Kinematic Vortices in a Thin Film Driven by an Applied **Current**

Peter Sternberg, Indiana University

Joint work with Lydia Peres Hari and Jacob Rubinstein Technion

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Consider a thin film superconductor subjected to an applied current of magnitude I (fed through the sides) and a perpendicular applied magnetic field of magnitude h.

Standard magnetic vortex: localized region of trapped magnetic flux. Within Ginzburg-Landau theory: zero of complex-valued order parameter carrying non-zero degree.

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

Standard magnetic vortex: localized region of trapped magnetic flux. Within Ginzburg-Landau theory: zero of complex-valued order parameter carrying non-zero degree.

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

- oscillatory (periodic) behavior characterized by oppositely 'charged' vortex pairs either
- nucleating inside the sample and then exiting on opposite sides or

-entering the sample on opposite sides and ultimately colliding and annihilating each other in the middle.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Standard magnetic vortex: localized region of trapped magnetic flux. Within Ginzburg-Landau theory: zero of complex-valued order parameter carrying non-zero degree.

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

- oscillatory (periodic) behavior characterized by oppositely 'charged' vortex pairs either
- nucleating inside the sample and then exiting on opposite sides or

-entering the sample on opposite sides and ultimately colliding and annihilating each other in the middle.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

• Vortex emergence even with zero magnetic field:

"Kinematic vortices"

Standard magnetic vortex: localized region of trapped magnetic flux. Within Ginzburg-Landau theory: zero of complex-valued order parameter carrying non-zero degree.

However, experiments and numerics based on a Ginzburg-Landau type model reveal unexpected behavior in the present setting.

- oscillatory (periodic) behavior characterized by oppositely 'charged' vortex pairs either
- nucleating inside the sample and then exiting on opposite sides or

-entering the sample on opposite sides and ultimately colliding and annihilating each other in the middle.

• Vortex emergence even with zero magnetic field:

"Kinematic vortices"

Andronov, Gordion, Kurin, Nefedov, Shereshevsky '93, Berdiyorov, Elmurodov, Peeters, Vodolazov, Milosevic '09, Du '03

$$
\Psi_t + i\phi\Psi = (\nabla - ihA_0)^2 \Psi + (\Gamma - |\Psi|^2) \Psi \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

$$
\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{\Psi \nabla \Psi^* - \Psi^* \nabla \Psi\} - |\Psi|^2 hA_0\right) \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

where $\mathcal{R} = [-L, L] \times [-K, K]$, $A_0 = (-y, 0)$ and $\Gamma > 0$ prop. to $T_c - T$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

$$
\Psi_t + i\phi\Psi = (\nabla - ihA_0)^2 \Psi + (\Gamma - |\Psi|^2) \Psi \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

$$
\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{ \Psi \nabla \Psi^* - \Psi^* \nabla \Psi \} - |\Psi|^2 hA_0 \right) \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

where $\mathcal{R} = [-L, L] \times [-K, K]$, $A_0 = (-y, 0)$ and $\Gamma > 0$ prop. to $T_c - T$. Note that we can view ϕ as $\phi[\Psi]$.

$$
\Psi_t + i\phi\Psi = (\nabla - ihA_0)^2 \Psi + (\Gamma - |\Psi|^2) \Psi \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

$$
\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{ \Psi \nabla \Psi^* - \Psi^* \nabla \Psi \} - |\Psi|^2 hA_0 \right) \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

where $\mathcal{R} = [-L, L] \times [-K, K]$, $A_0 = (-y, 0)$ and $\Gamma > 0$ prop. to $T_c - T$. Note that we can view ϕ as $\phi[\Psi]$.

Boundary conditions for Ψ:

$$
\Psi(\pm L, y, t) = 0 \text{ for } |y| < \delta,
$$
\n
$$
(\nabla - ihA_0) \Psi \cdot \mathbf{n} = 0 \quad \text{elsewhere on } \partial \mathcal{R}.
$$

$$
\Psi_t + i\phi\Psi = (\nabla - ihA_0)^2 \Psi + (\Gamma - |\Psi|^2) \Psi \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

$$
\Delta \phi = \nabla \cdot \left(\frac{i}{2} \{ \Psi \nabla \Psi^* - \Psi^* \nabla \Psi \} - |\Psi|^2 hA_0 \right) \text{ for } (x, y) \in \mathcal{R}, \ t > 0,
$$

where $\mathcal{R} = [-L, L] \times [-K, K]$, $A_0 = (-y, 0)$ and $\Gamma > 0$ prop. to $T_c - T$. Note that we can view ϕ as $\phi[\Psi]$.

Boundary conditions for Ψ:

 $\Psi(\pm L, y, t) = 0$ for $|y| < \delta$, $(\nabla - i h A_0) \Psi \cdot \mathbf{n} = 0$ elsewhere on $\partial \mathcal{R}$.

Boundary conditions for ϕ :

$$
\phi_x(\pm L, y, t) = \begin{cases}\n-I & \text{for } |y| < \delta, \\
0 & \text{for } \delta < |y| < K, \\
\phi_y(x, \pm K, t) = 0 & \text{for } |x| \le L.\n\end{cases}
$$

Rigorous bifurcation from normal state

Normal State: At high temp. (Γ small) and/or large magnetic field or electric current, expect to see no superconductivity:

$$
\Psi\equiv 0,\quad \phi=\mathrm{I}\,\phi^0
$$

where

$$
\Delta \phi^0 = 0 \quad \text{in } \mathcal{R},
$$

$$
\phi_x^0(\pm L, y) = \begin{cases} -1 & \text{for } |y| < \delta, \\ 0 & \text{for } \delta < |y| < K, \end{cases}
$$

$$
\phi_y^0(x, \pm K) = 0 \text{ for } |x| \leq L.
$$

Rigorous bifurcation from normal state

Normal State: At high temp. (Γ small) and/or large magnetic field or electric current, expect to see no superconductivity:

$$
\Psi\equiv 0,\quad \phi=\mathrm{I}\,\phi^0
$$

where

$$
\Delta \phi^0 = 0 \quad \text{in } \mathcal{R},
$$

$$
\phi^0_x(\pm L, y) = \begin{cases} -1 & \text{for } |y| < \delta, \\ 0 & \text{for } \delta < |y| < K, \end{cases}
$$

$$
\phi^0_y(x, \pm K) = 0 \text{ for } |x| \leq L.
$$

Note: One easily checks that ϕ^0 is odd in x and even in y :

$$
\phi^{0}(-x, y) = -\phi^{0}(x, y)
$$
 and $\phi^{0}(x, -y) = \phi^{0}(x, y)$.

KORKAR KERKER EL VOLO

Linearization about Normal State:

$$
\Psi_t = \mathcal{L}[\Psi] + \Gamma \Psi \quad \text{in } \mathcal{R},
$$

where

$$
\mathcal{L}[\Psi] := (\nabla - i h A_0)^2 \Psi - i I \phi^0 \Psi.
$$

subject to boundary conditions

$$
\Psi(\pm L, y, t) = 0 \text{ for } |y| < \delta,
$$

$$
(\nabla - i h A_0) \Psi \cdot \mathbf{n} = 0
$$
 elsewhere on $\partial \mathcal{R}$,

KORK STRATER STRAKER

 \mathcal{L} = Imaginary perturbation of (self-adjoint) magnetic Schrödinger operator.

Note that \mathcal{L} , and hence its spectrum, depend on L, K, δ, h and I.

Note that \mathcal{L} , and hence its spectrum, depend on L, K, δ, h and I.

• Spectrum of $\mathcal L$ consists only of point spectrum:

 $\mathcal{L} [u_j]=-\lambda_j\,u_j\quad\text{in }\mathcal{R}\,+\,\text{ boundary cond.'s, }j=1,2,\ldots$

KORKAR KERKER E VOOR

with $0 < \text{Re }\lambda_1 \leq \text{Re }\lambda_2 \leq \ldots$, and $\|\text{Im }\lambda_j\| < \left\|\phi^0\right\|_{L^{\infty}} \text{Im }\lambda_j$

Note that \mathcal{L} , and hence its spectrum, depend on L, K, δ , h and I.

• Spectrum of $\mathcal L$ consists only of point spectrum:

 $\mathcal{L} [u_j]=-\lambda_j\,u_j\quad\text{in }\mathcal{R}\,+\,\text{ boundary cond.'s, }j=1,2,\ldots$

KORKAR KERKER EL VOLO

with $0 < \text{Re }\lambda_1 \leq \text{Re }\lambda_2 \leq \ldots$, and $\|\text{Im }\lambda_j\| < \left\|\phi^0\right\|_{L^{\infty}} \text{Im }\lambda_j$

• PT-Symmetry: $\mathcal L$ invariant under the combined operations of $x \rightarrow -x$ and complex conjugation $*$.

Note that \mathcal{L} , and hence its spectrum, depend on L, K, δ , h and I.

• Spectrum of $\mathcal L$ consists only of point spectrum:

 $\mathcal{L} [u_j]=-\lambda_j\,u_j\quad\text{in }\mathcal{R}\,+\,\text{ boundary cond.'s, }j=1,2,\ldots$

with $0 < \text{Re }\lambda_1 \leq \text{Re }\lambda_2 \leq \ldots$, and $\|\text{Im }\lambda_j\| < \left\|\phi^0\right\|_{L^{\infty}} \text{Im }\lambda_j$

• PT-Symmetry: $\mathcal L$ invariant under the combined operations of $x \rightarrow -x$ and complex conjugation $*$. Hence, if (λ_j,u_j) is an eigenpair then so is $(\lambda_j^*,u_j^\dagger)$ $\mathbf{y}_j^{(j)}$ where

$$
u_j^{\dagger}(x,y):=u_j^*(-x,y).
$$

KORK (FRAGE) EL POLO

If λ_j is real, then $u_j = u_j^{\dagger}$ $j^{\!\top\!}$, and indeed each λ_j *is* real for I small. Eigenvalue collisions \implies Complexification of spectrum

Collisions of first 4 eigenvalues for $L = 1$, $K = 2/3$, $\delta = 1/6$, $h = 0$.

イロン イ部ン イ君ン イ君ン

重

 OQ

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q @

From now on, fix $I > I_c$ so that $\text{Im }\lambda_1 \neq 0$.

From now on, fix $I > I_c$ so that $\text{Im }\lambda_1 \neq 0$.

Going back to linearized problem

```
\Psi_t = \mathcal{L}[\Psi] + \Gamma \Psi in \mathcal{R},
```
K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

we see that once Γ exceeds $\text{Re } \lambda_1$, normal state loses stability.

From now on, fix $I > I_c$ so that $\text{Im }\lambda_1 \neq 0$.

Going back to linearized problem

$$
\Psi_t = \mathcal{L}[\Psi] + \Gamma \Psi \quad \text{in } \mathcal{R},
$$

we see that once Γ exceeds $\text{Re } \lambda_1$, normal state loses stability.

Set $\mathcal{L}_1 := \mathcal{L} + \text{Re }\lambda_1$, so that bottom of spectrum of \mathcal{L}_1 consists of purely imaginary eigenvalues:

 $\pm \text{Im }\lambda_1$ i,

4 D > 4 P + 4 B + 4 B + B + 9 Q O

followed by eigenvalues having negative real part.

From now on, fix $I > I_c$ so that $\text{Im }\lambda_1 \neq 0$.

Going back to linearized problem

$$
\Psi_t = \mathcal{L}[\Psi] + \Gamma \Psi \quad \text{in } \mathcal{R},
$$

we see that once Γ exceeds $\text{Re } \lambda_1$, normal state loses stability.

Set $\mathcal{L}_1 := \mathcal{L} + \text{Re }\lambda_1$, so that bottom of spectrum of \mathcal{L}_1 consists of purely imaginary eigenvalues:

 $\pm \text{Im }\lambda_1$ i,

followed by eigenvalues having negative real part.

To capture this (Hopf) bifurcation we take

 $\Gamma = \text{Re } \lambda_1 + \varepsilon$ for $0 < \varepsilon \ll 1$.

KID KA KERKER KID KO

Formulation as a single nonlocal PDE:

With the choice $\Gamma = \text{Re } \lambda_1 + \varepsilon$ for $0 < \varepsilon \ll 1$, full problem then takes the form of a single nonlinear, nonlocal PDE:

 $\Psi_t = \mathcal{L}_1[\Psi] + \varepsilon \Psi + \mathcal{N}(\Psi),$

where

$$
\mathcal{N}(\Psi) := -|\Psi|^2 \Psi - i \tilde{\phi}[\Psi] \Psi,
$$

with $\tilde{\phi} = \tilde{\phi}[\Psi]$ solving

$$
\Delta \tilde{\phi} = \nabla \cdot \left(\frac{i}{2} \{ \Psi \nabla \Psi^* - \Psi^* \nabla \Psi \} - |\Psi|^2 \, h A_0 \right) \quad \text{in } \mathcal{R}
$$

KORK ERKER ADE YOUR

along with homogeneous boundary conditions on Ψ and ϕ .

Existence of periodic solutions via Center Manifold Theory

There exists a value $\varepsilon_0 > 0$ such that for all positive $\varepsilon < \varepsilon_0$, the system undergoes a supercritical Hopf bifurcation to a periodic state $(\psi_{\varepsilon}, \phi_{\varepsilon})$.

One has the estimate

$$
\left\|\psi_{\varepsilon}-\left(a^{\varepsilon}(t)u_{1}+a^{\varepsilon}(t)^{*}u_{1}^{\dagger}\right)\right\|_{H^{2}(\mathcal{R})}\leq C\varepsilon^{3/2}
$$

with

$$
a^{\varepsilon}(t) := C_0 \varepsilon^{1/2} e^{-i \chi t} \quad \text{where } \chi = \text{Im } \lambda_1 + \gamma \varepsilon
$$

and C_0 and γ are constants depending on certain integrals of u_1 .

Generalization of techniques from 1d problem by J.R., S. and K. Zumbrun.

A key element of the proof: Exploiting PT symmetry on center manifold.

 \bullet For each ε small, there exists a graph $\Phi^\varepsilon: \mathcal{S} \to H^2(\mathcal{R};\mathbb{C})$ over center subspace $S := \text{Span}\{u_1, u_2\}$ and complex-valued functions $\alpha_1(t)$, $\alpha_2(t)$ such that (for small initial data) solution to TDGL ψ_{ε} describable as

 $\psi_{\varepsilon}(t) = \Phi^{\varepsilon}\left(\alpha_1(t)u_1 + \alpha_2(t)u_2\right).$

KORKAR KERKER EL VOLO

A key element of the proof: Exploiting PT symmetry on center manifold.

 \bullet For each ε small, there exists a graph $\Phi^\varepsilon: \mathcal{S} \to H^2(\mathcal{R};\mathbb{C})$ over center subspace $S := \text{Span}\{u_1, u_2\}$ and complex-valued functions $\alpha_1(t)$, $\alpha_2(t)$ such that (for small initial data) solution to TDGL ψ_{ε} describable as

 $\psi_{\varepsilon}(t) = \Phi^{\varepsilon}\left(\alpha_1(t)u_1 + \alpha_2(t)u_2\right).$

KORKAR KERKER EL VOLO

• Projection onto S leads to dynamical system for α_1 and α_2 . Four real equations in four unknowns.

A key element of the proof: Exploiting PT symmetry on center manifold.

 \bullet For each ε small, there exists a graph $\Phi^\varepsilon: \mathcal{S} \to H^2(\mathcal{R};\mathbb{C})$ over center subspace $S := \text{Span}\{u_1, u_2\}$ and complex-valued functions $\alpha_1(t)$, $\alpha_2(t)$ such that (for small initial data) solution to TDGL ψ_{ε} describable as

 $\psi_{\varepsilon}(t) = \Phi^{\varepsilon}\left(\alpha_1(t)u_1 + \alpha_2(t)u_2\right).$

• Projection onto S leads to dynamical system for α_1 and α_2 . Four real equations in four unknowns.

• One proves exponential attraction to PT-symmetric subset of center manifold.

$$
\alpha_1(t)u_1 + \alpha_2(t)u_2 = (\alpha_1(t)u_1 + \alpha_2(t)u_2)^{\dagger} \iff \alpha_2 = \alpha_1^*.
$$

KORKAR KERKER EL VOLO

Easy system for α_1 –explicitly solvable.

A kinematic vortex motion law

According to theorem, the leading order term $\left(O(\varepsilon^{1/2}) \right)$ is:

$$
\psi = a^{\varepsilon}(t)u_1 + a^{\varepsilon}(t)^*u_1^{\dagger} \quad \text{with } a^{\varepsilon}(t) = C_0 \varepsilon^{1/2} e^{-i \chi t}.
$$

Focusing our attention along the center line $x = 0$ and writing

$$
u_1(0, y) = |u_1(0, y)| e^{i\beta(y)}
$$
 for some phase $\beta(y)$

we find that

$$
\psi(0, y, t) = 2C_0 \varepsilon^{1/2} |u_1(0, y)| \cos(\beta(y) - \chi t).
$$

Hence, the order parameter vanishes on the center line $x = 0$ whenever the equation

$$
\chi t = \beta(y) + \pi/2 + n\pi
$$
, $n = 0, \pm 1, \pm 2, ...$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

is satisfied. Recall that $\chi = \text{Im }\lambda_1 + o(1)$.

Using shape of β to explain anomalous vortex behavior

Case 1: No magnetic field, $h = 0$. Recall that $\beta =$ phase of $u_1(0, y)$. Numerical computations reveal sensitive dependence on I.

 $(1 - 4)$ $(1 -$

 $\bar{\Xi}$

 2990

Here $L = 1, K = 2/3, \delta = 4/15$. Note symmetry of β .

Case 2: Graphs of β when magnetic field present: $h > 0$.

Symmetry broken so vortices enter/exit boundaries $y = K$ and $y = -K$ at different times. Here we have taken $h = 0.05$.

E LIZER KENNED K

 2990

• When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

KO KKOK KEK KEK LE I DAG

• When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

• As h increases, many new effects:

(i) vortices enter/exit the top and bottom at different times.

• When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

• As h increases, many new effects:

(i) vortices enter/exit the top and bottom at different times.

(ii) some vortices move along and then slightly off center line (in a periodic manner)

• When magnetic field strength h is small, one only sees vortices on the center line (kinematic).

• As h increases, many new effects:

(i) vortices enter/exit the top and bottom at different times.

(ii) some vortices move along and then slightly off center line (in a periodic manner)

(iii) 'magnetic vortices' appear far from center line, presumably associated with vortices of ground-state u_1 of perturbed magnetic Schrödinger operator

$$
(\nabla - i h A_0)^2 u_1 - iI \phi^0 u_1 = -\lambda_1 u_1
$$

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of 'kinematic vortices' moving along the center line $x = 0$ traced to PT symmetry and nature of first eigenfunction u_1 of linear operator along this line.

KORKA SERKER ORA

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of 'kinematic vortices' moving along the center line $x = 0$ traced to PT symmetry and nature of first eigenfunction u_1 of linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of shape of phase of $u_1(0, y)$ on the value of applied current I.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of 'kinematic vortices' moving along the center line $x = 0$ traced to PT symmetry and nature of first eigenfunction u_1 of linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of shape of phase of $u_1(0, y)$ on the value of applied current I.

• When magnetic field h is large enough, one sees motion of both 'magnetic vortices' off the center line and 'kinematic vortices' on or near the center line.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

• Through a rigorous center manifold approach we have identified a Hopf bifurcation from the normal state to stable periodic solutions.

• The creation and motion of 'kinematic vortices' moving along the center line $x = 0$ traced to PT symmetry and nature of first eigenfunction u_1 of linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of shape of phase of $u_1(0, y)$ on the value of applied current I.

• When magnetic field h is large enough, one sees motion of both 'magnetic vortices' off the center line and 'kinematic vortices' on or near the center line.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

• What happens deep in the nonlinear regime? (No longer small amplitude)