

f (t, x , v)dv .

•The mapping f 7→ ρf 7→ E = −∇xρf is an operator of degree 1
while for the original Vlasov–Poisson equation it is an operator of
degree −1.
•The effect of the instabilities will be much more drastic and while
for the original Vlasov–Poisson equation the issue is the large time
asymptotic behavior, here the issue is that the Cauchy problem may
be badly posed even for regular initial data and for arbitrarily small
time. That will be one of the main issue.
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Comments on the VDB

•Focus on the one-dimensional (d = 1) version of the problem ∂
instead of ∇
•The interest of a one-dimensional space model justified by physical
reasons, particularly in the quasineutral-limit when the Debye length
vanishes. It is in one dimension that the spectral analysis of the
linearized problem is, by an adaptation of the method of Penrose ,
the most explicit.
•There is a natural connection between the properties of the lin-
earized and the fully nonlinear model.
•This connection emphasizes the role of “bumps" in the initial pro-
file. In particular in the case of the one-bump profile the connection
with the Benney equation gives a new stability theorem for the full
nonlinear problem.
•The stability results are in full agreement with what is known con-
cerning the WKB limit of the Non-Linear Schrödinger equation.
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Plane waves for the Vlasov equation

f 7→ f + G (v)

∂t f + v∂x f − ∂x

(∫
Ry

V (x − y)

∫
Rw

f (y ,w , t)dwdy

)
G ′(v) = 0 .

ek(t, x , v) = A(k , v)e i(kx−ω(k)t),

(−iω(k) + ikv)A(k , v)− ikV̂ (k)ρ̂A(k)G ′(v) = 0,

A(k , v)− V̂ (k)
G ′(v)

v − ω(k)/k
ρ̂A(k) = 0 ,(

1− V̂ (k)

∫
R

G ′(v)

v − ω(k)/k
dv
)
ρ̂(k) = 0.
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Synthesis of plane waves

Withω(k) (1−
∫

R

V̂ (k)G ′(v)

v − ω(k)/k
dv)ρ̂A(k) = 0

f (x , v , t) =

∫
e i(kx−ω(k)t)(

V̂ (k)G ′(v)

v − ω(k)/k
)ρ̂(k)dk(whenever they exist )

are the unique solutions of the Cauchy problem with initial data

f (x , v , 0) =

∫
e ikx(

V̂ (k)G ′(v)

v − ω(k)/k
)ρ̂(k)dk
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Unstable modes for Vlasov / Poisson versus V-D-B

ω(k) with =ω(k) > 0 .

For Vlasov Poisson The unstable spectra is in a “band"

1 =
1
k2

∫
R

G ′(v)

v − ω(k)/k
dv)

⇒ |=ω(k)| ≤ |v̂(k)||k |
∫
|G ′(v)|dv = O(|k |−1)

For Vlasov Dirac the dispersion relation in homogeneous in k

1 =

∫
R

G ′(v)

v − ω∗
dv

With a solution ω∗ with =ω∗ 6= 0 all the modes ω∗k are unstable!
The Cauchy problem is ill posed in any Sobolev space!
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Theorem and examples

For the existence of unstable plane waves for the genuine 1d Vlasov
Poisson a criteria was proposed by Penrose. This criteria can be
partly adapted to the present case (even if the consequences are
different).
Theorem
Assume that the original profile:

v 7→ G (v) ≥ 0
∫

G (v)dv = 1

as a unique maximum then there are no unstable modes.
A direct proof will be given below.
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2. G (v) even with G (0) = G ′(0) = 0, then for ε small enough, there
exist unstable modes for the profile Gε(v) = 1

εG
( v
ε

)
.

0 = 1−
∫

R

G ′ε(v)

v − ω∗
dv = 1−

∫
R

G ′ε(v)v
v2 + σ2

dv − i
∫

R

G ′ε(v)σ

v2 + σ2
dv

= 1−
∫

R

G ′ε(v)v
v2 + σ2

dv .

I (∞) = 0 and I (0) =
2
ε2

∫ ∞
0

G (v)

v2
dv .
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Limit Cases

3. G (v) = δv is a Dirac mass a limit case of above .

G (v) = δv =⇒
∫

R

G ′(v)

v − ω
dv =

∫
R

δv
(v − ω)2

dv =
1
ω2 ,

2. For G (v) = 1
2(δv−a + δv+a) the existence of unstable modes

depends on the size of a. Dirac masses generate unstable modes, if
and only if they are close enough, according to the formula

1−
∫

R

G ′(v)

v − ω
dv = 1− 1

(a − ω)2
+

1
(a + ω)2

,

which has non real solutions if and only if a2 < 2 .
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Uniform stability of the linearized problem near single bump
profile

Proposition x 7→ V (x) even and one bump G (v) :

G ′(v) := −H(v)(v − a) with H(v) > 0 .

Then any smooth solution f (t, x , v) of the linearized Vlasov equation
with potential V :

∂t f (t, x , v)+v∂x f (t, x , v)−G ′(v) ∂x

∫
R
V (x−y)(

∫
R
f (t, y ,w)dw)dy = 0

satisfies the energy identity,

1
2
d
dt

(

∫
R×R

H−1(v)(f (t, x , v))2dxdv

+

∫
R×R

V (x − y)ρf (x , t)ρf (x , t)dxdy) = 0 .
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Proof

With a = 0 . f (t, x , v) = H(v)f̃ (t, x , v), multiply by f̃ and integrate
over the phase-space (x , v)

∂t f (t, x , v) + v∂x f (t, x , v)−G ′(v) ∂x

∫
R
V (x − y)ρf (y)dy = 0

1
2
d
dt

(∫
R×R

H−1(v)(f (t, x , v))2dxdv
)

+

∫
R×R

∂xV (x − y)ρf (t, y)

∫
R
H(v)v f̃ (t, x , v)dvdydx = 0 .

∂tρf (t, x) + ∂x

∫
R
vH(v)f̃ (t, x , v)dv = 0 .

1
2
d
dt

(∫
R×R

H−1(v)(f (t, x , v))2dxdv
)

+

∫
R×R

V (x − y)ρf (t, y)∂tρf (t, x)dydx = 0 .
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Consequence of Energy Conservation for the Linearized
equation:

•x 7→ V (x) positive semi-definite even potential, G (v) one bum
profile G ′(v) = −H(v)(v − a) and HV = {f } such that:∫

R×R
H−1(v)(f (x , v))2dvdx +

∫
R×R

V (x−y)ρf (x)ρg (y)dxdy <∞,

•The dynamic of the linearized problem with initial data in HV is
described by a strongly continuous unitary group.
•This evolution is “stable " with respect to perturbations in V and
G (v) .
•Hypothesis valid for V (x) = δx and and also approximations V (x)→
δx .
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Consequences 1 For the original V-D-B problem with general
initial data

• Theorem Ḣm the space of functions f ∈ L∞(Rx , L1(Rv )) with,
for 1 ≤ l ≤ m , derivatives ∂ l

x f ∈ L2(Rx ; L1(Rv )) . For every m ,
the Cauchy problem for the dynamics S(t) defined by the V−D−B
equation is not locally (Ḣm 7→ Ḣ1) well-posed.

• Theorem Jabin-Nouri (2011) : For any (x , v) analytic function
f0(x , v) with

∀α, m , n sup
x
|∂xm∂vn f0(x , v)|(1 + |v |)α = C (m, n)o(|v |)

there exists, for a finite time T , an analytic solution of the Cauchy
problem.
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Consequences for the V-D-B equation in relation with fluid
mechanic: Examples 1.

The phase space density: mono kinetic solution:

f (t, x , v) = ρ(t, x)δ(v − u(t, x))

is a distributional solution of the V−D−B equation if and only if its
moments

ρ(t, x) =

∫
R
f (t, x , v)dv and ρ(t, x)u(t, x) =

∫
R
vf (t, x , v)dv

are solutions of the system

∂tρ+ ∂x(ρu) = 0 , ∂t(ρu) + ∂x

(
ρu2 +

ρ2

2

)
= 0.

For (ρ, u) ∈ R+×R it is strictly hyperbolic⇒ existence of a local in
time (near (ρ̃0 +α, u0) with α > 0 and (ρ̃0, u0) ∈ H2(R)) of smooth
solutions is ensured. In full agreement with the stability results of
the modal analysis.
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Consequences for the V-D-B equation in relation with fluid
mechanic: Examples 2.

Multi-kinetic densities :

f (t, x , v) =
∑

1≤n≤N

ρn(t, x)δ(v − un(t, x))

are solutions of the V-D-B equation if and only if:

∂tρn + ∂x(ρnun) = 0 ,

∂t(ρnun) + ∂x
(
ρnu2n

)
+ ρn∂x

( ∑
1≤`≤N

ρ`

)
= 0.

This system is not always hyperbolic ; the Cauchy problem is not
always locally in time well posed. In particular for N = 2 and
(ρ1, ρ2, u1, u2) = (1, 1, a,−a) direct computations show that the
system is hyperbolic (hence the Cauchy problem is well posed) if and
only if a2 > 2 . Once again this is in full agreement with the “modal
examples".
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Reordering for the one-bump continuous profile

As long as v 7→ f (t, x , v) remains (for (t, x) given a.e.) a one-bump
profile, with maximum equal to 1 for simplicity, i.e.

sup
v∈R

f (t, x , v) = 1, (t, x) a.e.,

one defines a.e. in (x , a) ∈ R× [0, 1] v±(t, x , a) :

v−(t, x , a) ≤ v+(t, x , a) f (t, x , v±(t, x , a)) = a,

and recover the one-bump profile f (t, x , v) by:

f (t, x , v) =

∫ 1

0
Y(v+(t, x , a)− v)−Y(v−(t, x , a)− v))da

f is a distributional solution of the V−D−B equation if and only if
contours v±(t, x , a) are solutions of the system

∂tv±+v±∂xv±+∂xρ = 0, ρ(t, x) =

∫ 1

0
(v+(t, x , a)−v−(t, x , a))da.
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The Benney equation-at last!

With mean density and a dependent velocity

%(t, x , a) = v+(t, x , a)−v−(t, x , a), u(t, x , a) =
1
2

(v+(t, x , a)+v−(t, x , a))

the (v−, v+) system is equivalent to the fluid type system

∂t%(t, x , a) + ∂x(%(t, x , a)u(t, x , a)) = 0,

∂tu(t, x , a) + ∂x

(
1
2
u2(t, x , a) +

1
8
%2(t, x , a)

)
+ ∂x

∫ 1

0
%(t, x , b)db = 0,

Derived by Benney as a model for water-waves (This the reason for
the name Vlasov-Dirac-Benney).
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Benney equation and energy-entropy

Without the integral term ∂x
∫ 1
0 %(t, x , a)da the infinite dimensional

system ρ(x , t), u(x , a, t)) would be an infinite system of isentropic
Euler equations: On the other hand it still have an energy-entropy.

E(%, u) =
1
2

∫
R

∫ 1

0

(
%(t, x , a)u2(t, x , a) +

1
12
%3(t, x , a)

)
dadx

+
1
2

∫
R

(∫ 1

0
%(t, x , a)da

)2

dx ,

Therefore one should have a local in time stability result.. Proven
below in the V variable.
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Entropy for the Benney equation

•For V = (v−, v+)t the system is of the form:

∂tV+∂xF(V) = 0 with F(V) =

{ 1
2
v2−+

∫ 1

0
(v+(t, x , a)− v−(t, x , a))da.

1
2
v2++

∫ 1

0
(v+(t, x , a)− v−(t, x , a))da

•V 7→ F′(V) is a linear continuous operator in L2(0, 1)
•The system has an entropy:

η(f ) =

∫
Rx×Rv

|v |2

2
f (t, x , v)dxdv +

1
2

∫
Rx

(

∫
Rv

f (t, x , v)dv)2dx

=

∫
Rx

[
1
6

∫ 1

0
(v3+(t, x , a)− v3−(t, x , a))da

+
1
2

(∫ 1

0
(v+(t, x , a)− v−(t, x , a))da

)2

]dx
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Proposition H Hilbert space, F : H 7→ H and η : H 7→ R assume
that F is differentiable (Gateaux) and η twice differentiable the if η
is an entropy for

∂tV + ∂x(F (V)) = 0

Then the operator V 7→ η”(V)F ′(V) is symmetric (self adjoint).
Proof Observe that the formula

(η”(V)F ′(V)U,W ) = (η”(V)F ′(V)W ,U)

is noting more that the Schwarz lemma on the 2d affine space
(γ, σ) 7→ V + γU + σW .
Therefore if η is a convex entropy one should have local existence
and stability for smooth solutions.
Explicit computations given on the next slide
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Same but explicit

∂tv± + v±∂xv± + ∂xρ = 0, ρ(t, x) =

∫ 1

0
(v+(t, x , a)− v−(t, x , a))da.

∂tV + F ′(V)∂xV = 0

F ′(V) =

(
v−(t, x , a)−

∫ 1
0 da

∫ 1
0 da

−
∫ 1
0 da v+(t, x , a) +

∫ 1
0 da

)

η”=

( − v−(t, x , a)+

∫ 1

0
da −

∫ 1

0
da

−
∫ 1

0
da v+(t, x , a)+

∫ 1

0
da

)

η”F ′ =

(
−v2− +

∫ 1
0 da · v−+v− ·

∫ 1
0 da −v− ·

∫ 1
0 da −

∫ 1
0 da · v+

−v+ ·
∫ 1
0 da −

∫ 1
0 da · v− v2+ +

∫ 1
0 da · v++v+ ·

∫ 1
0 da

)
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Explicit computations

Proposition A priori estimate Any smooth solution V = (v−, v+)t ,
satisfies the a priori nonlinear Gronwall estimate

d
dt

(
‖V‖2L∞(R×(0,1))+‖∂xV‖2L∞(R×(0,1)) +

∫
(η”(V)∂3

xV, ∂
3
xV)dx

)
≤ C

(
1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.
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Proof with the continuity of V 7→ F(V)

First

‖∂2xρ‖2L∞(R) ≤ C
(
‖∂3xρ‖2L2(R) + ‖ρ‖2L∞(R)

)
≤ C

(
‖∂3xV‖2L2(R×(0,1)) + ‖V‖2L∞(R×(0,1))

)
.

Then from ∂tv± + v±∂xv± + ∂xρf = 0

∂t‖V‖2L∞(R×(0,1)) ≤ C
(
‖∂xρ‖2L∞(R) + ‖V‖2L∞(R×(0,1))

)
≤ C

(
1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.

∂t‖∂xV‖2L∞(R×(0,1))

≤ C
(
1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.
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Symmetrization and Main stability Theorem

Second Consider :

∂3x (∂tV + ∂3xF
′(V)∂xV = 0)

multiply by the symmetrizer η”(V) and proceed as in the classical
case.
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Theorem

Introduce:

B(T ∗)=
{
V ∈ C (0,T ∗; L∞(Rx × (0, 1)))∩L∞(0,T ∗; L2((0, 1);H3(Rx)))

}
and the open subset O(m,M,T ∗) ⊂ B(T ∗) = {V ∈ B(T ∗)
−M < v−(t, x , a) < −m < 0 < m < v+(t, x , a) < M <∞}.

Then for or initial data such that

∂3xV(0) ∈ L2(R× (0, 1))

−M < −v−(0, x , a) < −m < 0 < mv+(0, x , a) < M

there is for T ∗ small enough a solution V(x , t, ) ∈ O(m,M,T ∗).
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Remarks

Biggest constraint : The functions a 7→ v±(0, x , a) have to be de-
fined on a fixed interval (say a ∈ [0, 1]) and bounded above and
below. Implies for the initial profiles v 7→ f0(x , v) the following x
independent properties.
(H1) There exist an x independent constant 0 < M <∞ such that

|v | ≥ M ⇒ f0(x , v) = 0.

(H2) There exist an x independent constant 0 < m < ∞ constant
such that

|v | ≤ m⇒ f0(x , v) = 1.

(H3) The map v 7→ f0(x , v) is non-decreasing on the interval ] −
∞,−m] and non-increasing on the interval [m,+∞[. In short it is a
“plateau "profile near v = 0.
No other regularity with respect to v is needed and the introduction
of the vN

± satisfying the hypothesis of the proposition shows the
validity of the waterbag model as a convenient approximation for the
continuous model.
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The Vlasov-Dirac-Benney equation at the cross road of
semi-classical limits, fluid mechanics and integrability

With Weyl calculus and Wigner transform Vlasov equations are for-
mally WKB limit of the Schrodinger or Von-Neumann dynamic.
However for the non linear Schrodinger equation which corresponds
to the V-D-B such formal semi-classical limits turn out to be “rig-
orously proven limits " only in cases which also correspond to the
stability near one-bump profile (and also are in agreement with the
analysis of the linearized problem).
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Consider the self consistent Schrödinger equation

i~∂tψ = H(~,V (t))ψ = −~2

2
∆ψ + V (t, x)ψ,

with a time-dependent potential

V (t, x) =

∫
Rd
V(x − y)|ψ(t, y)|2dy

and a normalized solution
∫
Rd |ψ~(t, x)|2dx = 1

Whenever ψ~(t) is solution of the self consistent Schrödinger equa-
tion K~(t, x , y) = ψ~(t, x) ⊗ ψ~(t, y) is a solution of the Von-
Neumann equation:

i~∂tK~(t) = [K~(t),H(~,V (t))]

with V (t, x) =

∫
Rd
V(x − y)K~(t, y , y)dy ,
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The formal ~→ 0 WKB limit of the Wigner transform of the operator
K~(t)

W~(t, x , v) =
1

(2π)d

∫
Rd

e−iy ·vK~

(
t, x +

~
2
y , x − ~

2
y
)
dy

is a solution of the Vlasov equation

∂tW (t, x , v) + v · ∇xW (t, x , v)

−∇x

(∫
Rd
V(x − y)

∫
Rd

W (t, y ,w)dwdy
)
· ∇vW (t, x , v) = 0,

with
W0(x , v) := W (0, x , v) = lim

~→0
W~(0, x , v).
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About Convergence with V = δ

Proven when the potential V is smooth enough. For the Non-Linear
Schrödinger equation and for its formal limit the V−D−B equation
the situation is completely different.
Since the Cauchy problem may be ill posed. No chances of such
convergence (even for C∞ data and small time).
Two situations where one may have convergence
i) When the initial data W~(0, x , v) is uniformly (in ~) analytic.
ii) When the initial data converges to a one bum profile..This includes
the WKB approximation.

ψh(0, x) =
∑

1≤k≤N

ρk(x)e i Sk (x)
~

W~(0, x , v) =
1
2π

∫
R
e−iyvψ~

(
0, x +

~
2
y
)
ψ~

(
0, x − ~

2
y
)
dy

W~(0, x , v)→
∑

1≤k≤N

ρk(x)δ(v −∇Sk(x)), in D′(R).
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For N = 1, this corresponds to a mono-kinetic initial data. In this
setting o the Wigner transform of ψ~(t, x)⊗ψ~(t, y) converges to the
solution of V−D−B equation. Gerard (analytic) , Grenier (Modifica-
tion of the Madelung transform ) and Jin, Levermore and McLaughlin
(Inverse scattering).
Multikinetic: N > 1 been considered by Zakharov (with formal proofs
of convergence.) These proofs should completely work in the analytic
case. In less regular cases for example with N = 2 convergence may
hold in some cases but not in every cases.
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Final remarks and Open Problems for the Fluid type
solutions of the V-D-B equation 1 For Monokinetic solution

f (x , v , t) = ρ(x , t)δ(v − u(x , t)) ,

ρ(x , t) =

∫
f (x , v , t)dv ρ(x , t)u(x , t) =

∫
f (x , v , t)dxdv

∂tρ+ ∂x(ρu) = 0 , ∂t(ρu) + ∂x

(
ρu2 +

ρ2

2

)
= 0.

It this case f (x , v , t) is the semi classical limit of the NLSE. The
system for (ρ, u) is hyperbolic with an infinite set of conserved quan-
tities and flux: Lax Entropy! The NLSE being integrable has also
infinite set of conserved quantities (in the phase of regularity) they
converge to Lax Entropies.

η”(ρ, u)F ′(ρ, u) = F ′(ρ, u)η”(ρ, u) (1)

Question ? Are all Lax-Entropies limit of conserved quantities for
the NLSE
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2 For Benney type solution

f (t, x , v) =

∫ 1

0
Y(v+(t, x , a)− v)−Y(v−(t, x , a)− v))da

∂tv± + v±∂xv± + ∂xρ = 0, ρ(t, x) =

∫ 1

0
(v+(t, x , a)− v−(t, x , a))da.

Several authors Benney Zakharov Miura have found an infinite set of
conserved quantities. They must satisfy the operational equation:

(η”(V)F ′(V)U,W ) = (η”(V)F ′(V)W ,U) (2)

which is the counterpart of (1). Solutions of (1) are in fact solutions
of an hyperbolique equation.
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Is there a generalization for the solutions of (2) ???
In fact with

H(V ) =

∫
(
1
6

(v3+ + v3−) +
1
2

(

∫ 1

0
(v+ − v−)da)2)dx

The Benney equation can be written has an Hamiltonian system
and the characterization of the formula (2) is equivalent to the fact
that the functions (H(V ), η(V )) are in involution. With convenient
hypothesis on the “plateau type " profile the Wigner transform of
the solution of NLSE should converge to the solution of Benney
equation and the convergence of conserved quantities should follow
(not proven to the best of my knowledge). Then does this process
describes all the conserved quantities for the Benney equation.
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 Thanks for the invitation !

Thanks for the attention !

Happy Birthday Walter!!

vendredi 10 janvier 14

Claude Bardos Vlasov-Dirac-Benney


