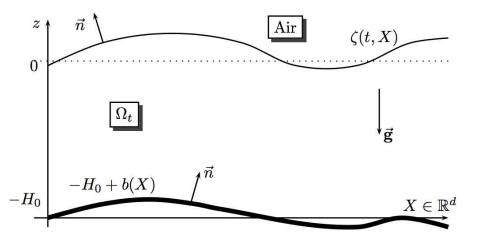
# Water Waves with vorticity

# David Lannes Joint work with Angel Castro (UAM, Madrid)

DMA, Ecole Normale Supérieure et CNRS

Hamiltonian PDEs: Analysis, Computations and Applications





æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- $({\sf H1})$  The fluid is homogeneous and inviscid
- (H2) The fluid is incompressible
- (H3) The flow is irrotational
- (H4) The surface and the bottom can be parametrized as graphs
- (H5) The fluid particles do not cross the bottom
- (H6) The fluid particles do not cross the surface
- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth does not vanish

- 3

イロト 不得下 イヨト イヨト

- (H1)  $\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P g \mathbf{e}_z$  in  $\Omega_t$
- (H2) The fluid is incompressible
- (H3) The flow is irrotational
- $(\mathsf{H4})$  The surface and the bottom can be parametrized as graphs
- (H5) The fluid particles do not cross the bottom
- (H6) The fluid particles do not cross the surface
- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth does not vanish

# (H1) $\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z$ in $\Omega_t$

(H2) div  $\mathbf{U} = 0$ 

- (H3) The flow is irrotational
- $(\mathsf{H4})$  The surface and the bottom can be parametrized as graphs
- (H5) The fluid particles do not cross the bottom
- (H6) The fluid particles do not cross the surface
- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth does not vanish

- (H1)  $\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P g \mathbf{e}_z$  in  $\Omega_t$
- (H2) div  $\mathbf{U} = 0$
- (H3) curl **U** = 0
- (H4) The surface and the bottom can be parametrized as graphs
- (H5) The fluid particles do not cross the bottom
- (H6) The fluid particles do not cross the surface
- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth does not vanish

- (H2) div  $\mathbf{U} = 0$
- (H3) curl U = 0
- (H4)  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$
- (H5) The fluid particles do not cross the bottom
- (H6) The fluid particles do not cross the surface
- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth does not vanish

- (H1)  $\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P g\mathbf{e}_z \text{ in } \Omega_t$
- (H2) div  $\mathbf{U} = 0$
- (H3) curl U = 0

(H4) 
$$\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$$

- (H5)  $\mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = -H_0 + b(X)\}$ .
- (H6) The fluid particles do not cross the surface
- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth does not vanish

- (H1)  $\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{\mathbf{X}, \mathbf{z}})\mathbf{U} = -\frac{1}{\rho} \nabla_{\mathbf{X}, \mathbf{z}} P g \mathbf{e}_{\mathbf{z}} \text{ in } \Omega_t$
- (H2) div  $\mathbf{U} = 0$
- (H3) curl U = 0

(H4) 
$$\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$$

(H5) 
$$\mathbf{U} \cdot \mathbf{n} = 0$$
 on  $\{z = -H_0 + b(X)\}$ .

(H6) 
$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0$$
 on  $\{z = \zeta(t, X)\}$ .

- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth does not vanish

イロト 不得 トイヨト イヨト 二日

(H1) 
$$\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho}\nabla_{X,z}P - g\mathbf{e}_z \text{ in } \Omega_t$$
  
(H2) div  $\mathbf{U} = 0$   
(H3) curl  $\mathbf{U} = 0$   
(H4)  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$   
(H5)  $\mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = -H_0 + b(X)\}.$   
(H6)  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2}\mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = \zeta(t, X)\}.$   
(H7)  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}.$   
(H8) The fluid is at rest at infinity  
(H9) The water depth does not vanish

(H1) 
$$\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g\mathbf{e}_z \text{ in } \Omega_t$$
  
(H2) div  $\mathbf{U} = 0$   
(H3) curl  $\mathbf{U} = 0$   
(H4)  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$   
(H5)  $\mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = -H_0 + b(X)\}.$   
(H6)  $\partial_t \zeta - \sqrt{1 + |\nabla\zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = \zeta(t, X)\}.$   
(H7)  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}.$   
(H8)  $\lim_{|(X,z)| \to \infty} |\zeta(t, X)| + |\mathbf{U}(t, X, z)| = 0$   
(H9) The water depth does not vanish

- 2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶

(H1) 
$$\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g\mathbf{e}_z \text{ in } \Omega_t$$
  
(H2) div  $\mathbf{U} = 0$   
(H3) curl  $\mathbf{U} = 0$   
(H4)  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$   
(H5)  $\mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = -H_0 + b(X)\}.$   
(H6)  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = \zeta(t, X)\}.$   
(H7)  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}.$   
(H8)  $\lim_{|(X,z)| \to \infty} |\zeta(t, X)| + |\mathbf{U}(t, X, z)| = 0$   
(H9)  $\exists H_{min} > 0, \quad H_0 + \zeta(t, X) - b(X) \ge H_{min}.$ 

- 2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶

(H1) 
$$\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g\mathbf{e}_z \text{ in } \Omega_t$$
  
(H2) div  $\mathbf{U} = 0$   
(H3) curl  $\mathbf{U} = 0$   
(H4)  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$   
(H5)  $\mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = -H_0 + b(X)\}.$   
(H6)  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = \zeta(t, X)\}.$   
(H7)  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}.$   
(H8)  $\lim_{|(X,z)| \to \infty} |\zeta(t, X)| + |\mathbf{U}(t, X, z)| = 0$   
(H9)  $\exists H_{min} > 0, \quad H_0 + \zeta(t, X) - b(X) \ge H_{min}.$ 

# Definition

Equations (H1)-(H9) are called free surface Euler equations.

(H1) 
$$\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g\mathbf{e}_z \text{ in } \Omega_t$$
  
(H2) div  $\mathbf{U} = 0$   
(H3) curl  $\mathbf{U} = 0$   
(H4)  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}$ .  
(H5)  $\mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = -H_0 + b(X)\}$ .  
(H6)  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = \zeta(t, X)\}$ .  
(H7)  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}$ .  
(H8)  $\lim_{|(X,z)| \to \infty} |\zeta(t, X)| + |\mathbf{U}(t, X, z)| = 0$   
(H9)  $\exists H_{min} > 0$ ,  $H_0 + \zeta(t, X) - b(X) \ge H_{min}$ .

#### Definition

Equations (H1)-(H9) are called free surface Euler equations.

→ ONE unknown function  $\zeta$  on a fixed domain  $\mathbb{R}^d$ → THREE unknown functions U on a moving, unknown domain  $\Omega_t$ 

(H1)' 
$$\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho}\nabla_{X,z}P - g\mathbf{e}_z \text{ in } \Omega_t$$
  
(H2)' div  $\mathbf{U} = 0$   
(H3)' curl  $\mathbf{U} = 0$   
(H4)'  $\Omega_t = \{(X,z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t,X)\}.$   
(H5)'  $\mathbf{U} \cdot \mathbf{n} = 0 \text{ on } \{z = -H_0 + b(X)\}$   
(H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla\zeta|^2}\mathbf{U} \cdot \mathbf{n} = 0 \text{ on } \{z = \zeta(t,X)\}.$   
(H7)'  $P = P_{atm} \text{ on } \{z = \zeta(t,X)\}.$   
(H8)'  $\lim_{|(X,z)| \to \infty} |\zeta(t,X)| + |\mathbf{U}(t,X,z)| = 0$   
(H9)'  $\exists H_{min} > 0, \qquad H_0 + \zeta(t,X) - b(X) \ge H_{min}.$ 

Water Waves with vorticity

Toronto, January 10th, 2014 4 / 33

(日) (四) (三) (三) (三)

(H1)'  $\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{\mathbf{X},z})\mathbf{U} = -\frac{1}{a} \nabla_{\mathbf{X},z} P - g \mathbf{e}_z$  in  $\Omega_t$ (H2)' div U = 0(H3)'  $\mathbf{U} = \nabla_{\mathbf{X},\mathbf{z}} \Phi$ (H4)'  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$ (H5)' **U** · **n** = 0 on { $z = -H_0 + b(X)$ } (H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = \zeta(t, X)\}$ . (H7)'  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}$ . (H8)'  $\lim_{|(X,z)|\to\infty} |\zeta(t,X)| + |\mathbf{U}(t,X,z)| = 0$ (H9)'  $\exists H_{min} > 0$ ,  $H_0 + \zeta(t, X) - b(X) > H_{min}$ .

(H1)' 
$$\partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla_{X,z})\mathbf{U} = -\frac{1}{\rho}\nabla_{X,z}P - g\mathbf{e}_z \text{ in } \Omega_t$$
  
(H2)'  $\Delta_{X,z}\Phi = 0$   
(H3)'  $\mathbf{U} = \nabla_{X,z}\Phi$   
(H4)'  $\Omega_t = \{(X,z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t,X)\}.$   
(H5)'  $\mathbf{U} \cdot \mathbf{n} = 0 \text{ on } \{z = -H_0 + b(X)\}$   
(H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla\zeta|^2}\mathbf{U} \cdot \mathbf{n} = 0 \text{ on } \{z = \zeta(t,X)\}.$   
(H7)'  $P = P_{atm} \text{ on } \{z = \zeta(t,X)\}.$   
(H8)'  $\lim_{|(X,z)| \to \infty} |\zeta(t,X)| + |\mathbf{U}(t,X,z)| = 0$   
(H9)'  $\exists H_{min} > 0, \qquad H_0 + \zeta(t,X) - b(X) \ge H_{min}.$ 

(H1)'  $\partial_t \Phi + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = -\frac{1}{a} (P - P_{atm})$  in  $\Omega_t$ (H2)'  $\Delta_{X,z} \Phi = 0$ (H3)'  $\mathbf{U} = \nabla_{\mathbf{X},\mathbf{z}} \Phi$ (H4)'  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$ (H5)' **U** · **n** = 0 on { $z = -H_0 + b(X)$ } (H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0$  on  $\{z = \zeta(t, X)\}$ . (H7)'  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}$ . (H8)'  $\lim_{|(X,z)|\to\infty} |\zeta(t,X)| + |\mathbf{U}(t,X,z)| = 0$ (H9)'  $\exists H_{min} > 0$ ,  $H_0 + \zeta(t, X) - b(X) > H_{min}$ .

(H1)' 
$$\partial_t \Phi + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = -\frac{1}{\rho} (P - P_{atm}) \text{ in } \Omega_t$$
  
(H2)'  $\Delta_{X,z} \Phi = 0$   
(H3)'  $\mathbf{U} = \nabla_{X,z} \Phi$   
(H4)'  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$   
(H5)'  $\partial_{\mathbf{n}} \Phi = 0 \text{ on } \{z = -H_0 + b(X)\}.$   
(H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla\zeta|^2} \mathbf{U} \cdot \mathbf{n} = 0 \text{ on } \{z = \zeta(t, X)\}.$   
(H7)'  $P = P_{atm} \text{ on } \{z = \zeta(t, X)\}.$   
(H8)'  $\lim_{|(X,z)| \to \infty} |\zeta(t, X)| + |\mathbf{U}(t, X, z)| = 0$   
(H9)'  $\exists H_{min} > 0, \quad H_0 + \zeta(t, X) - b(X) \ge H_{min}.$ 

- (H1)'  $\partial_t \Phi + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = -\frac{1}{\rho} (P P_{atm}) \text{ in } \Omega_t$ (H2)'  $\Delta_{X,z} \Phi = 0$ (H3)'  $\mathbf{U} = \nabla_{X,z} \Phi$ (H4)'  $\Omega_t = \{ (X,z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t,X) \}.$ (H5)'  $\partial_{\mathbf{n}} \Phi = 0 \text{ on } \{ z = -H_0 + b(X) \}.$ (H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_{\mathbf{n}} \Phi = 0 \text{ on } \{ z = \zeta(t,X) \}.$ (H7)'  $P = P_{atm} \text{ on } \{ z = \zeta(t,X) \}.$
- (H8)'  $\lim_{|(X,z)|\to\infty} |\zeta(t,X)| + |\mathbf{U}(t,X,z)| = 0$
- (H9)'  $\exists H_{min} > 0$ ,  $H_0 + \zeta(t, X) b(X) \ge H_{min}$ .

- $\begin{array}{ll} (\text{H1})' & \partial_t \Phi + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = -\frac{1}{\rho} (P P_{atm}) \text{ in } \Omega_t \\ (\text{H2})' & \Delta_{X,z} \Phi = 0 \\ (\text{H3})' & \mathbf{U} = \nabla_{X,z} \Phi \\ (\text{H4})' & \Omega_t = \{ (X,z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t,X) \}. \\ (\text{H5})' & \partial_n \Phi = 0 \text{ on } \{ z = -H_0 + b(X) \}. \\ (\text{H6})' & \partial_t \zeta \sqrt{1 + |\nabla \zeta|^2} \partial_n \Phi = 0 \text{ on } \{ z = \zeta(t,X) \}. \\ (\text{H7})' & P = P_{atm} \text{ on } \{ z = \zeta(t,X) \}. \\ (\text{H8})'' & \lim_{|(X,z)| \to \infty} |\zeta(t,X)| + |\nabla_{X,z} \Phi(t,X,z)| = 0 \end{array}$
- (H9)'  $\exists H_{min} > 0$ ,  $H_0 + \zeta(t, X) b(X) \ge H_{min}$ .

(H1)'  $\partial_t \Phi + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = -\frac{1}{2} (P - P_{atm})$  in  $\Omega_t$ (H2)'  $\Delta_{X,z} \Phi = 0$ (H3)'  $\mathbf{U} = \nabla_{\mathbf{X}} \nabla_{\mathbf{x}} \Phi$ (H4)'  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$ (H5)'  $\partial_{\mathbf{n}} \Phi = 0$  on  $\{z = -H_0 + b(X)\}$ . (H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_\mathbf{n} \Phi = 0$  on  $\{z = \zeta(t, X)\}$ . (H7)'  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}$ . (H8)"  $\lim_{|(X,z)|\to\infty} |\zeta(t,X)| + |\nabla_{X,z}\Phi(t,X,z)| = 0$ (H9)'  $\exists H_{min} > 0$ ,  $H_0 + \zeta(t, X) - b(X) > H_{min}$ .

#### Definition

Equations (H1)'-(H9)' are called free surface Bernoulli equations.

(H1)'  $\partial_t \Phi + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = -\frac{1}{2} (P - P_{atm})$  in  $\Omega_t$ (H2)'  $\Delta_{X,z} \Phi = 0$ (H3)'  $\mathbf{U} = \nabla_{\mathbf{X}} \cdot \boldsymbol{\Phi}$ (H4)'  $\Omega_t = \{(X, z) \in \mathbb{R}^{d+1}, -H_0 + b(X) < z < \zeta(t, X)\}.$ (H5)'  $\partial_{\mathbf{n}} \Phi = 0$  on  $\{z = -H_0 + b(X)\}$ . (H6)'  $\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_\mathbf{n} \Phi = 0$  on  $\{z = \zeta(t, X)\}$ . (H7)'  $P = P_{atm}$  on  $\{z = \zeta(t, X)\}$ . (H8)"  $\lim_{|(X,z)|\to\infty} |\zeta(t,X)| + |\nabla_{X,z}\Phi(t,X,z)| = 0$ (H9)'  $\exists H_{min} > 0$ ,  $H_0 + \zeta(t, X) - b(X) \ge H_{min}$ .

#### Definition

Equations (H1)'-(H9)' are called free surface Bernoulli equations.

 $\rightarrow$  ONE unknown function  $\zeta$  on a fixed domain  $\mathbb{R}^d$  $\rightarrow$  ONE unknown function  $\Phi$  on a moving, unknown domain  $\Omega_t$ 

4 / 33

ZAKHAROV 68:

• Define 
$$\psi(t,X) = \Phi(t,X,\zeta(t,X))$$
.

David Lannes (DMA, ENS et CNRS)

3

◆□ → ◆圖 → ◆ 国 → ◆ 国 →

ZAKHAROV 68:

• Define 
$$\psi(t,X) = \Phi(t,X,\zeta(t,X))$$
.

**2**  $\zeta$  and  $\psi$  fully determine  $\Phi$ : indeed, the equation

$$\left\{ \begin{array}{ll} \Delta_{X,z} \Phi = 0 & \text{in } \Omega_t, \\ \Phi_{|_{z=\zeta}} = \psi, \quad \partial_{\mathbf{n}} \Phi_{|_{z=-H_0+b}} = 0. \end{array} \right.$$

has a unique solution  $\Phi$ .

#### ZAKHAROV 68:

• Define 
$$\psi(t,X) = \Phi(t,X,\zeta(t,X))$$
.

**2**  $\zeta$  and  $\psi$  fully determine  $\Phi$ : indeed, the equation

$$\left\{ \begin{array}{ll} \Delta_{X,z} \Phi = 0 & \text{in } \Omega_t, \\ \Phi_{|_{z=\zeta}} = \psi, \quad \partial_{\mathbf{n}} \Phi_{|_{z=-H_0+b}} = 0. \end{array} \right.$$

has a unique solution  $\Phi$ .

S The equations can be put under the canonical Hamiltonian form

$$\partial_t \left( \begin{array}{c} \zeta \\ \psi \end{array} \right) = \left( \begin{array}{c} 0 & 1 \\ -1 & 0 \end{array} \right) \operatorname{grad}_{\zeta,\psi} H$$

with the Hamiltonian

$$H=rac{1}{2}\int_{\mathbb{R}^d}g\zeta^2+\int_{\Omega}|\mathbf{U}|^2$$

David Lannes (DMA, ENS et CNRS)

5 / 33

What are the equations on  $\zeta$  and  $\psi$ ???

David Lannes (DMA, ENS et CNRS)

3

What are the equations on  $\zeta$  and  $\psi$ ???

• Equation on  $\zeta$ . It is given by the kinematic equation

$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_{\mathbf{n}} \Phi_{|_{z=\zeta}} = 0$$

What are the equations on  $\zeta$  and  $\psi$ ???

• Equation on  $\zeta$ . It is given by the kinematic equation

$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_{\mathbf{n}} \Phi_{|_{z=\zeta}} = 0$$

CRAIG-SULEM 93:

Definition (Dirichlet-Neumann operator)

$$G[\zeta, b]: \quad \psi \quad \mapsto \quad G[\zeta, b]\psi = \sqrt{1 + |\nabla \zeta|^2} \, \partial_n \Phi_{|_{z=\zeta}}.$$

What are the equations on  $\zeta$  and  $\psi$ ???

• Equation on  $\zeta$ . It is given by the kinematic equation

$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_{\mathbf{n}} \Phi_{|_{z=\zeta}} = 0$$

CRAIG-SULEM 93:

Definition (Dirichlet-Neumann operator)

$$G[\zeta, b]: \quad \psi \quad \mapsto \quad G[\zeta, b]\psi = \sqrt{1 + |\nabla\zeta|^2} \, \partial_n \Phi_{|_{z=\zeta}}.$$

$$\begin{cases} \Delta_{X,z} \Phi = 0, \\ \partial_n \Phi_{|_{z=-H_0+b}} = 0, \\ \Phi_{|_{z=\zeta}} = \psi \end{cases}$$

David Lannes (DMA, ENS et CNRS)

6 / 33

What are the equations on  $\zeta$  and  $\psi$ ???

• Equation on  $\zeta$ . It is given by the kinematic equation

$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2} \partial_{\mathbf{n}} \Phi_{|_{z=\zeta}} = 0$$

CRAIG-SULEM 93:

Definition (Dirichlet-Neumann operator)

$$G[\zeta, b]: \quad \psi \quad \mapsto \quad G[\zeta, b]\psi = \sqrt{1 + |\nabla \zeta|^2} \, \partial_n \Phi_{|_{z=\zeta}}.$$

$$\left\{ \begin{array}{c} \Delta_{X,z} \Phi = 0, \\ \partial_n \Phi_{|_{z=-H_0+b}} = 0, \\ \Phi_{|_{z=\zeta}} = \psi \end{array} \right.$$

David Lannes (DMA, ENS et CNRS)

6 / 33

What are the equations on  $\zeta$  and  $\psi$ ???

• Equation on  $\zeta$ . It is given by the kinematic equation

$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2 \partial_\mathbf{n} \Phi|_{z=\zeta}} = 0$$

CRAIG-SULEM 93:

Definition (Dirichlet-Neumann operator)

$$G[\zeta, b]: \quad \psi \quad \mapsto \quad G[\zeta, b]\psi = \sqrt{1 + |\nabla \zeta|^2} \,\, \partial_n \Phi_{|_{z=\zeta}}$$

 $\leadsto$  The equation on  $\zeta$  can be written

$$\partial_t \zeta - G[\zeta, b]\psi = 0$$

What are the equations on  $\zeta$  and  $\psi$ ???

• Equation on  $\zeta$ . It is given by the kinematic equation

$$\partial_t \zeta - \sqrt{1 + |\nabla \zeta|^2 \partial_\mathbf{n} \Phi|_{z=\zeta}} = 0$$

CRAIG-SULEM 93:

Definition (Dirichlet-Neumann operator)

$$G[\zeta, b]: \quad \psi \quad \mapsto \quad G[\zeta, b]\psi = \sqrt{1 + |\nabla \zeta|^2} \,\, \partial_n \Phi_{|_{z=\zeta}}$$

 $\leadsto$  The equation on  $\zeta$  can be written

$$\partial_t \zeta - G[\zeta, b]\psi = 0$$

Remark. One has the exact relation

$$G[\zeta, b]\psi = -\nabla \cdot (h\overline{V})$$
 with  $h = H_0 + \zeta - b$  and  $\overline{V} = \frac{1}{h} \int_{-H_0+b}^{\zeta} V(X, z) dz$ 

David Lannes (DMA, ENS et CNRS)

6 / 33

• Equation on  $\psi$ . We use (H1)" and (H7)"

$$\partial_t \Phi + \frac{1}{2} |\nabla_{X,z} \Phi|^2 + gz = -\frac{1}{\rho} (P - P_{atm})$$
 AND  $P_{|_{z=\zeta}} = P_{atm}$ 

3

(日) (同) (日) (日) (日)

• Equation on  $\psi$ . We use (H1)" and (H7)"

3

(日) (同) (日) (日) (日)

• Equation on  $\psi$ . We use (H1)" and (H7)"

 $\leadsto$  The equation on  $\psi$  can be written

$$\partial_t \psi + g\zeta + rac{1}{2} |\nabla \psi|^2 - rac{(G[\zeta, b]\psi + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0.$$

David Lannes (DMA, ENS et CNRS)

3

・ 何 ト ・ ヨ ト ・ ヨ ト

• Equation on  $\psi$ . We use (H1)" and (H7)"

 $\leadsto$  The equation on  $\psi$  can be written

$$\partial_t \psi + g\zeta + rac{1}{2} |\nabla \psi|^2 - rac{(G[\zeta, b]\psi + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0.$$

The Zakharov-Craig-Sulem equations

$$\left\{ \begin{array}{l} \partial_t \zeta - G[\zeta, b]\psi = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\nabla \psi|^2 - \frac{(G[\zeta, b]\psi + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0. \end{array} \right.$$

David Lannes (DMA, ENS et CNRS)

#### Goal

Derive simpler asymptotic models describing the solutions to the water waves equations in shallow water.

## Goal

Derive simpler asymptotic models describing the solutions to the water waves equations in shallow water.

• For the sake of simplicity, we consider here a flat bottom (b = 0).

## Goal

Derive simpler asymptotic models describing the solutions to the water waves equations in shallow water.

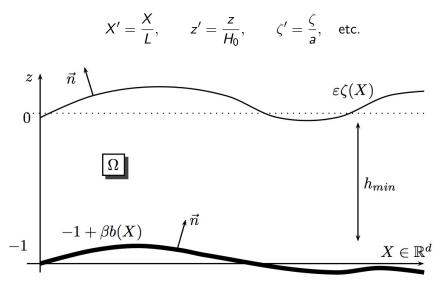
- For the sake of simplicity, we consider here a flat bottom (b = 0).
- We introduce three characteristic scales
  - **1** The characteristic water depth  $H_0$
  - 2 The characteristic horizontal scale L
  - The order of the free surface amplitude a
- Two independent dimensionless parameters can be formed from these three scales. We choose:

$$\frac{a}{H_0} = \varepsilon \quad (\text{amplitude parameter }),$$

$$\frac{n_0}{L^2} = \mu$$
 (shallowness parameter ).

David Lannes (DMA, ENS et CNRS)

We proceed to the simple nondimensionalizations



$$\left\{ egin{array}{l} \partial_t \zeta + 
abla \cdot (h\overline{m{V}}) = 0, \ \partial_t 
abla \psi + 
abla \zeta + rac{arepsilon}{2} 
abla |
abla \psi|^2 - arepsilon \mu 
abla rac{(-
abla \cdot (h\overline{m{V}}) + 
abla (arepsilon \zeta) \cdot 
abla \psi)^2}{2(1 + arepsilon^2 \mu |
abla \zeta|^2)} = 0, \end{array} 
ight.$$

$$h = 1 + \varepsilon \zeta$$
 and  $\overline{V} = \frac{1}{h} \int_{-1}^{\varepsilon \zeta} V(x, z) dz.$ 

David Lannes (DMA, ENS et CNRS)

Toronto, January 10th, 2014 10 / 33

3

イロト イポト イヨト イヨト

$$\left\{ egin{array}{l} \partial_t \zeta + 
abla \cdot (h \overline{oldsymbol{V}}) = 0, \ \partial_t 
abla \psi + 
abla \zeta + rac{arepsilon}{2} 
abla |
abla \psi|^2 - arepsilon \mu 
abla rac{(-
abla \cdot (h \overline{oldsymbol{V}}) + 
abla (arepsilon \zeta) \cdot 
abla \psi)^2}{2(1 + arepsilon^2 \mu |
abla \zeta|^2)} = 0, \end{array} 
ight.$$

$$h = 1 + \varepsilon \zeta$$
 and  $\overline{V} = \frac{1}{h} \int_{-1}^{\varepsilon \zeta} V(x, z) dz.$ 

$$\left\{ egin{array}{l} \partial_t \zeta + 
abla \cdot (h\overline{V}) = 0, \ \partial_t \overline{
abla} \psi + 
abla \zeta + rac{arepsilon}{2} 
abla | \overline{
abla} \psi |^2 - arepsilon \mu 
abla rac{(-
abla \cdot (h\overline{V}) + 
abla (arepsilon \zeta) \cdot \overline{
abla} \psi)^2}{2(1 + arepsilon^2 \mu | 
abla \zeta |^2)} = 0, \end{array} 
ight.$$

$$h = 1 + \varepsilon \zeta$$
 and  $\overline{V} = \frac{1}{h} \int_{-1}^{\varepsilon \zeta} V(x, z) dz.$ 

Shallow water asymptotics  $(\mu \ll 1)$ 

• We look for an asymptotic description with respect to  $\mu$  of  $\nabla\psi$  in terms of  $\zeta$  and  $\overline{V}$ 

$$\left\{ egin{array}{l} \partial_t \zeta + 
abla \cdot (h \overline{V}) = 0, \ \partial_t \nabla \psi + 
abla \zeta + rac{arepsilon}{2} 
abla |
abla \psi|^2 - arepsilon \mu 
abla rac{(-
abla \cdot (h \overline{V}) + 
abla (arepsilon \zeta) \cdot 
abla \psi)^2}{2(1 + arepsilon^2 \mu |
abla \zeta|^2)} = 0, \end{array} 
ight.$$

$$h = 1 + \varepsilon \zeta$$
 and  $\overline{V} = \frac{1}{h} \int_{-1}^{\varepsilon \zeta} V(x, z) dz.$ 

- We look for an asymptotic description with respect to  $\mu$  of  $\nabla\psi$  in terms of  $\zeta$  and  $\overline{V}$
- This is obtained through an asymtotic description of V in the fluid.

$$egin{aligned} &\partial_t \zeta + 
abla \cdot (h \overline{V}) = 0, \ &\partial_t 
abla \psi + 
abla \zeta + rac{arepsilon}{2} 
abla |
abla \psi|^2 - arepsilon \mu 
abla rac{(-
abla \cdot (h \overline{V}) + 
abla (arepsilon \zeta) \cdot 
abla \psi)^2}{2(1 + arepsilon^2 \mu |
abla \zeta|^2)} = 0, \end{aligned}$$

$$h = 1 + \varepsilon \zeta$$
 and  $\overline{V} = \frac{1}{h} \int_{-1}^{\varepsilon \zeta} V(x, z) dz.$ 

- We look for an asymptotic description with respect to  $\mu$  of  $\nabla\psi$  in terms of  $\zeta$  and  $\overline{V}$
- This is obtained through an asymtotic description of V in the fluid.
- This is obtained through an asympttic description of  $\Phi$  in the fluid,  $\Phi \sim \Phi_0 + \mu \Phi_1 + \mu^2 \Phi_2 + \dots$

$$egin{aligned} &\partial_t \zeta + 
abla \cdot (h \overline{V}) = 0, \ &\partial_t 
abla \psi + 
abla \zeta + rac{arepsilon}{2} 
abla |
abla \psi|^2 - arepsilon \mu 
abla rac{(-
abla \cdot (h \overline{V}) + 
abla (arepsilon \zeta) \cdot 
abla \psi)^2}{2(1 + arepsilon^2 \mu |
abla \zeta|^2)} = 0, \end{aligned}$$

$$h = 1 + \varepsilon \zeta$$
 and  $\overline{V} = \frac{1}{h} \int_{-1}^{\varepsilon \zeta} V(x, z) dz.$ 

- We look for an asymptotic description with respect to  $\mu$  of  $\nabla\psi$  in terms of  $\zeta$  and  $\overline{V}$
- This is obtained through an asymtotic description of V in the fluid.
- This is obtained through an asympttic description of  $\Phi$  in the fluid,  $\Phi\sim\Phi_0+\mu\Phi_1+\mu^2\Phi_2+\ldots$
- At first order, we have a columnar motion and therefore  $\nabla \psi = \overline{V} + O(\mu)$ .

Saint-Venant

$$\left( \begin{array}{c} \partial_t \zeta + \nabla \cdot (h\overline{V}) = 0, \\ \partial_t \overline{V} + \nabla \zeta + \varepsilon \overline{V} \cdot \nabla \overline{V} = 0. \end{array} \right.$$

where we dropped all  $O(\mu)$  terms.

- We look for an asymptotic description with respect to  $\mu$  of  $\nabla\psi$  in terms of  $\zeta$  and  $\overline{V}$
- This is obtained through an asymtotic description of V in the fluid.
- This is obtained through an asympttic description of  $\Phi$  in the fluid,  $\Phi\sim\Phi_0+\mu\Phi_1+\mu^2\Phi_2+\dots$
- At first order, we have a columnar motion and therefore  $\nabla \psi = \overline{V} + O(\mu)$ .

Saint-Venant

$$\begin{cases} \partial_t \zeta + \nabla \cdot (h\overline{V}) = 0, \\ \partial_t \overline{V} + \nabla \zeta + \varepsilon \overline{V} \cdot \nabla \overline{V} = 0. \end{cases}$$

where we dropped all  $O(\mu)$  terms.

- We look for an asymptotic description with respect to  $\mu$  of  $\nabla\psi$  in terms of  $\zeta$  and  $\overline{V}$
- This is obtained through an asymtotic description of V in the fluid.
- This is obtained through an asympttic description of  $\Phi$  in the fluid,  $\Phi\sim\Phi_0+\mu\Phi_1+\mu^2\Phi_2+\dots$
- At first order, we have a columnar motion and therefore  $\nabla \psi = \overline{V} + O(\mu)$ .
- All this procedure can be fully justified (cf Walter Craig for KdV ! )

"

| David Lannes (DMA, ENS et CNRS) | Water Waves with vorticity | Toronto, January 10th, 2 |
|---------------------------------|----------------------------|--------------------------|
|---------------------------------|----------------------------|--------------------------|

◆□ → < @ → < 差 → < 差 → < 差 → の < ??</p>

# Bonneton, Chazel, L. , Marche, Tissier 2011-2012

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

Toronto, January 10th, 2014

≣ ▶ ≣ ৩৭ে h, 2014 12 / 33 2D configurations can also be handled (D.L. & F. Marche, 2014):

• Tsunami island

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

A B < A B </p> Toronto, January 10th, 2014 13 / 33

2D configurations can also be handled (D.L. & F. Marche, 2014):

• Beach

David Lannes (DMA, ENS et CNRS)

- **4 A** 

## 2D configurations can also be handled (D.L. & F. Marche, 2014):

## • Overtopping

David Lannes (DMA, ENS et CNRS)



David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

Toronto, January 10th, 2014 14 / 33

3

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- $({\sf H1})$  The fluid is homogeneous and inviscid
- (H2) The fluid is incompressible
- (H4) The surface and the bottom can be parametrized as graphs above the still water level
- (H5) The fluid particles do not cross the bottom
- (H6) The fluid particles do not cross the surface
- (H7) There is no surface tension and the external pressure is constant.
- (H8) The fluid is at rest at infinity
- (H9) The water depth is always bounded from below by a nonnegative constant

Refs: Lindblad, Coutand-Shkoller, Shatah-Zeng, Zhang-Zhang, Masmoudi-Rousset, ...

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

Toronto, January 10th, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

15 / 33

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\zeta}} = P_{atm}$$

David Lannes (DMA, ENS et CNRS)

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\zeta}} = P_{atm}$$

• We get from curl  $\mathbf{U} = 0$  that  $\mathbf{U} = \nabla_{X,z} \Phi$ 

David Lannes (DMA, ENS et CNRS)

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\ell}} = P_{atm}$$

- We get from curl  ${f U}=0$  that  ${f U}=
  abla_{X,z}\Phi$
- $\bullet$  We replace Euler's equation on  $\boldsymbol{U}$  by Bernoulli's equation on  $\boldsymbol{\Phi}$

$$\partial_t \Phi + rac{1}{2} |
abla_{X,z} \Phi|^2 + gz = -rac{1}{
ho} (P - P_{atm})$$

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\zeta}} = P_{atm}$$

- We get from curl  ${\bm U}=0$  that  ${\bm U}=\nabla_{{\bm X},z}\Phi$
- $\bullet$  We replace Euler's equation on  $\boldsymbol{U}$  by Bernoulli's equation on  $\boldsymbol{\Phi}$

$$\partial_t \Phi + rac{1}{2} |
abla_{X,z} \Phi|^2 + gz = -rac{1}{
ho} (P - P_{atm})$$

• We eliminate the pressure by taking the trace on the interface

16 / 33

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\zeta}} = P_{atm}$$

- We get from curl  ${\bm U}=0$  that  ${\bm U}=\nabla_{{\bm X},z}\Phi$
- We replace Euler's equation on  $\boldsymbol{U}$  by Bernoulli's equation on  $\boldsymbol{\Phi}$

$$\partial_t \Phi + rac{1}{2} |
abla_{X,z} \Phi|^2 + gz = -rac{1}{
ho} (P - P_{atm})$$

- We eliminate the pressure by taking the trace on the interface
- We reduce the problem to an equation on  $\zeta$  and  $\psi(t, X) = \Phi(t, X, \zeta(t, x)).$

David Lannes (DMA, ENS et CNRS)

16 / 33

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\zeta}} = P_{atm}$$

David Lannes (DMA, ENS et CNRS)

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\ell}} = P_{atm}$$

## Rotational case

One has curl  $\mathbf{U} = \omega \neq \mathbf{0}$  and

$$\partial_t \omega + \mathbf{U} \cdot \nabla_{\mathbf{X}, \mathbf{z}} \omega = \omega \cdot \nabla_{\mathbf{X}, \mathbf{z}} \mathbf{U}.$$

David Lannes (DMA, ENS et CNRS)

3

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=\ell}} = P_{atm}$$

One has curl  $\mathbf{U} = \omega \neq 0$  and

$$\partial_t \omega + \mathbf{U} \cdot \nabla_{\mathbf{X}, \mathbf{z}} \omega = \omega \cdot \nabla_{\mathbf{X}, \mathbf{z}} \mathbf{U}.$$

• One cannot work with the Benouilli equation  $\rightarrow$  How can we use the boundary condition on the pressure P?

David Lannes (DMA, ENS et CNRS)

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z,$$
  
$$\nabla_{X,z} \cdot \mathbf{U} = 0,$$
  
$$P_{|_{z=0}} = P_{atm}$$

### Rotational case

One has curl  $\mathbf{U} = \omega \neq \mathbf{0}$  and

$$\partial_t \omega + \mathbf{U} \cdot \nabla_{\mathbf{X}, \mathbf{z}} \omega = \omega \cdot \nabla_{\mathbf{X}, \mathbf{z}} \mathbf{U}.$$

One cannot work with the Benouilli equation
→ How can we use the boundary condition on the pressure P?
One can remark that

$$(\nabla_{X,z}P)_{|_{z=\zeta}} = \begin{pmatrix} \nabla(P_{|_{z=\zeta}}) \\ 0 \end{pmatrix} + N\partial_z P_{|_{z=\zeta}}$$

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

Toronto, January 10th, 2014

17 / 33

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} \mathbf{P} - g \mathbf{e}_z$$

 $\mathsf{and}$ 

$$(\nabla_{X,z}P)_{|_{z=\zeta}} = N\partial_z P_{|_{z=\zeta}}, \quad \text{with} \quad N = \begin{pmatrix} -\nabla\zeta\\ 1 \end{pmatrix}.$$

E 990

イロト イヨト イヨト イヨト

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z$$

and

$$(\nabla_{X,z}P)_{|_{z=\zeta}} = N\partial_z P_{|_{z=\zeta}}, \qquad \text{with}$$

ith 
$$N=\left(egin{array}{c} -
abla \zeta \ 1 \end{array}
ight).$$

 $\rightarrow$  One can eliminate the pressure by

Taking the trace of Euler's equation at the surface

David Lannes (DMA, ENS et CNRS)

A B < A B </p> Toronto, January 10th, 2014 18 / 33

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z$$

and

$$(\nabla_{X,z}P)_{|_{z=\zeta}} = N\partial_z P_{|_{z=\zeta}}, \quad \text{with} \quad N = \begin{pmatrix} -\nabla\zeta\\ 1 \end{pmatrix}$$

 $\rightsquigarrow$  One can eliminate the pressure by

- Taking the trace of Euler's equation at the surface
- **2** Take the vectorial product of the resulting equation with N.

David Lannes (DMA, ENS et CNRS)

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} \mathbf{P} - g \mathbf{e}_z$$

and

$$(\nabla_{X,z}P)_{|_{z=\zeta}} = N\partial_z P_{|_{z=\zeta}}, \quad \text{with} \quad N = \begin{pmatrix} -\nabla\zeta\\ 1 \end{pmatrix}$$

 $\rightsquigarrow$  One can eliminate the pressure by

Taking the trace of Euler's equation at the surface

**2** Take the vectorial product of the resulting equation with N.

 $\rightsquigarrow$  This leads to an equation on the tangential part of the velocity at the surface

David Lannes (DMA, ENS et CNRS)

I → < □ → < □ → < □ → < □ → □ → ○ < ○</p>
Toronto, January 10th, 2014
18 / 33

$$\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} \mathbf{P} - g \mathbf{e}_z$$

and

$$(
abla_{X,z}P)_{|_{z=\zeta}} = N\partial_z P_{|_{z=\zeta}}, \quad \text{with} \quad N = \left( egin{array}{c} -
abla_\zeta \\ 1 \end{array} 
ight)$$

 $\rightsquigarrow$  One can eliminate the pressure by

Taking the trace of Euler's equation at the surface

2 Take the vectorial product of the resulting equation with N.

 $\rightsquigarrow$  This leads to an equation on the tangential part of the velocity at the surface

#### Notation

With  $\underline{U} = (\underline{V}, \underline{w}) = \mathbf{U}_{|_{z=\zeta}}$ , we write

$$J_{\parallel} = \underline{V} + \underline{w} \nabla \zeta \quad \text{so that} \quad \underline{U}$$

$$\left\{\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{\mathbf{X}, \mathbf{z}} \mathbf{U} = -\frac{1}{\rho} \nabla_{\mathbf{X}, \mathbf{z}} \mathbf{P} - g \mathbf{e}_{\mathbf{z}} \right\}_{|_{\mathbf{z}=\zeta}} \times N$$

David Lannes (DMA, ENS et CNRS)

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ へ ○
 Toronto, January 10th, 2014 19 / 33

$$\left\{\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z\right\}_{|z=\zeta} \times N$$

( with some computations)

$$\partial_t U_{\parallel} + g \nabla \zeta + \frac{1}{2} \nabla |U_{\parallel}|^2 - \frac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

David Lannes (DMA, ENS et CNRS)

Toronto, January 10th, 2014 19 / 33

æ

イロト イポト イヨト イヨト

$$\left\{\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z\right\}_{|z=\zeta} \times N$$

( with some computations)

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

What does it give in the irrotational case?

David Lannes (DMA, ENS et CNRS)

$$\left\{\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{\mathbf{X},z} \mathbf{U} = -\frac{1}{\rho} \nabla_{\mathbf{X},z} P - g \mathbf{e}_z \right\}_{|z=\zeta} \times N$$

( with some computations)

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

What does it give in the irrotational case? In the irrotational case, one has

$$U_{\parallel} = \nabla \psi.$$

David Lannes (DMA, ENS et CNRS)

4 E N

$$\left\{\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_{X,z} \mathbf{U} = -\frac{1}{\rho} \nabla_{X,z} P - g \mathbf{e}_z\right\}_{|z=\zeta} \times N$$

( with some computations)

$$\partial_t U_{\parallel} + g \nabla \zeta + \frac{1}{2} \nabla |U_{\parallel}|^2 - \frac{1}{2} \nabla ((1 + |\nabla \zeta|^2) \underline{w}^2) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

What does it give in the irrotational case? In the irrotational case, one has

$$U_{\parallel} = \nabla \psi.$$

How do we generalize to the rotational case? We decompose  $U_{\parallel}$  into

$$\textit{U}_{\parallel} = \nabla \psi + \nabla^{\perp} \widetilde{\psi}$$

David Lannes (DMA, ENS et CNRS)

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

and decomposed

$$U_{\parallel} = \nabla \psi + \nabla^{\perp} \widetilde{\psi}$$

David Lannes (DMA, ENS et CNRS)

3

<ロ> (日) (日) (日) (日) (日)

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

and decomposed

$$U_{\parallel} = 
abla \psi + 
abla^{\perp} \widetilde{\psi}$$

• The question is now to find equations on  $\psi$  and  $\overline{\psi}$ .

David Lannes (DMA, ENS et CNRS)

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

and decomposed

$$U_{\parallel} = 
abla \psi + 
abla^{\perp} \widetilde{\psi}$$

- The question is now to find equations on  $\psi$  and  $\dot{\psi}$ .
- This is done by projecting the equation onto its "gradient" and "orthogonal gradient" components

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla ((1 + |\nabla \zeta|^2) \underline{w}^2) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

and decomposed

$$U_{\parallel} = 
abla \psi + 
abla^{\perp} \widetilde{\psi}$$

- The question is now to find equations on  $\psi$  and  $\overline{\psi}$ .
- This is done by projecting the equation onto its "gradient" and "orthogonal gradient" components
- This is done by applying  $\frac{\text{div}}{\Delta}$  and  $\frac{\text{div}}{\Delta}$  to the equation

David Lannes (DMA, ENS et CNRS)

4 E N 4 E N

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla ((1 + |\nabla \zeta|^2) \underline{w}^2) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

and decomposed

$$U_{\parallel} = \nabla \psi + \nabla^{\perp} \widetilde{\psi}$$

- The question is now to find equations on  $\psi$  and  $\dot{\psi}$ .
- This is done by projecting the equation onto its "gradient" and "orthogonal gradient" components
- This is done by applying  $\frac{\text{div}}{\Delta}$  and  $\frac{\text{div}}{\Delta}$  to the equation
- The "orthogonal gradient" component yields

$$\partial_t (\underline{\omega} \cdot \mathbf{N} - \nabla^\perp \cdot U_{\parallel}) = 0$$

which is trivially true and does not bring any information

$$\partial_t U_{\parallel} + g \nabla \zeta + \frac{1}{2} \nabla |U_{\parallel}|^2 - \frac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

David Lannes (DMA, ENS et CNRS)

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla ((1 + |\nabla \zeta|^2) \underline{w}^2) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

• The "orthogonal gradient "component of the equation does not bring any information

$$\partial_t U_{\parallel} + g \nabla \zeta + rac{1}{2} \nabla |U_{\parallel}|^2 - rac{1}{2} \nabla \left( (1 + |\nabla \zeta|^2) \underline{w}^2 \right) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

- The "orthogonal gradient "component of the equation does not bring any information
- The "gradient" component of the equation is obtained by applying  $\frac{\text{div}}{\Lambda}$ . After remarking that

$$rac{{\mathsf{div}}}{\Delta} U_{\parallel} ~=~ rac{{\mathsf{div}}}{\Delta} (
abla \psi + 
abla^{\perp} \widetilde{\psi})$$

$$\partial_t U_{\parallel} + g \nabla \zeta + \frac{1}{2} \nabla |U_{\parallel}|^2 - \frac{1}{2} \nabla ((1 + |\nabla \zeta|^2) \underline{w}^2) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

- The "orthogonal gradient "component of the equation does not bring any information
- The "gradient" component of the equation is obtained by applying  $\frac{\text{div}}{\Delta}$ . After remarking that

$$egin{array}{rcl} rac{{\mathsf{div}}}{\Delta} U_{\parallel} &=& rac{{\mathsf{div}}}{\Delta} (
abla \psi + 
abla^{ot} \widetilde{\psi}) \ &=& \psi, \end{array}$$

we get

$$\partial_t U_{\parallel} + g \nabla \zeta + \frac{1}{2} \nabla |U_{\parallel}|^2 - \frac{1}{2} \nabla ((1 + |\nabla \zeta|^2) \underline{w}^2) + \underline{\omega} \cdot N \underline{V}^{\perp} = 0.$$

- The "orthogonal gradient "component of the equation does not bring any information
- The "gradient" component of the equation is obtained by applying  $\frac{\text{div}}{\Delta}$ . After remarking that

$$egin{array}{rcl} rac{{\mathsf{div}}}{\Delta} U_{\parallel} &=& rac{{\mathsf{div}}}{\Delta} (
abla \psi + 
abla^{ot} \widetilde{\psi}) \ &=& \psi, \end{array}$$

we get

$$\partial_t \psi + g\zeta + \frac{1}{2}|U_{\parallel}|^2 - \frac{1}{2}\big((1+|\nabla\zeta|^2)\underline{w}^2\big) + \frac{\nabla}{\Delta}\cdot\big(\underline{\omega}\cdot N\underline{V}^{\perp}\big) = 0$$

(ZCS) 
$$\begin{cases} \partial_t \zeta - \underline{\mathcal{U}} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\nabla \psi|^2 - \frac{(\underline{\mathcal{U}} \cdot \mathbf{N} + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0 \\ \omega = 0. \end{cases}$$

3

・ロト ・ 理ト ・ ヨト ・ ヨト

(ZCS) 
$$\begin{cases} \partial_t \zeta - \underline{\mathcal{U}} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\nabla \psi|^2 - \frac{(\underline{\mathcal{U}} \cdot \mathbf{N} + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0 \\ \omega = 0. \end{cases}$$

Moreover,  $\underline{U} \cdot \mathbf{N} = \mathbf{G}[\zeta]\psi$ 

3

<ロ> (日) (日) (日) (日) (日)

(ZCS) 
$$\begin{cases} \partial_t \zeta - \underline{\underline{U}} \cdot \underline{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\nabla \psi|^2 - \frac{(\underline{\underline{U}} \cdot \underline{N} + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0 \\ \omega = 0. \end{cases}$$

Moreover,  $U \cdot N = G[\zeta]\psi$ 

 $\Rightarrow$  (ZCS) is a closed system of equations in  $(\zeta, \psi)$ .

David Lannes (DMA, ENS et CNRS)

(ZCS) 
$$\begin{cases} \partial_t \zeta - \underline{\underline{U}} \cdot \underline{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\nabla \psi|^2 - \frac{(\underline{\underline{U}} \cdot \underline{N} + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0 \\ \omega = 0. \end{cases}$$

Moreover,  $\underline{U} \cdot \mathbf{N} = \mathbf{G}[\zeta]\psi$ 

 $\Rightarrow (\mathsf{ZCS}) \text{ is a closed system of equations in } (\zeta, \psi).$  Rotational case

$$(\mathsf{ZCS})_{gen} \quad \begin{cases} \partial_t \zeta - \underline{\mathcal{U}} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\mathcal{U}_{||}|^2 - \frac{(\underline{\mathcal{U}} \cdot \mathbf{N} + \nabla \zeta \cdot \mathcal{U}_{||})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot \mathbf{N} \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

э

(ZCS) 
$$\begin{cases} \partial_t \zeta - \underline{U} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\nabla \psi|^2 - \frac{(\underline{U} \cdot \mathbf{N} + \nabla \zeta \cdot \nabla \psi)^2}{2(1 + |\nabla \zeta|^2)} = 0 \\ \omega = 0. \end{cases}$$

Moreover,  $\underline{U} \cdot \mathbf{N} = \mathbf{G}[\zeta]\psi$ 

 $\Rightarrow (\mathsf{ZCS}) \text{ is a closed system of equations in } (\zeta, \psi).$  Rotational case

$$(\mathsf{ZCS})_{gen} \quad \begin{cases} \partial_t \zeta - \underline{U} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\mathbf{U}_{\parallel}|^2 - \frac{(\underline{U} \cdot \mathbf{N} + \nabla \zeta \cdot \mathbf{U}_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot \mathbf{N} \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

 $\rightsquigarrow$  is this a closed system of equations in  $(\zeta, \psi, \omega)$  ?

David Lannes (DMA, ENS et CNRS)

< A >

3

$$)_{gen} \quad \begin{cases} \partial_t \zeta - \underline{U} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |U_{||}|^2 - \frac{(\underline{U} \cdot \mathbf{N} + \nabla \zeta \cdot U_{||})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot \mathbf{N} \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

We want to prove that this is a closed system of equations in  $(\zeta, \psi, \omega)$ :

 $(\partial_{t} \zeta - II \cdot N - 0)$ 

$$(ZCS)_{ge}$$

$$)_{gen} \begin{cases} \partial_t \zeta & \underline{\cup} & \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |U_{||}|^2 - \frac{(\underline{U} \cdot \mathbf{N} + \nabla \zeta \cdot U_{||})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot \mathbf{N} \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

We want to prove that this is a closed system of equations in  $(\zeta, \psi, \omega)$ : • It is enough to prove that **U** is fully determined by  $(\zeta, \psi, \omega)$ 

(ZCS)<sub>g</sub>

$$gen \begin{cases} \partial_t \zeta - \underline{U} \cdot N = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |U_{\parallel}|^2 - \frac{(\underline{U} \cdot N + \nabla \zeta \cdot U_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot N \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

We want to prove that this is a closed system of equations in  $(\zeta, \psi, \omega)$ :

- It is enough to prove that **U** is fully determined by  $(\zeta, \psi, \omega)$
- We recall that by definition of  $\psi$  and  $\psi$ ,

$$U_{\parallel} = \nabla \psi + \nabla^{\perp} \widetilde{\psi},$$

and we have already used the fact that  $\left|\underline{\omega}\cdot \pmb{N}=
abla^{\perp}\cdot \pmb{U}_{\parallel}\right|$ ; therefore

(ZCS)<sub>g</sub>

$$\begin{cases} \partial_t \zeta - \underline{U} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |U_{\parallel}|^2 - \frac{(\underline{U} \cdot \mathbf{N} + \nabla \zeta \cdot U_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot \mathbf{N} \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

We want to prove that this is a closed system of equations in  $(\zeta, \psi, \omega)$ :

- It is enough to prove that **U** is fully determined by  $(\zeta, \psi, \omega)$
- We recall that by definition of  $\psi$  and  $\psi$ ,

$$U_{\parallel} = \nabla \psi + \nabla^{\perp} \widetilde{\psi},$$

and we have already used the fact that  $\left| \underline{\omega} \cdot \pmb{N} = 
abla^{\perp} \cdot \pmb{U}_{\parallel} \right|$ ; therefore

$$U_{\parallel} = \nabla \psi + \frac{\nabla^{\perp}}{\Delta} \underline{\omega} \cdot \mathbf{N}.$$

David Lannes (DMA, ENS et CNRS)

Toronto, January 10th, 2014

(ZCS)<sub>g</sub>

David Lannes

$$gen \begin{cases} \partial_t \zeta - \underline{U} \cdot N = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |U_{\parallel}|^2 - \frac{(\underline{U} \cdot N + \nabla \zeta \cdot U_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot N \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

We want to prove that this is a closed system of equations in  $(\zeta, \psi, \omega)$ :

- It is enough to prove that **U** is fully determined by  $(\zeta,\psi,\omega)$
- We recall that by definition of  $\psi$  and  $\psi$ ,

$$U_{\parallel} = \nabla \psi + \nabla^{\perp} \widetilde{\psi},$$

and we have already used the fact that  $\left|\underline{\omega}\cdot \pmb{N}=
abla^{\perp}\cdot \pmb{U}_{\parallel}\right|$ ; therefore

$$U_{\parallel} = \nabla \psi + \frac{\nabla^{\perp}}{\Delta} \underline{\omega} \cdot \mathbf{N}.$$

• We are therefore led to solve

$$\begin{cases} \operatorname{curl} \mathbf{U} = & \omega & \operatorname{in} & \Omega \\ \operatorname{div} \mathbf{U} = & 0 & \operatorname{in} & \Omega \\ U_{\parallel} = & \nabla \psi + \nabla^{\perp} \Delta^{-1}(\underline{\omega} \cdot N) & \operatorname{at the surface} \\ \mathbf{U}_{\mid_{z=-H_0}} \cdot N_b = & 0 & \operatorname{cat the bottom} \\ \end{cases}$$
(DMA, ENS et CNRS) Water Waves with vorticity Toronto, January 10th, 2014 23 / 33

$$\left\{ \begin{array}{ll} \operatorname{curl} \mathbf{U} = & \omega & \operatorname{in} & \Omega \\ \operatorname{div} \mathbf{U} = & 0 & \operatorname{in} & \Omega \\ U_{\parallel} = & \nabla \psi + \nabla^{\perp} \Delta^{-1}(\underline{\omega} \cdot \mathbf{N}) & \text{at the surface} \\ \mathbf{U}_{\mid z = -H_0} \cdot \mathbf{N}_b = & 0 & \text{at the bottom} \end{array} \right.$$

Proposition

4

For all  $\omega \in H_b(\operatorname{div}_0, \Omega)$  and all  $\psi \in \dot{H}^{3/2}(\mathbb{R}^d)$ , (1) There is a unique solution  $\mathbf{U} \in H^1(\Omega)^{d+1}$  to the div-curl problem, and

$$\|\mathbf{U}\|_2+\|
abla_{X,z}\mathbf{U}\|_2\leq C(rac{1}{h_{\min}},|\zeta|_{W^{2,\infty}})ig(\|oldsymbol{\omega}\|_{2,b}+|
abla\psi|_{H^{1/2}}ig).$$

David Lannes (DMA, ENS et CNRS)

$$\left\{ \begin{array}{ll} \operatorname{curl} \mathbf{U} = & \omega & \operatorname{in} \ \Omega \\ \operatorname{div} \mathbf{U} = & 0 & \operatorname{in} \ \Omega \\ U_{\parallel} = & \nabla \psi + \nabla^{\perp} \Delta^{-1}(\underline{\omega} \cdot \mathbf{N}) & \text{at the surface} \\ \mathbf{U}_{\mid_{z=-H_0}} \cdot \mathbf{N}_b = & 0 & \text{at the bottom.} \end{array} \right.$$

Proposition

For all  $\omega \in H_b(\operatorname{div}_0, \Omega)$  and all  $\psi \in \dot{H}^{3/2}(\mathbb{R}^d)$ , (2) The solution **U** can be written **U** = curl **A** +  $\nabla_{X,z}\Phi$  with

$$\begin{cases} \begin{array}{c} \operatorname{curl}\operatorname{curl}\mathbf{A} &= \boldsymbol{\omega} & \operatorname{in} \Omega, \\ \operatorname{div}\mathbf{A} &= 0 & \operatorname{in} \Omega, \\ N_b \times \mathbf{A}_{|\operatorname{bott}} &= 0 \\ N \cdot \mathbf{A}_{|\operatorname{surf}} &= 0 \\ (\operatorname{curl}\mathbf{A})_{||} &= \nabla^{\perp} \Delta^{-1} \underline{\omega} \cdot N, \\ N \cdot \operatorname{curl}\mathbf{A}_{|\operatorname{bott}} &= 0, \end{cases} \end{cases}$$

David Lannes (DMA, ENS et CNRS)

[...]

$$\begin{cases} \operatorname{curl} \mathbf{U} = & \omega \\ \operatorname{div} \mathbf{U} = & 0 \\ U_{\parallel} = & \nabla \psi + \nabla^{\perp} \Delta^{-1}(\underline{\omega} \cdot \mathbf{N}) \\ \mathbf{U}_{\mid z = -H_0} \cdot \mathbf{N}_b = & 0 \end{cases}$$

in  $\Omega$ in  $\Omega$ at the surface at the bottom.

### Proposition

For all  $\omega \in H_b(\operatorname{div}_0, \Omega)$  and all  $\psi \in \dot{H}^{3/2}(\mathbb{R}^d)$ , (2) [...] while  $\Phi \in \dot{H}^1(\Omega)$  solves

$$\left\{ \begin{array}{ll} \Delta_{X,z} \Phi = 0 & \text{ in } \Omega, \\ \Phi_{|_{z=\varepsilon\zeta}} = \psi, & \partial_n \Phi_{|_{z=-1+\beta b}} = 0. \end{array} \right.$$

David Lannes (DMA, ENS et CNRS)

### Proof.

$$\left\{ \begin{array}{ll} \operatorname{curl}\operatorname{curl}\mathbf{A} &= \boldsymbol{\omega} \\ N_b \times \mathbf{A}_{|_{z=-H_0}} &= 0 \\ N \cdot \mathbf{A}_{|_{z=\zeta}} &= 0 \\ \left(\operatorname{curl}\mathbf{A}_{|_{z=\zeta}}\right)_{\parallel} &= \nabla^{\perp}\widetilde{\psi}. \end{array} \right.$$

Step 4. Solving  $\Delta \tilde{\psi} = \underline{\omega} \cdot N$  in  $\dot{H}^{1/2}(\mathbb{R}^d)$ .

 Use Lax-Milgram in H<sup>1</sup>(ℝ<sup>d</sup>) to solve the variational formulation of the equation: for all v ∈ H<sup>1</sup>(ℝ<sup>d</sup>)

$$\int_{\mathbb{R}^{d}} \nabla \mathbf{v} \cdot \nabla \tilde{\psi} = \int_{\mathbb{R}^{d}} \underline{\omega} \cdot \mathbf{N} \mathbf{v}$$
$$= \int_{\mathbb{R}^{d}} \omega_{b} \cdot \mathbf{N} \mathbf{v}_{|z=-1+\beta b}^{\text{ext}} - \int_{\Omega} \boldsymbol{\omega} \cdot \nabla_{\mathbf{X},z} \mathbf{v}^{\text{ext}}$$
$$\leq \underbrace{\left( ||\mathbf{D}|^{-1} \omega_{b} \cdot \mathbf{N}_{b}|_{H^{1/2}} + ||\boldsymbol{\omega}||_{2} \right)}_{:=||\boldsymbol{\omega}||_{2,b}} |\nabla \mathbf{v}|_{2}$$

David Lannes (DMA, ENS et CNRS)

(ZCS)gen

1 2 1

$$\begin{cases} \partial_t \zeta - \underline{\underline{\omega}} \cdot \mathbf{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |U_{\parallel}|^2 - \frac{(\underline{\underline{U}} \cdot \mathbf{N} + \nabla \zeta \cdot \underline{U}_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot N\underline{\underline{V}}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

#### Corollary

This is a closed system of equations in  $(\zeta, \psi, \omega)$ .

 $II \cdot N = 0$ 

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

★ 3 > < 3 > Toronto, January 10th, 2014 26 / 33

(ZCS)gen

$$\begin{cases} \partial_t \varphi + g\zeta + \frac{1}{2} |U_{\parallel}|^2 - \frac{(\underline{U} \cdot N + \nabla \zeta \cdot U_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\omega} \cdot N \underline{V}) \\ \partial_t \omega + \mathbf{U} \cdot \nabla_{X,z} \omega = \omega \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

#### Corollary

This is a closed system of equations in  $(\zeta, \psi, \omega)$ .

 $\rightsquigarrow$  Is it well posed??? Strategy of the proof:

 $(\partial_{\lambda} \zeta - U \cdot N - 0)$ 

David Lannes (DMA, ENS et CNRS)

A B < A B <</p> Toronto, January 10th, 2014 26 / 33

(ZCS)<sub>gen</sub>

$$\begin{cases} \partial_t \zeta \cdot \underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} = 0, \\ \partial_t \psi + g\zeta + \frac{1}{2} |\boldsymbol{U}_{\parallel}|^2 - \frac{(\underline{\boldsymbol{U}} \cdot \boldsymbol{N} + \nabla \zeta \cdot \boldsymbol{U}_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} \underline{\boldsymbol{V}}) \\ \partial_t \boldsymbol{\omega} + \mathbf{U} \cdot \nabla_{X,z} \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

#### Corollary

This is a closed system of equations in  $(\zeta, \psi, \omega)$ .

→ Is it well posed??? Strategy of the proof:

 $( \partial \mathcal{L} | I \cdot N = 0$ 

Work with straightened vorticity and velocity: U = U ο Σ, ω = ω ο Σ and derive higher order estimates on the div-curl problem

David Lannes (DMA, ENS et CNRS)

(ZCS)<sub>gen</sub>

$$\begin{cases} \partial_t \zeta \cdot \underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} = 0, \\ \partial_t \psi + \boldsymbol{g}\zeta + \frac{1}{2} |\boldsymbol{\mathcal{U}}_{\parallel}|^2 - \frac{(\underline{\boldsymbol{\mathcal{U}}} \cdot \boldsymbol{N} + \nabla \zeta \cdot \boldsymbol{\mathcal{U}}_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} \underline{\boldsymbol{\mathcal{V}}}) \\ \partial_t \boldsymbol{\omega} + \mathbf{U} \cdot \nabla_{X,z} \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

#### Corollary

This is a closed system of equations in  $(\zeta, \psi, \omega)$ .

→ Is it well posed??? Strategy of the proof:

 $( \partial \mathcal{L} | I \cdot N = 0$ 

- Work with straightened vorticity and velocity: U = U ο Σ, ω = ω ο Σ and derive higher order estimates on the div-curl problem
- Study of the dependence of U = U[ζ](ψ, ω) on its arguments (shape derivatives etc)

David Lannes (DMA, ENS et CNRS)

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

(ZCS)<sub>gen</sub>

$$\begin{cases} \partial_t \zeta \cdot \underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} = 0, \\ \partial_t \psi + \boldsymbol{g}\zeta + \frac{1}{2} |\boldsymbol{\mathcal{U}}_{\parallel}|^2 - \frac{(\underline{\boldsymbol{\mathcal{U}}} \cdot \boldsymbol{N} + \nabla \zeta \cdot \boldsymbol{\mathcal{U}}_{\parallel})^2}{2(1 + |\nabla \zeta|^2)} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} \underline{\boldsymbol{\mathcal{V}}}) \\ \partial_t \boldsymbol{\omega} + \mathbf{U} \cdot \nabla_{X,z} \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

#### Corollary

This is a closed system of equations in  $(\zeta, \psi, \omega)$ .

 $\rightsquigarrow$  Is it well posed??? Strategy of the proof:

 $( \partial \mathcal{L} | I \cdot N = 0$ 

- Work with straightened vorticity and velocity: U = U ο Σ, ω = ω ο Σ and derive higher order estimates on the div-curl problem
- Study of the dependence of U = U[ζ](ψ, ω) on its arguments (shape derivatives etc)
- Quasilinearization of the equation ~> role of the "good unknown"

$$\begin{cases} \partial_{t} \zeta \cdot \underline{\boldsymbol{\upsilon}} \cdot \boldsymbol{N} = \boldsymbol{\upsilon}, \\ \partial_{t} \psi + \boldsymbol{g} \zeta + \frac{1}{2} |\boldsymbol{U}_{\parallel}|^{2} - \frac{(\underline{\boldsymbol{U}} \cdot \boldsymbol{N} + \nabla \zeta \cdot \boldsymbol{U}_{\parallel})^{2}}{2(1 + |\nabla \zeta|^{2})} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} \underline{\boldsymbol{V}}) \\ \partial_{t} \boldsymbol{\omega} + \mathbf{U} \cdot \nabla_{X,z} \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

#### Corollary

This is a closed system of equations in  $(\zeta, \psi, \omega)$ .

→ Is it well posed??? Strategy of the proof:

 $( \partial \mathcal{L} | I \cdot N = 0$ 

- Work with straightened vorticity and velocity: U = U ο Σ, ω = ω ο Σ and derive higher order estimates on the div-curl problem
- Study of the dependence of U = U[ζ](ψ, ω) on its arguments (shape derivatives etc)
- Quasilinearization of the equation ~> role of the "good unknown"
- A priori estimates

$$\begin{cases} \partial_{t} \zeta \cdot \underline{\boldsymbol{\upsilon}} \cdot \boldsymbol{N} = \boldsymbol{\upsilon}, \\ \partial_{t} \psi + \boldsymbol{g} \zeta + \frac{1}{2} |\boldsymbol{U}_{\parallel}|^{2} - \frac{(\underline{\boldsymbol{U}} \cdot \boldsymbol{N} + \nabla \zeta \cdot \boldsymbol{U}_{\parallel})^{2}}{2(1 + |\nabla \zeta|^{2})} = \frac{\nabla^{\perp}}{\Delta} \cdot (\underline{\boldsymbol{\omega}} \cdot \boldsymbol{N} \underline{\boldsymbol{V}}) \\ \partial_{t} \boldsymbol{\omega} + \mathbf{U} \cdot \nabla_{X,z} \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \nabla_{X,z} \mathbf{U}. \end{cases}$$

#### Corollary

This is a closed system of equations in  $(\zeta, \psi, \omega)$ .

→ Is it well posed??? Strategy of the proof:

 $( \partial \mathcal{L} | I \cdot N = 0$ 

- Work with straightened vorticity and velocity: U = U ο Σ, ω = ω ο Σ and derive higher order estimates on the div-curl problem
- Study of the dependence of U = U[ζ](ψ, ω) on its arguments (shape derivatives etc)
- Quasilinearization of the equation ~> role of the "good unknown"
- A priori estimates
- Section Existence proof

David Lannes (DMA, ENS et CNRS)

# Quasilinearization

• The "good unknown" is natural for the study of free boundary problems (Alinhac). Here

$$\partial_k \partial^\beta \psi \rightsquigarrow \underline{U}_{(\beta)\parallel} \cdot \mathbf{e}_k \quad \text{with} \quad U_{(\beta)} = \partial^\beta U - "\partial^\alpha \zeta \partial_z U"$$

3

< 回 ト < 三 ト < 三 ト

# Quasilinearization

• The "good unknown" is natural for the study of free boundary problems (Alinhac). Here

$$\partial_k \partial^\beta \psi \rightsquigarrow \underline{U}_{(\beta)\parallel} \cdot \mathbf{e}_k \quad \text{with} \quad U_{(\beta)} = \partial^\beta U - "\partial^\alpha \zeta \partial_z U"$$

• Differentiating the equations we get

$$\begin{aligned} &(\partial_t + \underline{V} \cdot \nabla) \partial^{\alpha} \zeta - \partial_k \underline{U}_{(\beta)} \cdot \mathbf{N} &\sim 0, \\ &(\partial_t + \underline{V} \cdot \nabla) (U_{(\beta)\parallel} \cdot \mathbf{e}_k) + \mathfrak{a} \partial^{\alpha} \zeta &\sim 0, \\ &(\partial_t^{\sigma} + U \cdot \nabla_{X,z}^{\sigma}) \partial^{\beta} \omega &\sim 0 \end{aligned}$$

with  $\mathfrak{a} = g + (\partial_t + \underline{V} \cdot \nabla) \underline{w}$  and  $\partial^{\alpha} = \partial_k \partial^{\beta}$ .

- 4 回 ト 4 三 ト - 三 - シック

#### Well-posedness

### A priori estimates

$$\begin{aligned} (\partial_t + \underline{V} \cdot \nabla) \partial^{\alpha} \zeta - \partial_k \underline{U}_{(\beta)} \cdot N &\sim 0 & \times \mathfrak{a} \partial^{\alpha} \zeta \\ (\partial_t + \underline{V} \cdot \nabla) (U_{(\beta)\parallel} \cdot \mathbf{e}_k) + \mathfrak{a} \partial^{\alpha} \zeta &\sim 0 & \times \partial_k \underline{U}_{(\beta)} \cdot N \\ (\partial_t^{\sigma} + U \cdot \nabla_{X,z}^{\sigma}) \partial^{\beta} \omega &\sim 0 & \times \partial^{\beta} \omega \\ \partial_t (\omega_b \cdot N_b) + \nabla \cdot (\omega_b \cdot N_b V_b) &= 0 & \times |D|^{-1} \end{aligned}$$

David Lannes (DMA, ENS et CNRS)

- 2

#### Well-posedness

# A priori estimates

$$\begin{aligned} (\partial_t + \underline{V} \cdot \nabla) \partial^{\alpha} \zeta - \partial_k \underline{U}_{(\beta)} \cdot N &\sim 0 & \times \mathfrak{a} \partial^{\alpha} \zeta \\ (\partial_t + \underline{V} \cdot \nabla) (U_{(\beta)\parallel} \cdot \mathbf{e}_k) + \mathfrak{a} \partial^{\alpha} \zeta &\sim 0 & \times \partial_k \underline{U}_{(\beta)} \cdot N \\ (\partial_t^{\sigma} + U \cdot \nabla_{X,z}^{\sigma}) \partial^{\beta} \omega &\sim 0 & \times \partial^{\beta} \omega \\ \partial_t (\omega_b \cdot N_b) + \nabla \cdot (\omega_b \cdot N_b V_b) &= 0 & \times |D|^{-1} \end{aligned}$$
  
For all  $|\alpha| \leq N \ (N \geq 5)$ , we get  
$$\frac{1}{2} \partial_t (\mathfrak{a} \partial^{\alpha} \zeta, \partial^{\alpha} \zeta) + \underbrace{((\partial_t + \underline{V} \cdot \nabla) (U_{(\beta)\parallel} \cdot \mathbf{e}_k), \partial_k \underline{U}_{(\beta)} \cdot N)}_{\text{Green+good unknown+vorticity equation}} \leq C(\mathcal{E}^N). \end{aligned}$$

David Lannes (DMA, ENS et CNRS)

3

(日) (同) (日) (日) (日)

#### Well-posedness

# A priori estimates

$$\begin{aligned} (\partial_t + \underline{V} \cdot \nabla) \partial^{\alpha} \zeta - \partial_k \underline{U}_{(\beta)} \cdot N &\sim 0 & \times \mathfrak{a} \partial^{\alpha} \zeta \\ (\partial_t + \underline{V} \cdot \nabla) (U_{(\beta)\parallel} \cdot \mathbf{e}_k) + \mathfrak{a} \partial^{\alpha} \zeta &\sim 0 & \times \partial_k \underline{U}_{(\beta)} \cdot N \\ (\partial_t^{\sigma} + U \cdot \nabla_{X,z}^{\sigma}) \partial^{\beta} \omega &\sim 0 & \times \partial^{\beta} \omega \\ \partial_t (\omega_b \cdot N_b) + \nabla \cdot (\omega_b \cdot N_b V_b) &= 0 & \times |D|^{-1} \end{aligned}$$
  
For all  $|\alpha| \leq N \ (N \geq 5)$ , we get  
$$\frac{1}{2} \partial_t (\mathfrak{a} \partial^{\alpha} \zeta, \partial^{\alpha} \zeta) + \underbrace{((\partial_t + \underline{V} \cdot \nabla) (U_{(\beta)\parallel} \cdot \mathbf{e}_k), \partial_k \underline{U}_{(\beta)} \cdot N)}_{\text{Green+good unknown+vorticity equation}} \leq C(\mathcal{E}^N). \end{aligned}$$

 $(\varsigma, \varphi, \omega) \stackrel{*}{=} |\varsigma|_{H^N} + \sum |\nabla \varphi(\alpha)|_{H^{-1/2}} + ||\omega||_{H^{N-1}} + |\omega_b|^*$  $H_0^{-1/2}$  $0 < |\alpha| \le N$ and  $\psi_{(\alpha)} = \partial^{\alpha} \psi - \underline{w} \partial^{\alpha} \zeta$ .

David Lannes (DMA, ENS et CNRS)

Toronto, January 10th, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

28 / 33

Several difficulties in implementing an iterative scheme

3

(日) (周) (三) (三)

Several difficulties in implementing an iterative scheme

Smoothing of the vertical derivatives in the vorticity equation

$$\partial_t^{\sigma}\omega + U \cdot \nabla_{X,z}^{\sigma}\omega = \omega \cdot \nabla_{X,z}^{\sigma}U$$

3

Several difficulties in implementing an iterative scheme

Smoothing of the vertical derivatives in the vorticity equation

$$\partial_t^{\sigma}\omega + U \cdot \nabla_{X,z}^{\sigma}\omega = \omega \cdot \nabla_{X,z}^{\sigma}U$$

• One can solve this equation without boundary conditions on  $\omega$  provided that  $\partial_t \zeta = \underline{U} \cdot N$  which is lost in the iterative scheme

Several difficulties in implementing an iterative scheme

Smoothing of the vertical derivatives in the vorticity equation

$$\partial_t^{\sigma}\omega + U \cdot \nabla_{X,z}^{\sigma}\omega = \omega \cdot \nabla_{X,z}^{\sigma}U$$

- **②** One can solve this equation without boundary conditions on  $\omega$  provided that  $\partial_t \zeta = \underline{U} \cdot N$  which is lost in the iterative scheme
- The div-curl problem is solvable if the vorticity is divergence free: this is also lost.

< 回 ト < 三 ト < 三 ト

Several difficulties in implementing an iterative scheme

Smoothing of the vertical derivatives in the vorticity equation

$$\partial_t^{\sigma}\omega + U \cdot \nabla_{X,z}^{\sigma}\omega = \omega \cdot \nabla_{X,z}^{\sigma}U$$

- **②** One can solve this equation without boundary conditions on  $\omega$  provided that  $\partial_t \zeta = \underline{U} \cdot N$  which is lost in the iterative scheme
- The div-curl problem is solvable if the vorticity is divergence free: this is also lost.

#### Theorem (Angel Castro, D. L. 2014)

The  $(ZCS)_{gen}$  equations are locally well posed in the energy space associated to  $\mathcal{E}^N$  with  $N \geq 5$ .

29 / 33

イロト 不得下 イヨト イヨト

$$\partial_t \left( egin{array}{c} \zeta \ \psi \end{array} 
ight) = J \mathrm{grad}_{\zeta,\psi} H \quad \mathrm{with} \quad J = \left( egin{array}{c} 0 & 1 \ -1 & 0 \end{array} 
ight)$$

and with the Hamiltonian

$$H=rac{1}{2}\int_{\mathbb{R}^d}g\zeta^2+\int_{\Omega}|\mathbf{U}|^2.$$

Can this be generalized to our new formulation with vorticity?

David Lannes (DMA, ENS et CNRS) Water Waves with vorticity Toronto, January 10th, 2014 30 / 33

E 5 4 E 5

3

$$\partial_t \left( egin{array}{c} \zeta \ \psi \end{array} 
ight) = J \mathrm{grad}_{\zeta,\psi} H \quad \mathrm{with} \quad J = \left( egin{array}{c} 0 & 1 \ -1 & 0 \end{array} 
ight)$$

and with the Hamiltonian

$$H=\frac{1}{2}\int_{\mathbb{R}^d}g\zeta^2+\int_{\Omega}|\mathbf{U}|^2.$$

Theorem (Angel Castro, D. L. 2014)

Let us define the Fréchet manifold

 $\mathcal{M} = \{(\zeta, \psi, \boldsymbol{\omega}), H_0 + \zeta > h_{\min}, \text{ div } \boldsymbol{\omega} = 0 \text{ in } \Omega_{\zeta}, |D|^{-1} \omega_b \cdot N_b \in H^{\infty}\}.$ 

$$\partial_t \left( egin{array}{c} \zeta \ \psi \end{array} 
ight) = J \mathrm{grad}_{\zeta,\psi} H \quad \mathrm{with} \quad J = \left( egin{array}{c} 0 & 1 \ -1 & 0 \end{array} 
ight)$$

and with the Hamiltonian

$$H=\frac{1}{2}\int_{\mathbb{R}^d}g\zeta^2+\int_{\Omega}|\mathbf{U}|^2.$$

Theorem (Angel Castro, D. L. 2014)

Let us define the Fréchet manifold

$$\mathcal{M} = \{(\zeta, \psi, \boldsymbol{\omega}), H_0 + \zeta > h_{\min}, \text{ div } \boldsymbol{\omega} = 0 \text{ in } \Omega_{\zeta}, |D|^{-1} \omega_b \cdot N_b \in H^{\infty}\}.$$

There exists a mapping  $J : T^*\mathcal{M} \to T\mathcal{M}$ , antisymmetric for the  $T^*\mathcal{M} - T\mathcal{M}$  duality product, and such that the equations can be written

$$\partial_t \begin{pmatrix} \zeta \\ \psi \\ \omega \end{pmatrix} = J_{\zeta,\psi,\omega} \operatorname{grad}_{\zeta,\psi,\omega} H$$

David Lannes (DMA, ENS et CNRS)

$$\partial_t \left( egin{array}{c} \zeta \ \psi \end{array} 
ight) = J \mathrm{grad}_{\zeta,\psi} H \quad \mathrm{with} \quad J = \left( egin{array}{c} 0 & 1 \ -1 & 0 \end{array} 
ight)$$

and with the Hamiltonian

$$H = \frac{1}{2} \int_{\mathbb{R}^d} g\zeta^2 + \int_{\Omega} |\mathbf{U}|^2.$$

Corollary

The equations are equivalent to the Hamiltonian equation

$$\forall F \in \mathcal{A}, \qquad \dot{F} = \{F, H\},$$

where the Poisson bracket  $\{\cdot, \cdot\}$  is defined as

$$\{F,G\} = \int_{\mathbb{R}^d} \frac{\delta F}{\delta \zeta} \frac{\delta G}{\delta \psi} - \frac{\delta F}{\delta \psi} \frac{\delta G}{\delta \zeta} - \int_{\mathbb{R}^d} \underline{\omega}_h \cdot \left[ \frac{\delta F}{\delta \psi} \frac{\nabla^{\perp}}{\Delta} \frac{\delta G}{\delta \psi} - \frac{\delta G}{\delta \psi} \frac{\nabla^{\perp}}{\Delta} \frac{\delta F}{\delta \psi} \right] + \int_{\Omega} (\operatorname{curl} \frac{\delta F}{\delta \omega}) \cdot (\omega \times \operatorname{curl} \frac{\delta G}{\delta \omega}).$$

David Lannes (DMA, ENS et CNRS)

3

(日) (同) (日) (日) (日)

• We work with a dimensionless version of the (ZCS)<sub>gen</sub> equations

- 31

- 4 同 6 4 日 6 4 日 6

- We work with a dimensionless version of the (ZCS)<sub>gen</sub> equations
- 2 We need to handle the singular limit  $\mu 
  ightarrow 0$

#### Theorem

The existence time is uniform with respect to  $\mu$ .

- We work with a dimensionless version of the (ZCS)<sub>gen</sub> equations
- 2 We need to handle the singular limit  $\mu 
  ightarrow 0$

#### Theorem

The existence time is uniform with respect to  $\mu$ .

Solution We need to relate  $\zeta$ ,  $U_{\parallel}$  (instead of  $\nabla \psi$ ),  $\overline{V}$  and  $\omega$ 

- We work with a dimensionless version of the (ZCS)<sub>gen</sub> equations
- 2 We need to handle the singular limit  $\mu 
  ightarrow 0$

#### Theorem

The existence time is uniform with respect to  $\mu$ .

- Solution We need to relate  $\zeta$ ,  $U_{\parallel}$  (instead of  $\nabla \psi$ ),  $\overline{V}$  and  $\omega$
- Due to the vorticity, the flow is no longer columnar at order  $O(\mu)$ .

- We work with a dimensionless version of the (ZCS)<sub>gen</sub> equations
- 2 We need to handle the singular limit  $\mu 
  ightarrow 0$

#### Theorem

The existence time is uniform with respect to  $\mu$ .

- **③** We need to relate  $\zeta$ ,  $U_{\parallel}$  (instead of  $\nabla \psi$ ),  $\overline{V}$  and  $\omega$
- Due to the vorticity, the flow is no longer columnar at order  $O(\mu)$ .
- For instance

$$U_{\parallel} = \overline{V} + \sqrt{\mu} Q$$
 with  $Q = rac{1}{h} \int_{-1}^{\zeta} \int_{z'}^{\zeta} \omega_h$ 

David Lannes (DMA, ENS et CNRS)

伺下 イヨト イヨト ニヨ

- We work with a dimensionless version of the  $(ZCS)_{gen}$  equations
- 2 We need to handle the singular limit  $\mu 
  ightarrow 0$

#### Theorem

The existence time is uniform with respect to  $\mu$ .

- **③** We need to relate  $\zeta$ ,  $U_{\parallel}$  (instead of  $\nabla \psi$ ),  $\overline{V}$  and  $\omega$
- Due to the vorticity, the flow is no longer columnar at order  $O(\mu)$ .
- For instance

$$U_{\parallel} = \overline{V} + \sqrt{\mu} Q$$
 with  $Q = rac{1}{h} \int_{-1}^{\zeta} \int_{z'}^{\zeta} \omega_h$ 

**(** $h, \overline{V}$ **)** satisfy the same equations as in the irrotational case

31 / 33

- We work with a dimensionless version of the  $(ZCS)_{gen}$  equations
- 2 We need to handle the singular limit  $\mu 
  ightarrow 0$

#### Theorem

The existence time is uniform with respect to  $\mu$ .

- **③** We need to relate  $\zeta$ ,  $U_{\parallel}$  (instead of  $\nabla \psi$ ),  $\overline{V}$  and  $\omega$
- **(4)** Due to the vorticity, the flow is no longer columnar at order  $O(\mu)$ .
- For instance

$$U_{\parallel} = \overline{V} + \sqrt{\mu} Q$$
 with  $Q = rac{1}{h} \int_{-1}^{\zeta} \int_{z'}^{\zeta} \omega_h$ 

(h, V) satisfy the same equations as in the irrotational case
 One finds an equation for Q

$$(\partial_t + \overline{V} \cdot \nabla)Q + \overline{V} \cdot \nabla Q = 0$$

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

31 / 33

$$\left\{ egin{array}{l} \partial_t \zeta + 
abla(h\overline{V}) = 0, \ \partial_t(h\overline{V}) + 
abla \cdot (h\overline{V}\otimes\overline{V}) + h 
abla \zeta = 0 \end{array} 
ight.$$

The velocity at the surface if then given by

$$V_{|_{z=arepsilon \zeta}} = \overline{V} + \sqrt{\mu}Q, \quad ext{with} \quad (\partial_t + \overline{V} \cdot 
abla) Q + \overline{V} \cdot 
abla Q = 0.$$

3

$$\left\{ egin{array}{l} \partial_t \zeta + 
abla(h\overline{V}) = 0, \ \partial_t(h\overline{V}) + 
abla \cdot (h\overline{V}\otimes\overline{V}) + h 
abla \zeta = 0 \end{array} 
ight.$$

The velocity at the surface if then given by

$$V_{ert_{z=arepsilon\zeta}}=\overline{V}+\sqrt{\mu}Q, \hspace{0.5cm} ext{with} \hspace{0.5cm} (\partial_t+\overline{V}\cdot
abla)Q+\overline{V}\cdot
abla Q=0.$$

To do list:

- Higher order model (Green-Naghdi)
- Horizontal vorticity generation
- Vorticity generation by shocks
- Numerical implementation and experimental check



# Happy birthday Walter!

David Lannes (DMA, ENS et CNRS)

Water Waves with vorticity

Toronto, January 10th, 2014 33 / 33

3

- 4 週 ト - 4 三 ト - 4 三 ト