

[Literature](#page-9-0) [Main results](#page-12-0) [Proof: forced case](#page-18-0) [Proof: Autonomous case](#page-23-0)

KORKARYKERKER OQO

KAM for quasi-linear KdV

Massimiliano Berti

Toronto, 10-1-2014, Conference on "Hamiltonian PDEs: Analysis, Computations and Applications" **for the** 60**-th birthday of Walter Craig**

KdV

$$
\partial_t u + u_{xxx} - 3\partial_x u^2 + \mathcal{N}_4(x, u, u_x, u_{xx}, u_{xxx}) = 0, \quad x \in \mathbb{T}
$$

Quasi-linear Hamiltonian perturbation

$$
\mathcal{N}_4 := -\partial_x \{ (\partial_u f)(x, u, u_x) \} + \partial_{xx} \{ (\partial_{u_x} f)(x, u, u_x) \}
$$

$$
\mathcal{N}_4 = a_0(x, u, u_x, u_{xx}) + a_1(x, u, u_x, u_{xx}) u_{xxx}
$$

$$
\mathcal{N}_4(x, \varepsilon u, \varepsilon u_x, \varepsilon u_{xx}, \varepsilon u_{xxx}) = O(\varepsilon^4), \quad \varepsilon \to 0
$$

$$
f(x, u, u_x) = O(|u|^5 + |u_x|^5), \quad f \in C^q(\mathbb{T} \times \mathbb{R} \times \mathbb{R}, \mathbb{R})
$$

Physically important for perturbative derivation from water-waves (that I learned from Walter Craig)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Literature](#page-9-0) [Main results](#page-12-0) [Proof: forced case](#page-18-0) [Proof: Autonomous case](#page-23-0)

Hamiltonian PDE

$$
u_t = X_H(u), \quad X_H(u) := \partial_x \nabla_{L^2} H(u)
$$

Hamiltonian KdV

$$
H = \int_{\mathbb{T}} \frac{u_x^2}{2} + u^3 + f(x, u, u_x) dx
$$

where the density $f(x, u, u_x) = O(|(u, u_x)|^5)$

Phase space

$$
H_0^1(\mathbb{T}):=\left\{u(x)\in H^1(\mathbb{T},\mathbb{R})~:~\int_{\mathbb{T}} u(x)dx=0\right\}
$$

Non-degenerate symplectic form:

$$
\Omega(u,v):=\int_{\mathbb{T}}(\partial^{-1}_x u)\,v\,dx
$$

KORKARYKERKER OQO

KORKAR KERKER ST VOOR

Goal: look for small amplitude quasi-periodic solutions

Definition: quasi-periodic solution with *n* frequencies $u(t,x) = U(\omega t, x)$ where $U(\varphi, x) : \mathbb{T}^n \times \mathbb{T} \to \mathbb{R}$, $\omega \in \mathbb{R}^n ($ = frequency vector) is irrational $\omega \cdot k \neq 0$ *,* $\forall k \in \mathbb{Z}^n \setminus \{0\}$ \Longrightarrow the linear flow $\{\omega t\}_{t\in\mathbb{R}}$ is $\textrm{\tiny{DENSE}}$ on \mathbb{T}^n

The torus-manifold

$$
\mathbb{T}^n \ni \varphi \mapsto u(\varphi, x) \in \text{phase space}
$$

is invariant under the flow evolution of the PDE

Linear Airy eq.

$$
u_t + u_{xxx} = 0, \qquad x \in \mathbb{T}
$$

Solutions: (superposition principle)

$$
u(t,x)=\sum_{j\in\mathbb{Z}\setminus\{0\}}a_je^{ij^3t}e^{ijx}
$$

Eigenvalues j^3 = "NORMAL FREQUENCIES" Eigenfunctions: $e^{ijx} =$ "NORMAL MODES"

All solutions are 2π - periodic in time: COMPLETELY RESONANT

⇒ **Quasi-periodic solutions are a completely nonlinear phenomenon**

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Linear Airy eq.

$$
u_t + u_{xxx} = 0, \qquad x \in \mathbb{T}
$$

Solutions: (superposition principle)

$$
u(t,x)=\sum_{j\in\mathbb{Z}\setminus\{0\}}a_je^{ij^3t}e^{ijx}
$$

Eigenvalues j^3 = "NORMAL FREQUENCIES" Eigenfunctions: $e^{ijx} =$ "NORMAL MODES"

All solutions are 2π - periodic in time: COMPLETELY RESONANT

⇒ **Quasi-periodic solutions are a completely nonlinear phenomenon**

KORKARYKERKER OQO

KdV is COMPLETELY INTEGRABLE

$$
u_t + u_{xxx} - 3\partial_x u^2 = 0
$$

All solutions are periodic, quasi-periodic, almost periodic

What happens under a small perturbation?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Kuksin '98, Kappeler-Pöschel '03: KAM for KdV

 $u_t + u_{xxx} + uu_x + \varepsilon \partial_x f(x, u) = 0$

1 SEMILINEAR PERTURBATION $\partial_x f(x, u)$

2 Also true for Hamiltonian perturbations

 $u_t + u_{xxx} + uu_x + \varepsilon \partial_x |\partial_x|^{1/2} f(x, |\partial_x|^{1/2} u) = 0$

KORKARYKERKER OQO

of order 2

*|j*³ − *i*³ | ≥ *i*² + *j*², *i* ≠ *j* ⇒ KdV gains up to 2 spatial derivatives

Kuksin '98, Kappeler-Pöschel '03: KAM for KdV

 $u_t + u_{xxx} + uu_x + \epsilon \partial_x f(x, u) = 0$

1 SEMILINEAR PERTURBATION $\partial_x f(x, u)$

2 Also true for Hamiltonian perturbations

 $u_t + u_{xxx} + uu_x + \varepsilon \partial_x |\partial_x|^{1/2} f(x, |\partial_x|^{1/2} u) = 0$

KORKARYKERKER OQO

of order 2

*|j*³ − *i*³ | ≥ *i*² + *j*², *i* ≠ *j* ⇒ KdV gains up to 2 spatial derivatives

³ for QUASI-LINEAR KdV? OPEN PROBLEM

[The problem](#page-1-0) **[Literature](#page-9-0)** [Main results](#page-12-0) [Proof: forced case](#page-18-0) [Proof: Autonomous case](#page-23-0) Literature: KAM for "unbounded" perturbations

Liu-Yuan '10 for Hamiltonian DNLS (and Benjamin-Ono)

$$
i u_t - u_{xx} + M_\sigma u + i \varepsilon f(u, \bar{u}) u_x = 0
$$

Zhang-Gao-Yuan '11 Reversible DNLS

 $|u_t + u_{xx}| = |u_x|^2 u$

Craig-Wayne periodic solutions, Lyapunov-Schmidt $+$ Nash-Moser

Bourgain '96, Derivative NLW

$$
y_{tt} - y_{xx} + my + y_t^2 = 0
$$
, $m \neq 0$,

Craig '00, Hamiltonian DNLW

$$
y_{tt} - y_{xx} + g(x)y = f(x, D^{\beta}y), \quad D := \sqrt{-\partial_{xx} + g(x)},
$$

quasi-periodic solutions

 $u_{tt} - u_{xx} + mu = g(x, u, u_x, u_t)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

For quasi-linear PDEs: Periodic solutions:

• looss-Plotinikov-Toland, looss-Plotnikov, '01-'10,

quasi-periodic solutions

Berti-Biasco-Procesi '12, '13, reversible DNLW $u_{tt} - u_{xx} + mu = g(x, u, u_x, u_t)$

For quasi-linear PDEs: Periodic solutions:

• Iooss-Plotinikov-Toland, Iooss-Plotnikov, '01-'10, Water waves: quasi-linear equation, new ideas for conjugation of linearized operator

KELK KØLK VELKEN EL 1990

Hamiltonian density:

$$
f(x, u, u_x) = f_5(u, u_x) + f_{\geq 6}(x, u, u_x)
$$

 f_5 polynomial of order 5 in $(u,u_x);~f_{\geq 6}(x,u,u_x)=O(|u|+|u_x|)^6$

Reversibility condition:

$$
f(x, u, u_x) = f(-x, u, -u_x)
$$

KdV-vector field $X_H(u) := \partial_x \nabla H(u)$ is **reversible** w.r.t the involution

$$
\varrho u := u(-x), \ \varrho^2 = I, \ -\varrho X_H(u) = X_H(\varrho u)
$$

KORKAR KERKER ST VOOR

[The problem](#page-1-0) [Literature](#page-9-0) [Main results](#page-12-0) [Proof: forced case](#page-18-0) [Proof: Autonomous case](#page-23-0)

Theorem ('13, P. Baldi, M. Berti, R. Montalto)

Let $f \in C^q$ (with $q := q(n)$ large enough). Then, for "generic" choice of the "TANGENTIAL SITES"

 $S := \{-\bar{\jmath}_n, \ldots, -\bar{\jmath}_1, \bar{\jmath}_1, \ldots, \bar{\jmath}_n\} \subset \mathbb{Z} \setminus \{0\}$,

the hamiltonian and reversible KdV equation $\partial_t u + u_{\infty} - 3\partial_x u^2 + \mathcal{N}_4(x, u, u_{\times}, u_{\infty}, u_{\infty}) = 0, \quad x \in \mathbb{T},$

possesses small amplitude quasi-periodic solutions with Sobolev regularity H^s , $s \leq q$, of the form

 $u = \sum_{j \in S}$ $\sqrt{\xi_j} e^{i\omega_j^{\infty}(\xi) t} e^{i j x} + o(\sqrt{\xi}), \ \omega_j^{\infty}(\xi) = j^3 + O(|\xi|)$

for a "Cantor-like" set of "initial conditions" $ξ ∈ ℝⁿ$ with density 1 at $\xi = 0$. The linearized equations at these quasi-periodic solutions are reduced to constant coefficients and are **stable**. If $f = f_{\geq 7} = O(|(u, u_x)|^7)$ then any choice of tangential sites

Explicit conditions:

- \bullet HYPOTHESIS (S₃) $j_1 + j_2 + j_3 \neq 0$ for all $j_1, j_2, j_3 \in S$
- HYPOTHESIS (S_4) $\nexists j_1, \ldots, j_4 \in S$ such that

 $j_1 + j_2 + j_3 + j_4 \neq 0$, $j_1^3 + j_2^3 + j_3^3 + j_4^3 - (j_1 + j_2 + j_3 + j_4)^3 = 0$

- **1** (S₃) used in the linearized operator. If $f_5 = 0$ then not needed
- **2** If also $f_6 = 0$ then (S_4) not needed (used in Birkhoff-normal-form)

"genericity":

After fixing $\{\bar{\jmath}_1,\ldots,\bar{\jmath}_n\}$, in the choice of $\bar{\jmath}_{n+1}\in\mathbb{N}$ there are only FINITELY MANY forbidden values

KORKARYKERKER OQO

4 A similar result holds for

mKdV: focusing/defocusing

 $\partial_t u + u_{xxx} \pm \partial_x u^3 + \mathcal{N}_4(x, u, u_x, u_{xx}, u_{xxx}) = 0, \quad x \in \mathbb{T}$

for all the tangential sites $S := \{-\bar{j}_n, \ldots, -\bar{j}_1, \bar{j}_1, \ldots, \bar{j}_n\}$ such that

$$
\frac{2}{2n-1}\sum_{i=1}^n \bar{J}_i^2 \notin \mathbb{N}
$$

KORKAR KERKER SAGA

2 If $f = f(u, u_x)$ the result is **true** for all the tangential sites S

³ Also for generalized KdV (not integrable), with normal form techniques of Procesi-Procesi

(L): linearized equation *∂*th = *∂*x*∂*u*∇*H(u(*ω*t*,* x))h

 $h_t + a_3(\omega t, x)h_{xxx} + a_2(\omega t, x)h_{xx} + a_1(\omega t, x)h_{x} + a_0(\omega t, x)h = 0$

There exists a quasi-periodic (Floquet) change of variable

$$
h = \Phi(\omega t)(\psi, \eta, \mathbf{v}), \quad \psi \in \mathbb{T}^{\nu}, \eta \in \mathbb{R}^{\nu}, \mathbf{v} \in H_{\mathbf{x}}^{\mathbf{s}} \cap L_{\mathbf{S}^{\perp}}^2
$$

which transforms (L) into the **constant coefficients** system

$$
\begin{cases} \dot{\psi} = b\eta \\ \dot{\eta} = 0 \\ \dot{v}_j = i\mu_j v_j, \quad j \notin S, \ \mu_j \in \mathbb{R} \end{cases}
$$

 \Longrightarrow $\eta(t)=\eta_0, \text{v}_j(t)=\text{v}_j(0)\text{e}^{\text{i}\mu_j t} \Longrightarrow \|\text{v}(t)\|_{\text{s}}=\|\text{v}(0)\|_{\text{s}}:$ stability

KORKAR KERKER DRAM

Forced quasi-linear perturbations of Airy

Use $\omega = \lambda \vec{\omega} \in \mathbb{R}^n$ as 1-dim. parameter

Theorem (Baldi, Berti, Montalto , to appear Math. Annalen)

There exist $s := s(n) > 0$, $q := q(n) \in \mathbb{N}$, such that:

Let $\vec{\omega} \in \mathbb{R}^n$ diophantine. For every quasi-linear Hamiltonian nonlinearity $f \in C^q$ for all $\varepsilon \in (0, \varepsilon_0)$ small enough, there is a Cantor set $C_{\varepsilon} \subset [1/2, 3/2]$ of asymptotically full measure, i.e.

 $|\mathcal{C}_{\varepsilon}| \to 1$ as $\varepsilon \to 0$,

such that for all $\lambda \in C_{\varepsilon}$ the perturbed Airy equation

 $\partial_t u + \partial_{xxx} u + \varepsilon f(\lambda \vec{\omega} t, x, u, u_x, u_{xx}, u_{xxx}) = 0$

has a quasi-periodic solution $u(\varepsilon, \lambda) \in H^s$ (for some $s \leq q$) with f requency $\omega = \lambda \vec{\omega}$ and satisfying $||u(\varepsilon, \lambda)||_s \to 0$ as $\varepsilon \to 0$.

Key: spectral analysis of quasi-periodic operator

$$
\mathcal{L} = \omega \cdot \partial_{\varphi} + \partial_{xxx} + a_3(\varphi, x)\partial_{xxx} + a_2(\varphi, x)\partial_{xx} + a_1(\varphi, x)\partial_x + a_0(\varphi, x)
$$

 $a_i = O(\varepsilon)$, $i = 0, 1, 2, 3$ Main problem: the non constant coefficients term a₃(φ , x)∂_{xxx}!

MAIN DIFFICULTIES:

- **1** The usual KAM iterative scheme is unbounded
- ² We expect an estimate of perturbed eigenvalues

$$
\mu_j(\varepsilon)=j^3+O(\varepsilon j^3)
$$

which is NOT sufficient for verifying second order Melnikov

$$
|\omega \cdot \ell + \mu_j(\varepsilon) - \mu_i(\varepsilon)| \geq \frac{\gamma |j^3 - i^3|}{\langle \ell \rangle^\tau}, \quad \forall \ell, j, i
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$ \equiv 299

Idea to conjugate *L* to a diagonal operator

¹ **"REDUCTION IN DECREASING SYMBOLS"**

$$
\mathcal{L}_1 := \Phi^{-1} \mathcal{L} \Phi = \omega \cdot \partial_{\varphi} + m_3 \partial_{xxx} + m_1 \partial_x + \mathcal{R}_0
$$

- $R_0(\varphi, x)$ pseudo-differential operator of **order** 0, $R_0(\varphi, x): H^s_x \to H^s_x$, variable coefficients, $R_0 = O(\varepsilon)$,
- $m_3 = 1 + O(\varepsilon)$, $m_1 = O(\varepsilon)$, $m_1, m_3 \in \mathbb{R}$, CONSTANTS

Use suitable transformations "far" from the identity

$$
\mathcal{L}_{\nu} := \Phi_{\nu}^{-1} \mathcal{L}_1 \Phi_{\nu} = \omega \cdot \partial_{\varphi} + m_3 \partial_{\nu} \times \chi + m_1 \partial_{\chi} + r^{(\nu)} + \mathcal{R}_{\nu}
$$

$$
\bullet \ \ R_\nu = R_\nu(\varphi, x) = O(R_0^{2^{\nu}}).
$$

•
$$
r^{(\nu)} = \text{diag}_{j \in \mathbb{Z}}(r_j^{(\nu)}), \text{ sup}_j |r_j^{(\nu)}| = O(\varepsilon),
$$

Idea to conjugate *L* to a diagonal operator

¹ **"REDUCTION IN DECREASING SYMBOLS"**

$$
\mathcal{L}_1 := \Phi^{-1} \mathcal{L} \Phi = \omega \cdot \partial_{\varphi} + m_3 \partial_{xxx} + m_1 \partial_x + \mathcal{R}_0
$$

- $R_0(\varphi, x)$ pseudo-differential operator of **order** 0, $R_0(\varphi, x): H^s_x \to H^s_x$, variable coefficients, $R_0 = O(\varepsilon)$,
- \bullet $m_3 = 1 + O(\varepsilon)$, $m_1 = O(\varepsilon)$, $m_1, m_3 \in \mathbb{R}$, CONSTANTS

Use suitable transformations "far" from the identity ² **"REDUCTION OF THE SIZE of** R0**"**

$$
\mathcal{L}_{\nu} := \Phi_{\nu}^{-1} \mathcal{L}_1 \Phi_{\nu} = \omega \cdot \partial_{\varphi} + m_3 \partial_{xxx} + m_1 \partial_x + r^{(\nu)} + \mathcal{R}_{\nu}
$$

\n- •
$$
R_{\nu} = R_{\nu}(\varphi, x) = O(R_0^{2^{\nu}})
$$
\n- • $r^{(\nu)} = \text{diag}_{j \in \mathbb{Z}}(r_j^{(\nu)}), \text{ sup}_j |r_j^{(\nu)}| = O(\varepsilon),$
\n

KAM-type scheme, now transformations of $H_{\rm x}^{\rm s} \rightarrow H_{\rm x}^{\rm s}$

Higher order term

 $\mathcal{L} := \omega \cdot \partial_{\varphi} + \partial_{xxx} + \varepsilon a_3(\varphi, x) \partial_{xxx}$

STEP 1: Under the **symplectic** change of variables

 $(Au) := (1 + \beta_x(\varphi, x))u(\varphi, x + \beta(\varphi, x))$

we get

$$
\mathcal{L}_1 := A^{-1} \mathcal{L} A = \omega \cdot \partial_{\varphi} + (A^{-1} (1 + \varepsilon a_3) (1 + \beta_x)^3) \partial_{xxx} + O(\partial_{xx})
$$

= $\omega \cdot \partial_{\varphi} + c(\varphi) \partial_{xxx} + O(\partial_{xx})$

imposing

$$
(1+\varepsilon a_3)(1+\beta_x)^3=c(\varphi)\,,
$$

KORKARYKERKER OQO

There exist solution $c(\varphi) \approx 1$, $\beta = O(\varepsilon)$

KORKARYKERKER OQO

STEP 2: Rescaling time

 $(Bu)(\varphi, x) = u(\varphi + \omega q(\varphi), x)$

we have

$$
B^{-1}\mathcal{L}_1B = B^{-1}(1+\omega\cdot\partial_{\varphi}q)(\omega\cdot\partial_{\varphi}) + B^{-1}c(\varphi)\partial_{xxx} + O(\partial_{xx})
$$

= $\mu(\varepsilon)B^{-1}c(\varphi)(\omega\cdot\partial_{\varphi}) + B^{-1}c(\varphi)\partial_{xxx} + O(\partial_{xx})$

solving

$$
1+\omega\cdot\partial_{\varphi}q=\mu(\varepsilon)c(\varphi),\quad q(\varphi)=O(\varepsilon)
$$

Dividing for $\mu(\varepsilon)B^{-1}c(\varphi)$ we get

 $\mathcal{L}_2 := \omega \cdot \partial_\varphi + m_3(\varepsilon) \partial_{xxx} + O(\partial_x), \ \ m_3(\varepsilon) := \mu^{-1}(\varepsilon) = 1 + O(\varepsilon)$

which has the leading order with CONSTANT COEFFICIENTS

New further difficulties:

- **No external parameters**. The frequency of the solutions is NOT fixed a-priori. Frequency-amplitude modulation.
- **KdV is completely resonant**
- **Construction of an approximate inverse**

Ideas:

- Weak Birkhoff-normal form
- **•** General method to decouple the "tangential dynamics" from the "normal dynamics", developed with P. Bolle Procedure which reduces autonomous case to the forced one

Step 1. Bifurcation analysis: weak Birkhoff normal form

Fix the "tangential sites" $S := \{-\bar{\jmath}_n, \ldots, -\bar{\jmath}_1, \bar{\jmath}_1, \ldots, \bar{\jmath}_n\} \subset \mathbb{Z} \setminus \{0\}$

Split the dynamics:

$$
u(x) = v(x) + z(x)
$$

$$
v(x) = \sum_{j \in S} u_j e^{ijx} = "tangential component"
$$

$$
z(x) = \sum_{j \notin S} u_j e^{ijx} = "normal component"
$$

Hamiltonian

$$
H = \frac{1}{2} \int_{\mathbb{T}} v_x^2 + \frac{1}{2} \int_{\mathbb{T}} z_x^2 dx + \int_{\mathbb{T}} v^3 dx + 3 \int_{\mathbb{T}} v^2 z dx
$$

+
$$
\int_{\mathbb{T}} v^3 dx + 3 \int_{\mathbb{T}} v^2 z dx + 3 \int_{\mathbb{T}} v^2 z dx + \int_{\mathbb{T}} z^3 dx + \int_{\mathbb{T}} f(u, u_x)
$$

Goal: eliminate terms linear in $z \implies \{z = 0\}$ is invariant manifold

KELK KØLK VELKEN EL 1990

[The problem](#page-1-0) **[Literature](#page-9-0)** [Main results](#page-12-0) [Proof: forced case](#page-18-0) **[Proof: Autonomous case](#page-23-0)**

Theorem (Weak Birkhoff normal form)

There is a symplectic transformation $\Phi_B: H_0^1(\mathbb{T}_x) \to H_0^1(\mathbb{T}_x)$

 $\Phi_B(u) = u + \Psi(u), \quad \Psi(u) = \Pi_E \Psi(\Pi_E u),$

where $E := \text{span}\{e^{\textbf{i} jx}$, $0 < |j| \leq 6|S|\}$ is **finite-dimensional**, s.t.

 $\mathcal{H} := H \circ \Phi_B = H_2 + \mathcal{H}_3 + \mathcal{H}_4 + \mathcal{H}_5 + \mathcal{H}_{\geq 6}$

$$
\mathcal{H}_3 := \int_{\mathbb{T}} z^3 dx + 3 \int_{\mathbb{T}} vz^2 dx, \ \mathcal{H}_4 := -\frac{3}{2} \sum_{j \in S} \frac{|u_j|^4}{j^2} + \mathcal{H}_{4,2} + \mathcal{H}_{4,3}
$$
\n
$$
\mathcal{H}_{4,2} := 6 \int_{\mathbb{T}} vz \Pi_S((\partial_x^{-1}v)(\partial_x^{-1}z)) dx + 3 \int_{\mathbb{T}} z^2 \pi_0(\partial_x^{-1}v)^2 dx,
$$
\n
$$
\mathcal{H}_{4,3} := R(vz^3), \quad \mathcal{H}_5 := \sum_{q=2}^5 R(v^{5-q}z^q),
$$
\nand $\mathcal{H}_{>6}$ collects all the terms of order at least six in (v, z) .

Fourier representation

$$
u(x) = \sum_{j \in \mathbb{Z} \setminus \{0\}} u_j e^{ijx}, \qquad u(x) \longleftrightarrow (u_j)_{j \in \mathbb{Z} \setminus \{0\}}
$$

 $\text{First}\ \text{Step.}$ Eliminate the $u_{j_1}u_{j_2}u_{j_3}$ of H_3 with at **most one index outside** S. Since $j_1 + j_2 + j_3 = 0$ they are **finitely many**

$\Phi :=$ the time 1-flow map generated by

$$
F(u) := \sum_{j_1+j_2+j_3=0} F_{j_1,j_2,j_3} u_{j_1} u_{j_2} u_{j_3}
$$

The vector field X_F is supported on **finitely many** sites $X_F(u) = \Pi_{H_{2S}} X_F(\Pi_{H_{2S}} u)$

=*⇒* the flow is a **finite dimensional** perturbation of the identity $\Phi = Id + \Psi$, $\Psi = \Pi_{H_2} \Psi \Pi_{H_2}$

For the other steps:

Normalize the quartic monomials $u_{j_1}u_{j_2}u_{j_3}u_{j_4}, j_1, j_2, j_3, j_4 \in S$. The fourth order system H_4 restricted to S turns out to be **integrable**, i.e.

$$
-\frac{3}{2}\sum_{j\in S}\frac{|u_j|^4}{j^2}\quad\text{(non-isochronous rotators)}
$$

Now $\{z = 0\}$ is an invariant manifold for \mathcal{H}_4 filled by quasi-periodic solutions with a frequency which varies with the amplitude

KORKARYKERKER OQO

KORKAR KERKER ST VOOR

Difference w.r.t. other Birkhoff normal forms

- ¹ Kappeler-Pöschel (KdV), Kuksin-Pöschel (NLS), **complete Birkhoff-normal form**: they remove/normalize also the terms $O(z^2),$ $O(z^3),$ $O(z^4)$
- ² Pöschel (NLW), **semi normal Birkhoff normal form**: normalized only the term $O(z^2)$
- ³ Kappeler Global Birkhoff normal form for KdV, 1-d-cubic-NLS

The above transformations are

$$
(1) \ I + \text{bounded} \,, \quad (2) \ I + O(\partial_x^{-1}) \,, \quad (3) \ \Phi = \mathcal{F} + O(\partial_x^{-1}) \,,
$$

It is NOT enough for quasi-linear perturbations!

Our $\Phi = Id + \text{finite dimensional} \implies$ it changes very little the third order differential perturbations in KdV

KORKAR KERKER ST VOOR

Rescaled action-angle variables:

$$
u := \varepsilon v_{\varepsilon}(\theta, y) + \varepsilon z := \varepsilon \sum_{j \in S} \sqrt{\xi_j + |j| y_j} e^{i\theta_j} e^{ijx} + \varepsilon z
$$

Hamiltonian:

$$
H_{\varepsilon} = \mathcal{N} + P, \quad \mathcal{N}(\theta, y, z, \xi) = \alpha(\xi) \cdot y + \frac{1}{2} (N(\theta, \xi)z, z)_{L^2(\mathbb{T})}
$$

where

Frequency-amplitude map:

$$
\alpha(\xi) = \bar{\omega} + \varepsilon^2 A \xi
$$

Variable coefficients normal form:

1 $\frac{1}{2}(\textit{N}(\theta,\xi)\textit{z},\textit{z})_{\textit{L}^2(\mathbb{T})}=\frac{1}{2}$ $\frac{1}{2}((\partial_z\nabla H_\varepsilon)(\theta,0,0)[z],z)_{L^2(\mathbb{T})}$ We look for quasi-periodic solutions of X_{H_e} with

Diophantine frequencies:

 $ω = \bar{ω} + ε^2 Aξ$

Embedded torus equation:

$$
\partial_\omega i(\varphi)-X_{H_\varepsilon}(i(\varphi))=0
$$

Functional setting

$$
\mathcal{F}(\varepsilon,X) \quad := \left(\begin{array}{c} \partial_\omega \theta(\varphi) - \partial_y H_\varepsilon(i(\varphi)) \\ \partial_{\omega} y(\varphi) + \partial_\theta H_\varepsilon(i(\varphi)) \\ \partial_\omega z(\varphi) - \partial_x \nabla_z H_\varepsilon(i(\varphi)) \end{array} \right) = 0
$$

unknown: $X := i(\varphi) := (\theta(\varphi), y(\varphi), z(\varphi))$

Invert linearized operator at approximate solution $i_0(\varphi)$ **:**

 $D_i \mathcal{F}(i_0(\varphi))[\hat{\imath}] =$

 $\partial_{\omega}\theta - \partial_{\theta y}H_{\varepsilon}(i_0)[\theta] - \partial_{yy}H_{\varepsilon}(i_0)[\hat{y}] - \partial_{zy}H_{\varepsilon}(i_0)[\hat{z}]$ $\partial_{\omega}\hat{y} + \partial_{\theta\theta}H_{\varepsilon}(i_0)[\hat{\theta}] + \partial_{\theta\gamma}H_{\varepsilon}(i_0)[\hat{y}] + \partial_{\theta\gamma}H_{\varepsilon}(i_0)[\hat{z}]$ $\partial_{\omega}\widehat{z} - \partial_{x}\{\partial_{\theta}\nabla_{z}H_{\varepsilon}(i_0)[\theta] + \partial_{y}\nabla_{z}H_{\varepsilon}[\widehat{y}] + \partial_{z}\nabla_{z}H_{\varepsilon}[\widehat{z}]\}$

KORKAR KERKER SAGA

Approximate inverse. Zehnder

A linear operator $T(X)$, $X := i(\varphi)$ is an APPROXIMATE INVERSE of $dF(X)$ if $||df(X)T(X) - Id|| < ||F(X)||$

- \bullet $T(X)$ is an exact inverse of $dF(X)$ at a solution
- **2** It is sufficient to invert $dF(X)$ at a solution

Use the general method to construct an approximate inverse, reducing to the inversion of quasi-periodically forced systems, Berti-Bolle for autonomous NLS-NLW with multiplicative potential

KORKAR KERKER SAGA

=*⇒*

KORKAR KERKER ST VOOR

How to take advantage that i_0 is a solution?

The invariant torus $i_0(\varphi) := (\theta_0(\varphi), y_0(\varphi), z_0(\varphi))$ is ISOTROPIC

the transformation G of the phase space $\mathbb{T}^n\times\mathbb{R}^n\times H_{\mathsf{S}^\perp}$

$$
\begin{pmatrix} \theta \\ y \\ z \end{pmatrix} := G \begin{pmatrix} \psi \\ \eta \\ w \end{pmatrix} := \begin{pmatrix} \theta_0(\psi) \\ y_0(\psi) + D\theta_0(\psi)^{-T} \eta + D\tilde{z}_0(\theta_0(\psi))^T \partial_x^{-1} w \\ z_0(\psi) + w \end{pmatrix}
$$

where $\widetilde{z}_0(\theta):=z_0(\theta_0^{-1}(\theta)),$ is $\mathsf{SYMPLECTIC}$

In the new symplectic coordinates, i_0 is the trivial embedded torus

$$
(\psi,\eta,w)=(\varphi,0,0)
$$

Transformed Hamiltonian

$$
K := H_{\varepsilon} \circ G = K_{00}(\psi) + K_{10}(\psi)\eta + (K_{01}(\psi), w)_{L_{x}^{2}} + \frac{1}{2}K_{20}(\psi)\eta \cdot \eta
$$

$$
+ (K_{11}(\psi)\eta, w)_{L_{x}^{2}} + \frac{1}{2}(K_{02}(\psi)w, w)_{L_{x}^{2}} + O(|\eta| + |w|)^{3}
$$

Hamiltonian system in new coordinates:

$$
\begin{cases} \dot{\psi} = K_{10}(\psi) + K_{20}(\psi)\eta + K_{11}^T(\psi)w + O(\eta^2 + w^2) \\ \dot{\eta} = -\partial_{\psi}K_{00}(\psi) - \partial_{\psi}K_{10}(\psi)\eta - \partial_{\psi}K_{01}(\psi)w + O(\eta^2 + w^2) \\ \dot{w} = \partial_{x}(K_{01}(\psi) + K_{11}(\psi)\eta + K_{02}(\psi)w) + O(\eta^2 + w^2) \end{cases}
$$

Since $(\psi, \eta, w) = (\omega t, 0, 0)$ is a solution \implies

 $\partial_{\psi}K_{00}(\psi) = 0$, $K_{10}(\psi) = \omega$, $K_{01}(\psi) = 0$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

=*⇒*

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

KAM (variable coefficients) normal-form

$$
K := H_{\varepsilon} \circ G = \text{const} + \omega \cdot \eta + \frac{1}{2} K_{20}(\psi) \eta \cdot \eta + (K_{11}(\psi) \eta, w)_{L_{\chi}^2} + \frac{1}{2} (K_{02}(\psi) w, w)_{L_{\chi}^2} + O(|\eta| + |w|)^3
$$

Hamiltonian system in new coordinates:

$$
\begin{cases} \dot{\psi} = \omega + K_{20}(\psi)\eta + K_{11}^T(\psi)w + O(\eta^2 + w^2) \\ \dot{\eta} = O(\eta^2 + w^2) \\ \dot{w} = \partial_x (K_{11}(\psi)\eta + K_{02}(\psi)w) + O(\eta^2 + w^2) \end{cases}
$$

=*⇒* in the NEW variables the linearized equations at (*ϕ,* 0*,* 0) simplify!

KELK KØLK VELKEN EL 1990

Linearized equations at the invariant torus (*ϕ,* 0*,* 0)

$$
\begin{pmatrix}\n\partial_{\omega}\hat{\psi} - K_{20}(\varphi)\hat{\eta} - K_{11}^{\mathsf{T}}(\varphi)\hat{w} \\
\partial_{\omega}\hat{\eta} \\
\partial_{\omega}\hat{w} - \partial_{x}K_{11}(\varphi)\hat{\eta} - \partial_{x}K_{02}(\varphi)\hat{w}\n\end{pmatrix} = \begin{pmatrix}\n\Delta a \\
\Delta b \\
\Delta c\n\end{pmatrix}
$$

may be solved in a TRIANGULAR way

Step 1: solve second equation

$$
\widehat{\eta} = \partial_{\omega}^{-1} \Delta b + \eta_0 \,, \quad \eta_0 \in \mathbb{R}^{\nu}
$$

Remark: Δ*b* has zero average by reversibility, *η*₀ fixed later

Step 2: solve third equation

$$
\mathcal{L}_{\omega}\widehat{w} = \Delta c + \partial_{x}K_{11}(\varphi)\widehat{\eta}, \quad \mathcal{L}_{\omega} := \omega \cdot \partial_{\varphi} - \partial_{x}K_{02}(\varphi),
$$

This is a quasi-periodically forced linear KdV operator!

[The problem](#page-1-0) [Literature](#page-9-0) [Main results](#page-12-0) [Proof: forced case](#page-18-0) [Proof: Autonomous case](#page-23-0)

Reduction of the linearized op. on the normal directions

$$
\mathcal{L}_{\omega}h = \Pi_{\mathcal{S}^{\perp}}\left(\omega \cdot \partial_{\varphi}h + \partial_{xx}(a_1 \partial_x h) + \partial_x(a_0 h) - \varepsilon^2 \partial_x \mathcal{R}_2[h] - \partial_x \mathcal{R}_*[h]\right)
$$

$$
a_1-1:=O(\varepsilon^3),\quad a_0:=\varepsilon p_1+\varepsilon^2 p_2+\ldots
$$

The remainders \mathcal{R}_2 , \mathcal{R}_* are finite range (very regularizing!)

Reduce *L^ω* to constant coefficients as in forced case, hence invert it

- \bullet Terms $O(\varepsilon),$ $O(\varepsilon^2)$ are <code>NOT</code> perturbative: $\varepsilon\gamma^{-1}$, $\varepsilon^2\gamma^{-1}$ is large! $\gamma = o(\varepsilon^2)$
- ² These terms eliminated by **algebraic** arguments (integrability property of Birkhoff normal form)

KORKARYKERKER OQO

Step 3: solve first equation

$$
\partial_{\omega}\widehat{\psi}=K_{20}(\varphi)\widehat{\eta}+K_{11}^{T}(\varphi)\widehat{\omega}-\Delta a
$$

Since

$$
K_{20}(\varphi)=3\varepsilon^2\mathit{Id}+o(\varepsilon^2)
$$

the matrix K_{20} is invertible and we choose η_0 (the average of $\hat{\eta}$) so that the right hand side has zero average. Hence

$$
\widehat{\psi} = \partial_{\omega}^{-1} \Big(K_{20}(\varphi)\widehat{\eta} + K_{11}^{\mathsf{T}}(\varphi)\widehat{\mathsf{w}} - \Delta a \Big)
$$

KORKARYKERKER OQO

This completes the construction of an approximate inverse

[The problem](#page-1-0) [Literature](#page-9-0) [Main results](#page-12-0) [Proof: forced case](#page-18-0) [Proof: Autonomous case](#page-23-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

HAPPY BIRTHDAY !!