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Operators on Hilbert Spaces

Let H be a Hilbert space with inner product

〈ξ | η〉

for ξ, η ∈ H. We obtain a norm

‖ξ‖ = 〈ξ | ξ〉
1
2.

A linear operator x : H → H is bounded if

‖x‖ = sup{‖xξ‖ : ‖ξ‖ ≤ 1, ξ ∈ H}.

Then B(H), the space of bounded linear operators on H, is a Banach

space.
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Involution on B(H)

B(H) with this operator norm is unital Banach algebra since

‖xy‖ ≤ ‖x‖‖y‖.

There exist an involution ∗ on B(H) given by

〈x∗ξ | η〉 = 〈ξ | xη〉.

B(H) with this involution is an involutive Banach algebra since it satisfies

(1) (αx+ βy)∗ = ᾱx∗+ β̄y∗, (2) (xy)∗ = y∗x∗, (3) (x∗)∗ = x.

Moreover it also satisfies

(4) ‖x∗x‖ = ‖x‖2.

Therefore, B(H) is a unital C*-algebra.
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C*-algebras

In general, a C*-algebra is an involutiva Banach algebra satisfying the

condition (4), i.e. it satisfies

‖x∗x‖ = ‖x‖2.

It is clear that every norm closed *-subalgebra

A ⊆ B(H)

is a C*-algebra. Here we say that A is *-subalgebra if x∗ ∈ A whenever

x ∈ A.

Theorem [Gelfand-Naimark 1943]: Let A be a C*-algebra, i.e. let A be

an involutive Banach algebra satisfying the condition (4). Then there

exists a Hilbert space H and an isometric *-homomorphism

π : A→ π(A) ⊆ B(H).

This shows that every C*-algebra can be represented on some Hilbert

space.
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Examples of C*-algebras

• B(H) for some Hilbert space H.

In particular the matrix algebra Mn(C) = B(Cn), for which the multi-

plication is given by matrix product

[xij][yjk] = [
∑
j

xijyjk]

and the involution is given by [xij]
∗ = [x̄ji]

• Finite dimensional C*-algebras

Mn1(C)⊕∞Mn2(C)⊕∞ · · · ⊕∞Mnk(C).

• The space K(H) ⊆ B(H) of all compact linear operators on H

• Any norm closed ideal J of a C*-algebra A, and its quotient A/J

• The Calkin algebra Q(H) = B(H)/K(H)
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Commutative C*-algebras

Let Ω be a compact topological space. Then A = C(Ω) with norm

‖f‖∞ = sup{|f(t)| : t ∈ Ω}

and involution f∗(t) = f(t) is a unital commutative C*-algebra.

Indeed, for any f, g ∈ C(Ω), we have

‖fg‖∞ ≤ ‖f‖∞‖g‖∞

and we have

‖f∗f‖∞ = sup{|f(t)f(t)| : t ∈ Ω} = ‖f‖2∞.

Therefore, (C(Ω), ‖ · ‖∞) is a unital commutative C*-algebra.
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Theorem: For every unital commutative C*-algebra A, there exists
a compact topological space Ω such that we have the isometric *-
isomorphism

A = C(Ω).

Proof: Let A be a unital commuative C*-algebra and let

Ω = ∆(A)

be the set of all unital *-homomorphism (i.e. unital contractive homo-
morphism) from A to C. Then Ω is a weak* closed and thus weak*
compact subset of A∗1. Let

a ∈ A→ â ∈ A∗∗

be the canonical isometric inclusion given by

â(ϕ) = ϕ(a)

for ϕ ∈ A∗. Then the Gelfand Transformation

a ∈ A→ â|Ω ∈ C(Ω)

is an isometric *-isomorphism from A onto C(Ω),
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Remark:

Let Ω be a compact topological space. For each t ∈ Ω, the point-

evaluation

ϕt : f ∈ C(Ω)→ f(t) ∈ C

is a unital *-homomorphism from C(Ω) into C. This defines a homeo-

morphism

τ : t ∈ Ω↔ ϕt ∈∆(C(Ω)).

Therefore, the above Theorem establshes a duality correspondence be-

tween

Compact Topological Spaces Ω

and

Unital Comm C*-algebras A = C(Ω).
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We also have a natural duality correspondence between

Locally Compact Topological Spaces Ω

and

Commutative C*-algebras C0(Ω)
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Therefore, we may regard general

C*-algebras

as

Noncommutative Topological Spaces
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More Exmaples of C*-algebras
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Group C*-algebras C∗λ(G)

Let G be a discrete group and H = `2(G). For each s ∈ G, we obtain a

unitary operator λs on `2(G) given by

(λsξ)(t) = ξ(s−1t).

We have

λsλt = λst and λ∗s = λs−1.

Then C∗λ(G) = {
∑
s∈G

αsλs}−‖·‖ is a unital C*-subalgebra of B(`2(G)). We

call C∗λ(G) the reduced group C*-algebra.

If G is an abelian group, then C∗λ(G) is a unital comm C*-algebra. In this

case, each unital *-homomorphism ϕ : C∗λ(G)→ C uniquely corresponds

to a group homomorphism

χϕ : s ∈ G→ ϕ(λs) ∈ T ⊆ C.

In this case, ∆(C∗λ(G)) is just the dual group Ĝ = {χ : G → T} all

(continuous) characters of G.
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• If G = Z, then Ĝ = T and thus

C∗λ(Z) = C(T).

• If G = Z× Z, then

C∗λ(Z× Z) = C(T× T).

• If G = F2 is the free group of 2-generators, then C∗λ(F2) represents a
noncomutative topological space.

Suppose that F2 is the free group with two generators u and v. Then F2
consists of all reduced words: e (empty word), u, v, u−1, v−1 (words of
length 1, uu, uv, uv−1, vv, vu, vu−1, u−1u−1, · · · (words of length 2), · · · .

Question: How many elements of length |s| = n ?

Then F2 is a non-abelian group with multiplication and inverse given by

(uvu−1)(uvvu) = uvvvu and (uvu−1)−1 = uv−1u−1.

The empty word e is the unital element of F2.
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Reduced Free Group C*-algebras

Theorem [Powers 1975]: C∗λ(F2) is a simple C*-algebra, i.e. has no

non-trivial closed two-sided ideals.

Remark: The simplicity of C∗λ(F2) means that the corresponding “space”

is highly noncommutative.

Theorem [Pimsner and Voiculescu 1982 ] and [Connes 1986]: C∗λ(F2)

has no non-trivial projection.

Remark: If we have a non-trivial projection p = χE in C(Ω), then the

corresponding set E must be closed and open in Ω. Therefore, Ω must

be disconnected.

Therefore, the above theorem shows that C∗λ(F2) determines a

“highly noncommutative and connected space. ”
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Rotation Algebras

Let us first recall that we can identify T with R/Z via the function

z(t) = e2πit. We let H = L2(T) = L2(R/Z).

Let θ be a real number in [0,1). We can obtain two unitary operators

U and V on H given by

Uξ(t) = z(t)ξ(t) and V ξ(t) = ξ(t− θ).

A simple calculation shows that

UV = e2πiθV U.

Let Aθ be the universal C*-algebra generated by the unitary operators

Ũ and Ṽ satisfying the above relation. We call Aθ the rotation algebra.
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If θ = 0, we get UV = V U . In this case,

A0
∼= C(T× T)

is a unital commutative C*-algebra.

We are particularly interested in the case when θ is irrational.

Theorem [Rieffel 1981]: If θ is an irrational number, then Aθ is a unital

simple C*-algebra.

Since V U = e−2πiθUV , we get V U = e2πi(1−θ)UV , and thus

Aθ = A1−θ.

However, for distinct irrationals θ in [0, 1
2], Aθ are all distinct (i.e. non-

isomorphic).
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CAR Algebra

Let us consider the canonical embeddings

M2 ↪→M2 ⊗M2 ↪→M2 ⊗M2 ⊗M2 ↪→ ...

Take the norm closure, we get a C*-algebra A2∞, which is called the

CAR algebra.

If we consider all projections in the diagonal of A2∞. These projec-

tions generates a unital commutative C*-algebra B = C(Ω), where Ω

is nothing, but the Cantor set.
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von Neumann Algebras

Let H be a Hilbert space. We say that a net of operators {xα} converges
to x in the strong operator topology in B(H) if

‖xαξ − xξ‖ → 0 for all ξ ∈ H.

A von Neumann algebra on a Hilbert space H is a strong operator
closed *-subalgebra M ⊆ B(H). So every von Neumann algebra is a C*-
algebra and is a dual space with a unique predual. In general speaking,
von Neumann algebras are exactly dual C*-algebras.

Let (X,µ) be a measure space. Then L∞(X,µ) is a commutative von
Neumann algebra on L2(X,µ). In fact, every commutative von Neumann
algebra M can be written as M = L∞(X,µ).

There is a correspondence between

Measure Spaces (X,µ)

and

Commutative von Neumann Algebras L∞(X,µ)
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Therefore, we may regard general

von Neumann Algebras

as

Noncommutative Measure Spaces
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Examples

Let G be a discrete group. Then the group von Neumann algebra

V Nλ(G) = span{λs : s ∈ G}−s.o.t.

is a von Neumann algebra.

If G = Z, then V Nλ(Z) = L∞(T).

If G = Z× Z, then V Nλ(Z× Z) = L∞(T× T).

In general, we may regard V Nλ(G) ∼= L∞(Ĝ) as the duality of L∞(G)

Here Ĝ is just a notation to indicate the ‘duality’ of G.

There exists a unique normal tracial state τ on V Nλ(G) given by

τ(x) = 〈xδe|δe〉

which corresponding to the canonical Haar measure on Ĝ.
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Hyperfinite II1-Factor

• Consider the canonical embeddings

M2 ↪→M2 ⊗M2 ↪→M2 ⊗M2 ⊗M2 ↪→ ...

We may take a “weak closure” and obtain a von Neumann algebra R2∞.

• We can, similarly, consider the von Neumann algebra R3∞ generated

by 3× 3 matrices.

It turns out that these von Neumann algebras are equal ! They are all

hyperfinite II1-factor.

A von Neumann algebra M on a Hilbert space H is called a factor if

M ∩M ′ = C1,

where M ′ = {x ∈ B(H) : xy = yx, y ∈ M} is the commutant of M. A

von Neumann algebra is called hyperfinite if it contains sufficiently many

finite dim C*-subalgebras.
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Appendix I

Let G be a discrete group. Then `1(G) is a unital involutive Banach

algebra with the multiplication given by the convolution

f ? g(t) =
∑
s∈G

f(s)g(s−1t)

and the involution given by

f∗(t) = f(t−1).

Let δs denote the characteristic function at s. Then for s, t ∈ G, we

have

δs ? δt = δst.

From this it is easy to see that δe is the unit element of `1(G).

Theorem: If |G| ≥ 2, `1(G) is not a C*-algebra, i.e. it fails to have

‖f∗ ? f‖1 = ‖f‖21.
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Example 1: We can look at `1(Z), and consider f = δ0 + iδ1 + δ2. It is

easy to see that ‖f‖1 = 3. But

f∗ ? f = (δ0 − iδ−1 + δ−2) ? (δ0 + iδ1 + δ2) = δ−2 + 3δ0 + δ2.

So

‖f∗ ? f‖1 = 5 < 9 = ‖f‖21.

Example 2: Find a function f ∈ `1(Z2) such that

‖f∗ ? f‖1 6= ‖f‖21.
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Appendix II

Let A be a C*-algebra. Then

As.a = {a ∈ A : a∗ = a},

the space of all selfadjoint operators in A, is a real subspace of A.

An operator a ∈ A is positive if a is selfadjoint and its spectrum σ(a) ⊆
[0,∞). An operator a ∈ A is positive if and only if a = b∗b for some b ∈ A.

Then A+, the set of all positive operators in A, is a proper positive cone

in As.a.. This defines an order on As.a., i.e. a ≤ b if b− a ≥ 0.

Theorem: Every selfadjoint element a ∈ As.a. can be uniquely decom-

posed to

a = a+ − a− with a+a− = 0.

Example: Let A = C(Ω). Then As.a. = C(Ω,R) and A+ = C(Ω, [0,∞)).
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GNS Representation

A linear functional ϕ : A→ C is positive if

ϕ : A+ → [0,∞).

Every positive linear functional is bounded with ‖ϕ‖ = ϕ(1).

Theorem [Gelfand-Naimark-Segal]: Let ϕ : A → C be a positive linear

functional. There exist a Hilbert space Hϕ, a unital *-homomorphism

πϕ : A→ B(Hϕ), and a vector ξϕ ∈ Hϕ such that

ϕ(x) = 〈πϕ(x)ξϕ|ξϕ〉.

We can choose Hϕ such that πϕ(A)ξϕ is norm dense in Hϕ. In this case,

we call (πϕ, Hϕ, ξϕ) is a (cyclic) GNS representation of ϕ.
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Outline of Proof: First, we can define a semi-inner product on A given

by

〈a|b〉ϕ = ϕ(b∗a).

Let Nϕ = {a ∈ A : ϕ(a∗a) = 0}. Then Nϕ is a left ideal of A, and the

above semi-inner product induces an inner product

〈[a]|[b]〉ϕ = ϕ(b∗a) for [a], [b] ∈ A/Nϕ.

We let Hϕ denote the norm completion of A/Nϕ.

For each x ∈ A, we can define a bounded operator

πϕ(x) : [a] ∈ A/Nϕ → [xa] ∈ A/Nϕ

with ‖πϕ(x)‖ ≤ ‖x‖. We use πϕ(x) denote the extension to Hϕ. Then

πϕ : x ∈ A→ πϕ(x) ∈ B(Hϕ).

is a unital *-homomorphism. Finally, we let ξϕ = [1] ∈ Hϕ and get

ϕ(x) = ϕ(1∗x) = 〈[x]|[1]〉ϕ = 〈πϕ(x)ξϕ|ξϕ〉ϕ.

The representation is cyclic since πϕ(A)ξϕ = A/Nϕ is norm dense in Hϕ.
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Appendix III

Using GNS representation theorem, we can prove Gelfand-Namimark

theorem for C*-algebras. The idea is to consider

π = ⊕ϕπϕ : a ∈ A→ ⊕ϕπϕ(a) ∈ B(⊕ϕHϕ),

where ϕ run through all states, i.e. positive linear functional of norm

one, on A.
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