The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

KAM for quasi-linear KdV

Massimiliano Berti

Toronto, 10-1-2014, Conference on "Hamiltonian PDEs: Analysis, Computations and Applications" for the 60-th birthday of Walter Craig

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

KdV

$$\partial_t u + u_{xxx} - 3\partial_x u^2 + \mathcal{N}_4(x, u, u_x, u_{xx}, u_{xxx}) = 0, \quad x \in \mathbb{T}$$

Quasi-linear Hamiltonian perturbation

$$\begin{split} \mathcal{N}_4 &:= -\partial_x \{ (\partial_u f)(x, u, u_x) \} + \partial_{xx} \{ (\partial_{u_x} f)(x, u, u_x) \} \\ \mathcal{N}_4 &= a_0(x, u, u_x, u_{xx}) + a_1(x, u, u_x, u_{xx}) u_{xxx} \\ \mathcal{N}_4(x, \varepsilon u, \varepsilon u_x, \varepsilon u_{xx}, \varepsilon u_{xxx}) = O(\varepsilon^4), \quad \varepsilon \to 0 \\ f(x, u, u_x) &= O(|u|^5 + |u_x|^5), \ f \in C^q(\mathbb{T} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}) \end{split}$$

Physically important for perturbative derivation from water-waves (that I learned from Walter Craig)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

		lem	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hamiltonian PDE

$$u_t = X_H(u), \quad X_H(u) := \partial_x \nabla_{L^2} H(u)$$

Hamiltonian KdV

$$H = \int_{\mathbb{T}} \frac{u_x^2}{2} + u^3 + f(x, u, u_x) dx$$

where the density
$$f(x, u, u_x) = O(|(u, u_x)|^5)$$

Phase space

$$H^1_0(\mathbb{T}) := \left\{ u(x) \in H^1(\mathbb{T},\mathbb{R}) \ : \ \int_{\mathbb{T}} u(x) dx = 0 \right\}$$

Non-degenerate symplectic form:

$$\Omega(u,v) := \int_{\mathbb{T}} (\partial_x^{-1} u) v \, dx$$

The problem	Literature	Main results	Proof: forced case	Proof: Autonomou

is case

Goal: look for small amplitude quasi-periodic solutions

Definition: quasi-periodic solution with *n* frequencies $u(t,x) = U(\omega t, x) \text{ where } U(\varphi, x) : \mathbb{T}^n \times \mathbb{T} \to \mathbb{R},$ $\omega \in \mathbb{R}^n (= \text{frequency vector}) \text{ is irrational } \omega \cdot k \neq 0, \forall k \in \mathbb{Z}^n \setminus \{0\}$ $\implies \text{ the linear flow } \{\omega t\}_{t \in \mathbb{R}} \text{ is DENSE on } \mathbb{T}^n$

The torus-manifold

$$\mathbb{T}^n \ni \varphi \mapsto u(\varphi, x) \in \text{phase space}$$

is invariant under the flow evolution of the PDE

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

Linear Airy eq.

$$u_t + u_{xxx} = 0, \qquad x \in \mathbb{T}$$

Solutions: (superposition principle)

$$u(t,x) = \sum_{j \in \mathbb{Z} \setminus \{0\}} a_j e^{i j^3 t} e^{i j x}$$

Eigenvalues $j^3 =$ "NORMAL FREQUENCIES" **Eigenfunctions**: $e^{ijx} =$ "NORMAL MODES"

All solutions are 2π - periodic in time: COMPLETELY RESONANT

 \Rightarrow Quasi-periodic solutions are a completely nonlinear phenomenon

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

Linear Airy eq.

$$u_t + u_{xxx} = 0, \qquad x \in \mathbb{T}$$

Solutions: (superposition principle)

$$u(t,x) = \sum_{j \in \mathbb{Z} \setminus \{0\}} a_j e^{\mathrm{i} j^3 t} e^{\mathrm{i} j x}$$

Eigenvalues $j^3 =$ "NORMAL FREQUENCIES" **Eigenfunctions**: $e^{ijx} =$ "NORMAL MODES"

All solutions are 2π - periodic in time: COMPLETELY RESONANT

 \Rightarrow Quasi-periodic solutions are a completely nonlinear phenomenon

・ロト・西・・田・・田・・日・

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

KdV is completely integrable

$$u_t + u_{xxx} - 3\partial_x u^2 = 0$$

All solutions are periodic, quasi-periodic, almost periodic

What happens under a small perturbation?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Kuksin '98, Kappeler-Pöschel '03: KAM for KdV

 $u_t + u_{xxx} + uu_x + \varepsilon \partial_x f(x, u) = 0$

1 SEMILINEAR PERTURBATION $\partial_x f(x, u)$

Also true for Hamiltonian perturbations

 $u_t + u_{xxx} + uu_x + \varepsilon \partial_x |\partial_x|^{1/2} f(x, |\partial_x|^{1/2} u) = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

of order 2

 $|j^3 - i^3| \ge i^2 + j^2$, $i \ne j \Longrightarrow$ KdV gains up to 2 spatial derivatives

I for QUASI-LINEAR KdV? OPEN PROBLEM

Kuksin '98, Kappeler-Pöschel '03: KAM for KdV

 $u_t + u_{xxx} + uu_x + \varepsilon \partial_x f(x, u) = 0$

1 SEMILINEAR PERTURBATION $\partial_x f(x, u)$

Also true for Hamiltonian perturbations

 $u_t + u_{xxx} + uu_x + \varepsilon \partial_x |\partial_x|^{1/2} f(x, |\partial_x|^{1/2} u) = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

of order 2

 $|j^3 - i^3| \ge i^2 + j^2$, $i \ne j \Longrightarrow$ KdV gains up to 2 spatial derivatives

If or QUASI-LINEAR KdV? OPEN PROBLEM

 The problem
 Literature
 Main results
 Proof: forced case
 Proof: Autonomous case

 Literature:
 KAM for "unbounded" perturbations

Liu-Yuan '10 for Hamiltonian DNLS (and Benjamin-Ono)

$$\mathrm{i}u_t - u_{xx} + M_\sigma u + \mathrm{i}\varepsilon f(u, \bar{u})u_x = 0$$

Zhang-Gao-Yuan '11 Reversible DNLS

 $\mathrm{i}u_t + u_{xx} = |u_x|^2 u$

Craig-Wayne periodic solutions, Lyapunov-Schmidt + Nash-Moser

Bourgain '96, Derivative NLW

$$y_{tt} - y_{xx} + my + y_t^2 = 0, \quad m \neq 0,$$

Craig '00, Hamiltonian DNLW

$$y_{tt} - y_{xx} + g(x)y = f(x, D^{\beta}y), \quad D := \sqrt{-\partial_{xx} + g(x)},$$

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

quasi-periodic solutions

Berti-Biasco-Procesi	'12,	'13,	reversible DNLW
u _{tt}	$-u_{z}$	_{xx} +	$mu = g(x, u, u_x, u_t)$

For quasi-linear PDEs: Periodic solutions:

 looss-Plotinikov-Toland, looss-Plotnikov, '01-'10, Water waves: quasi-linear equation, new ideas for conjugation of linearized operator

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

quasi-periodic solutions

Berti-Biasco-Procesi '12, '13, reversible DNLW $u_{tt} - u_{xx} + mu = g(x, u, u_x, u_t)$

For quasi-linear PDEs: Periodic solutions:

 looss-Plotinikov-Toland, looss-Plotnikov, '01-'10, Water waves: quasi-linear equation, new ideas for conjugation of linearized operator

Main results

Hamiltonian density:

$$f(x, u, u_x) = f_5(u, u_x) + f_{\geq 6}(x, u, u_x)$$

 f_5 polynomial of order 5 in (u, u_x) ; $f_{\geq 6}(x, u, u_x) = O(|u| + |u_x|)^6$

Reversibility condition:

$$f(x, u, u_x) = f(-x, u, -u_x)$$

KdV-vector field $X_H(u) := \partial_x \nabla H(u)$ is **reversible** w.r.t the involution

$$\varrho u := u(-x), \ \varrho^2 = I, \quad -\varrho X_H(u) = X_H(\varrho u)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The problem

Literature

Main results

Proof: forced case

Proof: Autonomous case

Theorem ('13, P. Baldi, M. Berti, R. Montalto)

Let $f \in C^q$ (with q := q(n) large enough). Then, for "generic" choice of the "TANGENTIAL SITES"

 $S := \{-\overline{\jmath}_n, \ldots, -\overline{\jmath}_1, \overline{\jmath}_1, \ldots, \overline{\jmath}_n\} \subset \mathbb{Z} \setminus \{0\},\$

the hamiltonian and reversible KdV equation $\partial_t u + u_{xxx} - 3\partial_x u^2 + \mathcal{N}_4(x, u, u_x, u_{xx}, u_{xxx}) = 0, \quad x \in \mathbb{T},$

possesses small amplitude quasi-periodic solutions with Sobolev regularity H^s , $s \leq q$, of the form

 $u = \sum_{j \in S} \sqrt{\xi_j} e^{i\omega_j^{\infty}(\xi) t} e^{ijx} + o(\sqrt{\xi}), \ \omega_j^{\infty}(\xi) = j^3 + O(|\xi|)$

for a "Cantor-like" set of "initial conditions" $\xi \in \mathbb{R}^n$ with density 1 at $\xi = 0$. The linearized equations at these quasi-periodic solutions are reduced to constant coefficients and are **stable**. If $f = f_{\geq 7} = O(|(u, u_x)|^7)$ then **any** choice of tangential sites

Explicit conditions:

- Hypothesis (S₃) $j_1 + j_2 + j_3 \neq 0$ for all $j_1, j_2, j_3 \in S$
- HYPOTHESIS (S₄) $\nexists j_1, \ldots, j_4 \in S$ such that

$$j_1 + j_2 + j_3 + j_4 \neq 0$$
, $j_1^3 + j_2^3 + j_3^3 + j_4^3 - (j_1 + j_2 + j_3 + j_4)^3 = 0$

- (S₃) used in the linearized operator. If $f_5 = 0$ then not needed
- **2** If also $f_6 = 0$ then (S₄) not needed (used in Birkhoff-normal-form)

"genericity":

After fixing $\{\overline{j}_1, \ldots, \overline{j}_n\}$, in the choice of $\overline{j}_{n+1} \in \mathbb{N}$ there are only FINITELY MANY forbidden values

A similar result holds for

mKdV: focusing/defocusing

 $\partial_t u + u_{xxx} \pm \partial_x u^3 + \mathcal{N}_4(x, u, u_x, u_{xx}, u_{xxx}) = 0, \quad x \in \mathbb{T}$

for all the tangential sites $S := \{-\overline{\jmath}_n, \dots, -\overline{\jmath}_1, \overline{\jmath}_1, \dots, \overline{\jmath}_n\}$ such that

$$\frac{2}{2n-1}\sum_{i=1}^n \bar{j}_i^2 \notin \mathbb{N}$$

2 If $f = f(u, u_x)$ the result is **true** for **all** the tangential sites *S*

Also for generalized KdV (not integrable), with normal form techniques of Procesi-Procesi

(L): linearized equation $\partial_t h = \partial_x \partial_u \nabla H(u(\omega t, x))h$

 $h_t + a_3(\omega t, x)h_{xxx} + a_2(\omega t, x)h_{xx} + a_1(\omega t, x)h_x + a_0(\omega t, x)h = 0$

There exists a quasi-periodic (Floquet) change of variable

$$h = \Phi(\omega t)(\psi, \eta, v), \quad \psi \in \mathbb{T}^{\nu}, \eta \in \mathbb{R}^{\nu}, v \in H^s_{x} \cap L^2_{S^{\perp}}$$

which transforms (L) into the $constant \ coefficients$ system

$$\begin{cases} \dot{\psi} = b\eta \\ \dot{\eta} = 0 \\ \dot{v}_j = i\mu_j v_j , \quad j \notin S , \ \mu_j \in \mathbb{R} \end{cases}$$

 $\Longrightarrow \eta(t) = \eta_0, v_j(t) = v_j(0)e^{\mathrm{i}\mu_j t} \Longrightarrow \|v(t)\|_s = \|v(0)\|_s$: stability

Forced quasi-linear perturbations of Airy

Use $\omega = \lambda \vec{\omega} \in \mathbb{R}^n$ as 1-dim. parameter

Theorem (Baldi, Berti, Montalto, to appear Math. Annalen) There exist s := s(n) > 0, $q := q(n) \in \mathbb{N}$, such that: Let $\vec{\omega} \in \mathbb{R}^n$ diophantine. For every quasi-linear Hamiltonian nonlinearity $f \in C^q$ for all $\varepsilon \in (0, \varepsilon_0)$ small enough, there is a Cantor set $C_{\varepsilon} \subset [1/2, 3/2]$ of asymptotically full measure, i.e.

 $|\mathcal{C}_{arepsilon}|
ightarrow 1$ as arepsilon
ightarrow 0,

such that for all $\lambda \in \mathcal{C}_{\varepsilon}$ the perturbed Airy equation

 $\partial_t u + \partial_{xxx} u + \varepsilon f(\lambda \vec{\omega} t, x, u, u_x, u_{xx}, u_{xxx}) = 0$

has a quasi-periodic solution $u(\varepsilon, \lambda) \in H^s$ (for some $s \leq q$) with frequency $\omega = \lambda \vec{\omega}$ and satisfying $||u(\varepsilon, \lambda)||_s \to 0$ as $\varepsilon \to 0$.

Key: spectral analysis of quasi-periodic operator

$$\mathcal{L} = \omega \cdot \partial_{\varphi} + \partial_{xxx} + a_3(\varphi, x) \partial_{xxx} + a_2(\varphi, x) \partial_{xx} + a_1(\varphi, x) \partial_x + a_0(\varphi, x)$$

 $a_i = O(\varepsilon), i = 0, 1, 2, 3$ Main problem: the non constant coefficients term $a_3(\varphi, x)\partial_{xxx}!$ MAIN DIFFICULTIES:

- The usual KAM iterative scheme is unbounded
- We expect an estimate of perturbed eigenvalues

$$\mu_j(\varepsilon) = j^3 + O(\varepsilon j^3)$$

which is NOT sufficient for verifying second order Melnikov

$$|\omega \cdot \ell + \mu_j(arepsilon) - \mu_i(arepsilon)| \geq rac{\gamma |j^3 - i^3|}{\langle \ell
angle^ au}\,, \quad orall \ell, j, i$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト ж

Idea to conjugate \mathcal{L} to a diagonal operator

IREDUCTION IN DECREASING SYMBOLS

$$\mathcal{L}_1 := \Phi^{-1}\mathcal{L}\Phi = \omega \cdot \partial_{\varphi} + m_3 \partial_{xxx} + m_1 \partial_x + \mathcal{R}_0$$

- $R_0(\varphi, x)$ pseudo-differential operator of **order** 0, $R_0(\varphi, x) : H_x^s \to H_x^s$, variable coefficients, $R_0 = O(\varepsilon)$,
- $m_3 = 1 + O(\varepsilon), \ m_1 = O(\varepsilon), \ m_1, m_3 \in \mathbb{R}$, constants

Use suitable transformations "far" from the identity "REDUCTION OF THE SIZE of R₀"

$$\mathcal{L}_{\nu} := \Phi_{\nu}^{-1} \mathcal{L}_{1} \Phi_{\nu} = \omega \cdot \partial_{\varphi} + m_{3} \partial_{xxx} + m_{1} \partial_{x} + r^{(\nu)} + \mathcal{R}_{\nu}$$

•
$$R_{\nu} = R_{\nu}(\varphi, x) = O(R_0^{2^{\nu}})$$

•
$$r^{(\nu)} = \operatorname{diag}_{j \in \mathbb{Z}}(r_j^{(\nu)}), \operatorname{sup}_j |r_j^{(\nu)}| = O(\varepsilon),$$

KAM-type scheme, now transformations of $H_x^s \rightarrow H_x^s$

Idea to conjugate \mathcal{L} to a diagonal operator

IREDUCTION IN DECREASING SYMBOLS

$$\mathcal{L}_1 := \Phi^{-1} \mathcal{L} \Phi = \omega \cdot \partial_{\varphi} + m_3 \partial_{xxx} + m_1 \partial_x + \mathcal{R}_0$$

- $R_0(\varphi, x)$ pseudo-differential operator of **order** 0, $R_0(\varphi, x) : H_x^s \to H_x^s$, variable coefficients, $R_0 = O(\varepsilon)$,
- $m_3 = 1 + O(\varepsilon), \ m_1 = O(\varepsilon), \ m_1, m_3 \in \mathbb{R}$, constants

Use suitable transformations "far" from the identity "REDUCTION OF THE <u>SIZE</u> of R₀"

$$\mathcal{L}_{\nu} := \Phi_{\nu}^{-1} \mathcal{L}_{1} \Phi_{\nu} = \omega \cdot \partial_{\varphi} + m_{3} \partial_{xxx} + m_{1} \partial_{x} + r^{(\nu)} + \mathcal{R}_{\nu}$$

•
$$R_{\nu} = R_{\nu}(\varphi, x) = O(R_0^{2^{\nu}})$$

• $r^{(\nu)} = \operatorname{diag}_{j \in \mathbb{Z}}(r_j^{(\nu)}), \operatorname{sup}_j |r_j^{(\nu)}| = O(\varepsilon),$

KAM-type scheme, now transformations of $H_x^s \rightarrow H_x^s$

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

Higher order term

 $\mathcal{L} := \omega \cdot \partial_{\varphi} + \partial_{\mathsf{xxx}} + \varepsilon \mathbf{a}_{\mathsf{3}}(\varphi, \mathbf{x}) \partial_{\mathsf{xxx}}$

STEP 1: Under the symplectic change of variables

 $(Au) := (1 + \beta_x(\varphi, x))u(\varphi, x + \beta(\varphi, x))$

we get

$$\begin{aligned} \mathcal{L}_1 &:= A^{-1} \mathcal{L}A &= \omega \cdot \partial_{\varphi} + (A^{-1} (1 + \varepsilon a_3) (1 + \beta_x)^3) \partial_{xxx} + O(\partial_{xx}) \\ &= \omega \cdot \partial_{\varphi} + c(\varphi) \partial_{xxx} + O(\partial_{xx}) \end{aligned}$$

imposing

$$(1+arepsilon \mathsf{a}_3)(1+eta_{\mathsf{x}})^3=\mathsf{c}(arphi)$$
 ,

There exist solution $c(\varphi) \approx 1$, $\beta = O(\varepsilon)$

STEP 2: Rescaling time

$$(Bu)(\varphi, x) = u(\varphi + \omega q(\varphi), x)$$

we have

$$B^{-1}\mathcal{L}_{1}B = B^{-1}(1+\omega\cdot\partial_{\varphi}q)(\omega\cdot\partial_{\varphi}) + B^{-1}c(\varphi)\partial_{xxx} + O(\partial_{xx})$$

= $\mu(\varepsilon)B^{-1}c(\varphi)(\omega\cdot\partial_{\varphi}) + B^{-1}c(\varphi)\partial_{xxx} + O(\partial_{xx})$

solving

$$1 + \omega \cdot \partial_{\varphi} q = \mu(\varepsilon) c(\varphi), \quad q(\varphi) = O(\varepsilon)$$

Dividing for $\mu(\varepsilon)B^{-1}c(\varphi)$ we get

 $\mathcal{L}_2 := \omega \cdot \partial_{\varphi} + m_3(\varepsilon) \partial_{\mathsf{xxx}} + O(\partial_{\mathsf{x}}), \ m_3(\varepsilon) := \mu^{-1}(\varepsilon) = 1 + O(\varepsilon)$

which has the leading order with CONSTANT COEFFICIENTS

New further difficulties:

- No external parameters. The frequency of the solutions is NOT fixed a-priori. Frequency-amplitude modulation.
- KdV is completely resonant
- Construction of an approximate inverse

Ideas:

- Weak Birkhoff-normal form
- General method to decouple the "*tangential dynamics*" from the "*normal dynamics*", developed with P. Bolle Procedure which reduces autonomous case to the forced one

olem Literatı

Step 1. Bifurcation analysis: WEAK Birkhoff normal form

Fix the "tangential sites" $S := \{-\bar{\jmath}_n, \dots, -\bar{\jmath}_1, \bar{\jmath}_1, \dots, \bar{\jmath}_n\} \subset \mathbb{Z} \setminus \{0\}$

Split the dynamics:

$$u(x) = v(x) + z(x)$$
$$v(x) = \sum_{j \in S} u_j e^{ijx} = \text{"tangential component"}$$
$$z(x) = \sum_{j \notin S} u_j e^{ijx} = \text{"normal component"}$$

Hamiltonian

$$H = \frac{1}{2} \int_{\mathbb{T}} v_x^2 + \frac{1}{2} \int_{\mathbb{T}} z_x^2 dx + \int_{\mathbb{T}} v^3 dx + 3 \int_{\mathbb{T}} v^2 z dx + \int_{\mathbb{T}} v^3 dx + 3 \int_{\mathbb{T}} v^2 z dx + 3 \int_{\mathbb{T}} vz^2 dx + \int_{\mathbb{T}} z^3 dx + \int_{\mathbb{T}} f(u, u_x)$$

Goal: eliminate terms linear in $z \Longrightarrow \{z = 0\}$ is invariant manifold

The problem

Literature

Main results

Proof: forced case

Proof: Autonomous case

Theorem (Weak Birkhoff normal form)

There is a symplectic transformation $\Phi_B : H^1_0(\mathbb{T}_x) \to H^1_0(\mathbb{T}_x)$

 $\Phi_B(u) = u + \Psi(u), \quad \Psi(u) = \Pi_E \Psi(\Pi_E u),$

where $E := \operatorname{span}\{e^{ijx}, 0 < |j| \le 6|S|\}$ is finite-dimensional, s.t.

 $\mathcal{H} := H \circ \Phi_B = H_2 + \mathcal{H}_3 + \mathcal{H}_4 + \mathcal{H}_5 + \mathcal{H}_{>6} \,,$

$$\begin{aligned} \mathcal{H}_{3} &:= \int_{\mathbb{T}} z^{3} dx + 3 \int_{\mathbb{T}} v z^{2} dx, \ \mathcal{H}_{4} := -\frac{3}{2} \sum_{j \in S} \frac{|u_{j}|^{4}}{j^{2}} + \mathcal{H}_{4,2} + \mathcal{H}_{4,3} \\ \mathcal{H}_{4,2} &:= 6 \int_{\mathbb{T}} v z \Pi_{S} ((\partial_{x}^{-1} v) (\partial_{x}^{-1} z)) \, dx + 3 \int_{\mathbb{T}} z^{2} \pi_{0} (\partial_{x}^{-1} v)^{2} dx \,, \\ \mathcal{H}_{4,3} &:= R(v z^{3}) \,, \quad \mathcal{H}_{5} := \sum_{q=2}^{5} R(v^{5-q} z^{q}), \end{aligned}$$
and $\mathcal{H}_{\geq 6}$ collects all the terms of order at least six in (v, z) .

200

Fourier representation

$$u(x) = \sum_{j \in \mathbb{Z} \setminus \{0\}} u_j e^{ijx}, \qquad u(x) \longleftrightarrow (u_j)_{j \in \mathbb{Z} \setminus \{0\}}$$

FIRST STEP. Eliminate the $u_{j_1}u_{j_2}u_{j_3}$ of H_3 with at most one index outside *S*. Since $j_1 + j_2 + j_3 = 0$ they are finitely many

$\Phi :=$ the time 1-flow map generated by

$$F(u) := \sum_{j_1+j_2+j_3=0} F_{j_1,j_2,j_3} u_{j_1} u_{j_2} u_{j_3}$$

The vector field X_F is supported on **finitely many** sites $X_F(u) = \prod_{H_{2S}} X_F(\prod_{H_{2S}} u)$

 $\implies \text{the flow is a$ **finite dimensional** $perturbation of the identity <math display="block">\Phi = \textit{Id} + \Psi, \quad \Psi = \prod_{H_{2S}} \Psi \prod_{H_{2S}}$

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

For the other steps:

 Normalize the quartic monomials u_{j1}u_{j2}u_{j3}u_{j4}, j₁, j₂, j₃, j₄ ∈ S. The fourth order system H₄ restricted to S turns out to be integrable, i.e.

$$-rac{3}{2}\sum_{j\in \mathcal{S}}rac{|u_j|^4}{j^2}$$
 (non – isochronous rotators)

Now $\{z = 0\}$ is an invariant manifold for \mathcal{H}_4 filled by quasi-periodic solutions with a frequency which varies with the amplitude

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The problem

Literature

Main results

Proof: forced case

Difference w.r.t. other Birkhoff normal forms

- Kappeler-Pöschel (KdV), Kuksin-Pöschel (NLS),
 complete Birkhoff-normal form:
 they remove/normalize also the terms O(z²), O(z³), O(z⁴)
- **2** Pöschel (NLW), semi normal Birkhoff normal form: normalized only the term $O(z^2)$
- S Kappeler Global Birkhoff normal form for KdV, 1-d-cubic-NLS

The above transformations are

(1)
$$I + bounded$$
, (2) $I + O(\partial_x^{-1})$, (3) $\Phi = \mathcal{F} + O(\partial_x^{-1})$,

It is NOT enough for quasi-linear perturbations!

Our $\Phi = Id + finite \ dimensional \implies$ it changes very little the third order differential perturbations in KdV

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

Rescaled action-angle variables:

$$u := \varepsilon v_{\varepsilon}(\theta, y) + \varepsilon z := \varepsilon \sum_{j \in S} \sqrt{\xi_j} + |j| y_j e^{i\theta_j} e^{ijx} + \varepsilon z$$

Hamiltonian:

$$H_{\varepsilon} = \mathcal{N} + P, \quad \mathcal{N}(\theta, y, z, \xi) = \alpha(\xi) \cdot y + \frac{1}{2} (N(\theta, \xi)z, z)_{L^{2}(\mathbb{T})}$$

where

Frequency-amplitude map:

$$\alpha(\xi) = \bar{\omega} + \varepsilon^2 A \xi$$

Variable coefficients normal form:

 $\frac{1}{2}(N(\theta,\xi)z,z)_{L^2(\mathbb{T})} = \frac{1}{2}((\partial_z \nabla H_\varepsilon)(\theta,0,0)[z],z)_{L^2(\mathbb{T})}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

We look for quasi-periodic solutions of $X_{H_{\varepsilon}}$ with

Diophantine frequencies:

 $\omega = \bar{\omega} + \varepsilon^2 A \xi$

Embedded torus equation:

$$\partial_{\omega}i(\varphi) - X_{H_{\varepsilon}}(i(\varphi)) = 0$$

Functional setting

$$\mathcal{F}(\varepsilon, X) := \begin{pmatrix} \partial_{\omega} \theta(\varphi) - \partial_{y} H_{\varepsilon}(i(\varphi)) \\ \partial_{\omega} y(\varphi) + \partial_{\theta} H_{\varepsilon}(i(\varphi)) \\ \partial_{\omega} z(\varphi) - \partial_{x} \nabla_{z} H_{\varepsilon}(i(\varphi)) \end{pmatrix} = 0$$

unknown: $X := i(\varphi) := (\theta(\varphi), y(\varphi), z(\varphi))$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Invert linearized operator at approximate solution $i_0(\varphi)$:

 $D_i \mathcal{F}(i_0(\varphi))[\hat{\imath}] =$

 $\begin{aligned} \partial_{\omega}\widehat{\theta} &- \partial_{\theta y}H_{\varepsilon}(i_{0})[\widehat{\theta}] - \partial_{yy}H_{\varepsilon}(i_{0})[\widehat{y}] - \partial_{zy}H_{\varepsilon}(i_{0})[\widehat{z}] \\ \partial_{\omega}\widehat{y} &+ \partial_{\theta\theta}H_{\varepsilon}(i_{0})[\widehat{\theta}] + \partial_{\theta y}H_{\varepsilon}(i_{0})[\widehat{y}] + \partial_{\theta z}H_{\varepsilon}(i_{0})[\widehat{z}] \\ \partial_{\omega}\widehat{z} - \partial_{x}\{\partial_{\theta}\nabla_{z}H_{\varepsilon}(i_{0})[\widehat{\theta}] + \partial_{y}\nabla_{z}H_{\varepsilon}[\widehat{y}] + \partial_{z}\nabla_{z}H_{\varepsilon}[\widehat{z}]\} \end{aligned}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

Approximate inverse. Zehnder

A linear operator T(X), $X := i(\varphi)$ is an APPROXIMATE INVERSE of dF(X) if $\|dF(X)T(X) - Id\| \le \|F(X)\|$

- T(X) is an exact inverse of dF(X) at a solution
- 2 It is sufficient to invert dF(X) at a solution

Use the general method to construct an approximate inverse, reducing to the inversion of quasi-periodically forced systems, Berti-Bolle for autonomous NLS-NLW with multiplicative potential

How to take advantage that i_0 is a solution?

The invariant torus $i_0(\varphi) := (\theta_0(\varphi), y_0(\varphi), z_0(\varphi))$ is ISOTROPIC

the transformation ${\it G}$ of the phase space $\mathbb{T}^n\times\mathbb{R}^n\times {\it H}_{{\it S}^\perp}$

$$\begin{pmatrix} \theta \\ y \\ z \end{pmatrix} := G \begin{pmatrix} \psi \\ \eta \\ w \end{pmatrix} := \begin{pmatrix} g_0(\psi) + D\theta_0(\psi)^{-T} \eta + D\tilde{z}_0(\theta_0(\psi))^T \partial_x^{-1} w \\ z_0(\psi) + w \end{pmatrix}$$

where $\tilde{z}_0(\theta) := z_0(\theta_0^{-1}(\theta))$, is **SYMPLECTIC**

In the new symplectic coordinates, i_0 is the trivial embedded torus

$$(\psi,\eta,w)=(arphi,0,0)$$

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

Transformed Hamiltonian

$$\begin{split} \kappa &:= H_{\varepsilon} \circ G = \mathcal{K}_{00}(\psi) + \mathcal{K}_{10}(\psi)\eta + (\mathcal{K}_{01}(\psi), w)_{L_{x}^{2}} + \frac{1}{2}\mathcal{K}_{20}(\psi)\eta \cdot \eta \\ &+ (\mathcal{K}_{11}(\psi)\eta, w)_{L_{x}^{2}} + \frac{1}{2}(\mathcal{K}_{02}(\psi)w, w)_{L_{x}^{2}} + O(|\eta| + |w|)^{3} \end{split}$$

Hamiltonian system in new coordinates:

$$\begin{cases} \dot{\psi} = K_{10}(\psi) + K_{20}(\psi)\eta + K_{11}^{T}(\psi)w + O(\eta^{2} + w^{2}) \\ \dot{\eta} = -\partial_{\psi}K_{00}(\psi) - \partial_{\psi}K_{10}(\psi)\eta - \partial_{\psi}K_{01}(\psi)w + O(\eta^{2} + w^{2}) \\ \dot{w} = \partial_{x}(K_{01}(\psi) + K_{11}(\psi)\eta + K_{02}(\psi)w) + O(\eta^{2} + w^{2}) \end{cases}$$

Since $(\psi, \eta, w) = (\omega t, 0, 0)$ is a solution \Longrightarrow

 $\partial_{\psi} K_{00}(\psi) = 0, \quad K_{10}(\psi) = \omega, \quad K_{01}(\psi) = 0$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

The problem	Literature	Main
-------------	------------	------

KAM (variable coefficients) normal-form

$$\begin{split} \mathcal{K} &:= \mathcal{H}_{\varepsilon} \circ \mathcal{G} = const + \omega \cdot \eta + \frac{1}{2} \mathcal{K}_{20}(\psi) \eta \cdot \eta + \left(\mathcal{K}_{11}(\psi) \eta, w\right)_{L^2_{x}} \\ &+ \frac{1}{2} \left(\mathcal{K}_{02}(\psi) w, w\right)_{L^2_{x}} + O(|\eta| + |w|)^3 \end{split}$$

Hamiltonian system in new coordinates:

$$\begin{cases} \dot{\psi} = \omega + K_{20}(\psi)\eta + K_{11}^{T}(\psi)w + O(\eta^{2} + w^{2}) \\ \dot{\eta} = O(\eta^{2} + w^{2}) \\ \dot{w} = \partial_{x}(K_{11}(\psi)\eta + K_{02}(\psi)w) + O(\eta^{2} + w^{2}) \end{cases}$$

 \implies in the NEW variables the linearized equations at $(\varphi, 0, 0)$ simplify!

The problem

Literature

Main results

Proof: Autonomous case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linearized equations at the invariant torus $(\varphi, 0, 0)$

$$\begin{pmatrix} \partial_{\omega}\widehat{\psi} - \mathsf{K}_{20}(\varphi)\widehat{\eta} - \mathsf{K}_{11}^{\mathsf{T}}(\varphi)\widehat{w} \\ \partial_{\omega}\widehat{\eta} \\ \partial_{\omega}\widehat{w} - \partial_{x}\mathsf{K}_{11}(\varphi)\widehat{\eta} - \partial_{x}\mathsf{K}_{02}(\varphi)\widehat{w} \end{pmatrix} = \begin{pmatrix} \Delta \mathsf{a} \\ \Delta \mathsf{b} \\ \Delta \mathsf{c} \end{pmatrix}$$

may be solved in a TRIANGULAR way

Step 1: solve second equation

$$\widehat{\eta} = \partial_{\omega}^{-1} \Delta b + \eta_0 \,, \quad \eta_0 \in \mathbb{R}^{
u}$$

Remark: Δb has zero average by reversibility, η_0 fixed later

Step 2: solve third equation

$$\mathcal{L}_{\omega}\widehat{w} = \Delta c + \partial_{x}\mathcal{K}_{11}(\varphi)\widehat{\eta}, \quad \mathcal{L}_{\omega} := \omega \cdot \partial_{\varphi} - \partial_{x}\mathcal{K}_{02}(\varphi),$$

This is a quasi-periodically forced linear KdV operator!

 The problem
 Literature
 Main results
 Proof: forced case
 Proof: Autonomous case

 Reduction of the linearized op. on the normal directions

$$\mathcal{L}_{\omega}h = \prod_{S^{\perp}} \left(\omega \cdot \partial_{\varphi}h + \partial_{xx}(a_1 \partial_x h) + \partial_x(a_0 h) - \varepsilon^2 \partial_x \mathcal{R}_2[h] - \partial_x \mathcal{R}_*[h] \right)$$

$$a_1 - 1 := O(\varepsilon^3), \quad a_0 := \varepsilon p_1 + \varepsilon^2 p_2 + \dots$$

The remainders $\mathcal{R}_2, \mathcal{R}_*$ are finite range (very regularizing!)

Reduce \mathcal{L}_{ω} to constant coefficients as in forced case, hence invert it

- Terms O(ε), O(ε²) are NOT perturbative: εγ⁻¹, ε²γ⁻¹ is large! γ = o(ε²)
- These terms eliminated by algebraic arguments (integrability property of Birkhoff normal form)

The problem	Literature	Main results	Proof: forced case	Proof: Autonomous case

Step 3: solve first equation

$$\partial_{\omega}\widehat{\psi} = K_{20}(\varphi)\widehat{\eta} + K_{11}^{T}(\varphi)\widehat{w} - \Delta a$$

Since

$$K_{20}(\varphi) = 3\varepsilon^2 Id + o(\varepsilon^2)$$

the matrix K_{20} is invertible and we choose η_0 (the average of $\hat{\eta}$) so that the right hand side has zero average. Hence

$$\widehat{\psi} = \partial_{\omega}^{-1} \Big(\mathsf{K}_{20}(\varphi) \widehat{\eta} + \mathsf{K}_{11}^{\mathsf{T}}(\varphi) \widehat{w} - \Delta \mathsf{a} \Big)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This completes the construction of an approximate inverse

The problem

Literature

Main results

Proof: forced case

Proof: Autonomous case

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

HAPPY BIRTHDAY !!