Introduction to Banach and Operator Algebras Lecture 5

Zhong-Jin Ruan University of Illinois at Urbana-Champaign

> Winter School at Fields Institute Monday January 13, 2014

Operators on Hilbert Spaces

Let H be a Hilbert space with inner product

 $\langle \xi \mid \eta \rangle$

for $\xi, \eta \in H$. We obtain a norm

 $\|\xi\| = \langle \xi \mid \xi \rangle^{\frac{1}{2}}.$

A linear operator $x: H \to H$ is bounded if

 $||x|| = \sup\{||x\xi|| : ||\xi|| \le 1, \xi \in H\}.$

Then B(H), the space of bounded linear operators on H, is a Banach space.

Involution on B(H)

B(H) with this operator norm is unital Banach algebra since $\|xy\| \le \|x\| \|y\|.$

There exist an involution * on B(H) given by $\langle x^* \xi \mid \eta \rangle = \langle \xi \mid x\eta \rangle.$

B(H) with this involution is an involutive Banach algebra since it satisfies

(1)
$$(\alpha x + \beta y)^* = \bar{\alpha} x^* + \bar{\beta} y^*$$
, (2) $(xy)^* = y^* x^*$, (3) $(x^*)^* = x$.

Moreover it also satisfies

(4) $||x^*x|| = ||x||^2$.

Therefore, B(H) is a unital C*-algebra.

C*-algebras

In general, a C^* -algebra is an involutiva Banach algebra satisfying the condition (4), i.e. it satisfies

 $||x^*x|| = ||x||^2.$

It is clear that every norm closed *-subalgebra

 $A \subseteq B(H)$

is a C*-algebra. Here we say that A is *-subalgebra if $x^* \in A$ whenever $x \in A$.

Theorem [Gelfand-Naimark 1943]: Let A be a C*-algebra, i.e. let A be an involutive Banach algebra satisfying the condition (4). Then there exists a Hilbert space H and an isometric *-homomorphism

$$\pi: A \to \pi(A) \subseteq B(H).$$

This shows that every C^* -algebra can be represented on some Hilbert space.

Examples of C*-algebras

• B(H) for some Hilbert space H.

In particular the matrix algebra $M_n(\mathbb{C}) = B(\mathbb{C}^n)$, for which the multiplication is given by matrix product

$$[x_{ij}][y_{jk}] = \left[\sum_{j} x_{ij} y_{jk}\right]$$

and the involution is given by $[x_{ij}]^* = [\bar{x}_{ji}]$

• Finite dimensional C*-algebras

$$M_{n_1}(\mathbb{C}) \oplus_{\infty} M_{n_2}(\mathbb{C}) \oplus_{\infty} \cdots \oplus_{\infty} M_{n_k}(\mathbb{C}).$$

- The space $K(H) \subseteq B(H)$ of all compact linear operators on H
- Any norm closed ideal J of a C*-algebra A, and its quotient A/J
- The Calkin algebra Q(H) = B(H)/K(H)

Commutative C*-algebras

Let Ω be a compact topological space. Then $A = C(\Omega)$ with norm $\|f\|_{\infty} = \sup\{|f(t)| : t \in \Omega\}$ and involution $f^*(t) = \overline{f(t)}$ is a unital commutative C*-algebra.

Indeed, for any $f, g \in C(\Omega)$, we have

 $\|fg\|_{\infty} \le \|f\|_{\infty} \|g\|_{\infty}$

and we have

$$||f^*f||_{\infty} = \sup\{|\overline{f(t)}f(t)| : t \in \Omega\} = ||f||_{\infty}^2$$

Therefore, $(C(\Omega), \|\cdot\|_{\infty})$ is a unital commutative C*-algebra.

Theorem: For every unital commutative C*-algebra A, there exists a compact topological space Ω such that we have the isometric *isomorphism

 $A = C(\Omega).$

Proof: Let A be a unital commutaive C*-algebra and let

 $\Omega = \Delta(A)$

be the set of all unital *-homomorphism (i.e. unital contractive homomorphism) from A to \mathbb{C} . Then Ω is a weak* closed and thus weak* compact subset of A_1^* . Let

 $a \in A \to \hat{a} \in A^{**}$

be the canonical isometric inclusion given by

$$\hat{a}(\varphi) = \varphi(a)$$

for $\varphi \in A^*$. Then the Gelfand Transformation

 $a \in A \to \hat{a}_{|\Omega} \in C(\Omega)$

is an isometric *-isomorphism from A onto $C(\Omega)$,

Remark:

Let Ω be a compact topological space. For each $t \in \Omega$, the point-evaluation

$$\varphi_t : f \in C(\Omega) \to f(t) \in \mathbb{C}$$

is a unital *-homomorphism from $C(\Omega)$ into \mathbb{C} . This defines a homeomorphism

$$\tau: t \in \Omega \leftrightarrow \varphi_t \in \Delta(C(\Omega)).$$

Therefore, the above Theorem establishes a duality correspondence between

Compact Topological Spaces
$$\Omega$$

and
Unital Comm C*-algebras $A = C(\Omega)$.

We also have a natural duality correspondence between

Locally Compact Topological Spaces Ω and Commutative C*-algebras $C_0(\Omega)$ Therefore, we may regard general

C*-algebras

as

Noncommutative Topological Spaces

More Exmaples of C*-algebras

Group C*-algebras $C^*_{\lambda}(G)$

Let G be a discrete group and $H = \ell_2(G)$. For each $s \in G$, we obtain a unitary operator λ_s on $\ell_2(G)$ given by

$$(\lambda_s \xi)(t) = \xi(s^{-1}t).$$

We have

$$\lambda_s \lambda_t = \lambda_{st}$$
 and $\lambda_s^* = \lambda_{s^{-1}}$.

Then $C^*_{\lambda}(G) = \{\sum_{s \in G} \alpha_s \lambda_s\}^{-\|\cdot\|}$ is a unital C*-subalgebra of $B(\ell_2(G))$. We call $C^*_{\lambda}(G)$ the reduced group C*-algebra.

If G is an abelian group, then $C^*_{\lambda}(G)$ is a unital comm C*-algebra. In this case, each unital *-homomorphism $\varphi : C^*_{\lambda}(G) \to \mathbb{C}$ uniquely corresponds to a group homomorphism

$$\chi_{\varphi} : s \in G \to \varphi(\lambda_s) \in \mathbb{T} \subseteq \mathbb{C}.$$

In this case, $\Delta(C^*_{\lambda}(G))$ is just the dual group $\widehat{G} = \{\chi : G \to \mathbb{T}\}$ all (continuous) characters of G.

• If $G = \mathbb{Z}$, then $\widehat{G} = \mathbb{T}$ and thus

$$C^*_{\lambda}(\mathbb{Z}) = C(\mathbb{T}).$$

• If $G = \mathbb{Z} \times \mathbb{Z}$, then

$$C^*_{\lambda}(\mathbb{Z} \times \mathbb{Z}) = C(\mathbb{T} \times \mathbb{T}).$$

• If $G = \mathbb{F}_2$ is the free group of 2-generators, then $C^*_{\lambda}(\mathbb{F}_2)$ represents a noncomutative topological space.

Suppose that \mathbb{F}_2 is the free group with two generators u and v. Then \mathbb{F}_2 consists of all reduced words: e (empty word), u, v, u^{-1}, v^{-1} (words of length 1, $uu, uv, uv^{-1}, vv, vu, vu^{-1}, u^{-1}u^{-1}, \cdots$ (words of length 2), \cdots .

Question: How many elements of length |s| = n ?

Then \mathbb{F}_2 is a non-abelian group with multiplication and inverse given by

$$(uvu^{-1})(uvvu) = uvvvu$$
 and $(uvu^{-1})^{-1} = uv^{-1}u^{-1}$.

The empty word e is the unital element of \mathbb{F}_2 .

Reduced Free Group C*-algebras

Theorem [Powers 1975]: $C^*_{\lambda}(\mathbb{F}_2)$ is a simple C*-algebra, i.e. has no non-trivial closed two-sided ideals.

Remark: The simplicity of $C^*_{\lambda}(\mathbb{F}_2)$ means that the corresponding "space" is highly noncommutative.

Theorem [Pimsner and Voiculescu 1982] and [Connes 1986]: $C^*_{\lambda}(\mathbb{F}_2)$ has no non-trivial projection.

Remark: If we have a non-trivial projection $p = \chi_E$ in $C(\Omega)$, then the corresponding set E must be closed and open in Ω . Therefore, Ω must be disconnected.

Therefore, the above theorem shows that $C^*_{\lambda}(\mathbb{F}_2)$ determines a

"highly noncommutative and connected space."

Rotation Algebras

Let us first recall that we can identify \mathbb{T} with \mathbb{R}/\mathbb{Z} via the function $z(t) = e^{2\pi i t}$. We let $H = L_2(\mathbb{T}) = L_2(\mathbb{R}/\mathbb{Z})$.

Let θ be a real number in [0,1). We can obtain two unitary operators U and V on H given by

 $U\xi(t) = z(t)\xi(t)$ and $V\xi(t) = \xi(t - \theta)$.

A simple calculation shows that

$$UV = e^{2\pi i\theta} VU.$$

Let A_{θ} be the universal C*-algebra generated by the unitary operators \tilde{U} and \tilde{V} satisfying the above relation. We call A_{θ} the rotation algebra.

If $\theta = 0$, we get UV = VU. In this case,

 $A_0 \cong C(\mathbb{T} \times \mathbb{T})$

is a unital commutative C^* -algebra.

We are particularly interested in the case when θ is irrational.

Theorem [Rieffel 1981]: If θ is an irrational number, then A_{θ} is a unital simple C*-algebra.

Since $VU = e^{-2\pi i\theta}UV$, we get $VU = e^{2\pi i(1-\theta)}UV$, and thus

$$A_{\theta} = A_{1-\theta}$$

However, for distinct irrationals θ in $[0, \frac{1}{2}]$, A_{θ} are all distinct (i.e. non-isomorphic).

CAR Algebra

Let us consider the canonical embeddings

 $M_2 \hookrightarrow M_2 \otimes M_2 \hookrightarrow M_2 \otimes M_2 \otimes M_2 \hookrightarrow \dots$

Take the norm closure, we get a C*-algebra $A_{2^{\infty}}$, which is called the CAR algebra.

If we consider all projections in the diagonal of $A_{2\infty}$. These projections generates a unital commutative C*-algebra $B = C(\Omega)$, where Ω is nothing, but the Cantor set.

von Neumann Algebras

Let *H* be a Hilbert space. We say that a net of operators $\{x_{\alpha}\}$ converges to *x* in the strong operator topology in B(H) if

 $||x_{\alpha}\xi - x\xi|| \to 0$ for all $\xi \in H$.

A von Neumann algebra on a Hilbert space H is a strong operator closed *-subalgebra $M \subseteq B(H)$. So every von Neumann algebra is a C*algebra and is a dual space with a unique predual. In general speaking, von Neumann algebras are exactly dual C*-algebras.

Let (X, μ) be a measure space. Then $L_{\infty}(X, \mu)$ is a commutative von Neumann algebra on $L_2(X, \mu)$. In fact, every commutative von Neumann algebra M can be written as $M = L_{\infty}(X, \mu)$.

There is a correspondence between

```
Measure Spaces (X, \mu)
```

and

Commutative von Neumann Algebras $L_{\infty}(X,\mu)$

Therefore, we may regard general

von Neumann Algebras

as

Noncommutative Measure Spaces

Examples

Let G be a discrete group. Then the group von Neumann algebra

$$VN_{\lambda}(G) = span\{\lambda_s : s \in G\}^{-s.o.t}.$$

is a von Neumann algebra.

If $G = \mathbb{Z}$, then $VN_{\lambda}(\mathbb{Z}) = L_{\infty}(\mathbb{T})$.

If $G = \mathbb{Z} \times \mathbb{Z}$, then $VN_{\lambda}(\mathbb{Z} \times \mathbb{Z}) = L_{\infty}(\mathbb{T} \times \mathbb{T})$.

In general, we may regard $VN_{\lambda}(G) \cong L_{\infty}(\widehat{G})$ as the duality of $L_{\infty}(G)$ Here \widehat{G} is just a notation to indicate the 'duality' of G.

There exists a unique normal tracial state τ on $VN_{\lambda}(G)$ given by

$$\tau(x) = \langle x \delta_e | \delta_e \rangle$$

which corresponding to the canonical Haar measure on \widehat{G} .

Hyperfinite *II*₁-Factor

Consider the canonical embeddings

 $M_2 \hookrightarrow M_2 \otimes M_2 \hookrightarrow M_2 \otimes M_2 \otimes M_2 \hookrightarrow \dots$

We may take a "weak closure" and obtain a von Neumann algebra $R_{2^{\infty}}$.

• We can, similarly, consider the von Neumann algebra $R_{3^{\infty}}$ generated by 3 \times 3 matrices.

It turns out that these von Neumann algebras are equal ! They are all hyperfinite II_1 -factor.

A von Neumann algebra M on a Hilbert space H is called a factor if

$$M \cap M' = \mathbb{C}\mathbf{1},$$

where $M' = \{x \in B(H) : xy = yx, y \in M\}$ is the commutant of M. A von Neumann algebra is called hyperfinite if it contains sufficiently many finite dim C*-subalgebras.

Appendix I

Let G be a discrete group. Then $\ell_1(G)$ is a unital involutive Banach algebra with the multiplication given by the convolution

$$f \star g(t) = \sum_{s \in G} f(s)g(s^{-1}t)$$

and the involution given by

$$f^*(t) = \overline{f(t^{-1})}.$$

Let δ_s denote the characteristic function at s. Then for $s, t \in G$, we have

$$\delta_s \star \delta_t = \delta_{st}.$$

From this it is easy to see that δ_e is the unit element of $\ell_1(G)$.

Theorem: If $|G| \ge 2$, $\ell_1(G)$ is not a C*-algebra, i.e. it fails to have

$$\|f^* \star f\|_1 = \|f\|_1^2.$$

Example 1: We can look at $\ell_1(\mathbb{Z})$, and consider $f = \delta_0 + i\delta_1 + \delta_2$. It is easy to see that $||f||_1 = 3$. But

$$f^* \star f = (\delta_0 - i\delta_{-1} + \delta_{-2}) \star (\delta_0 + i\delta_1 + \delta_2) = \delta_{-2} + 3\delta_0 + \delta_2.$$

So

$$||f^* \star f||_1 = 5 < 9 = ||f||_1^2.$$

Example 2: Find a function $f \in \ell_1(\mathbb{Z}_2)$ such that $\|f^* \star f\|_1 \neq \|f\|_1^2$.

Appendix II

Let A be a C*-algebra. Then

$$A_{s.a} = \{a \in A : a^* = a\},$$

the space of all selfadjoint operators in A, is a real subspace of A.

An operator $a \in A$ is positive if a is selfadjoint and its spectrum $\sigma(a) \subseteq [0,\infty)$. An operator $a \in A$ is positive if and only if $a = b^*b$ for some $b \in A$. Then A^+ , the set of all positive operators in A, is a proper positive cone in $A_{s.a.}$. This defines an order on $A_{s.a.}$, i.e. $a \leq b$ if $b - a \geq 0$.

Theorem: Every selfadjoint element $a \in A_{s.a.}$ can be uniquely decomposed to

$$a = a^+ - a^-$$
 with $a^+a^- = 0$.

Example: Let $A = C(\Omega)$. Then $A_{s.a.} = C(\Omega, \mathbb{R})$ and $A^+ = C(\Omega, [0, \infty))$.

GNS Representation

A linear functional $\varphi: A \to \mathbb{C}$ is positive if

$$\varphi: A^+ \to [0,\infty).$$

Every positive linear functional is bounded with $\|\varphi\| = \varphi(1)$.

Theorem [Gelfand-Naimark-Segal]: Let $\varphi : A \to \mathbb{C}$ be a positive linear functional. There exist a Hilbert space H_{φ} , a unital *-homomorphism $\pi_{\varphi} : A \to B(H_{\varphi})$, and a vector $\xi_{\varphi} \in H_{\varphi}$ such that

$$\varphi(x) = \langle \pi_{\varphi}(x)\xi_{\varphi}|\xi_{\varphi}\rangle.$$

We can choose H_{φ} such that $\pi_{\varphi}(A)\xi_{\varphi}$ is norm dense in H_{φ} . In this case, we call $(\pi_{\varphi}, H_{\varphi}, \xi_{\varphi})$ is a (cyclic) GNS representation of φ .

Outline of Proof: First, we can define a semi-inner product on A given by

$$\langle a|b
angle arphi=arphi(b^*a).$$

Let $N_{\varphi} = \{a \in A : \varphi(a^*a) = 0\}$. Then N_{φ} is a left ideal of A, and the above semi-inner product induces an inner product

$$\langle [a]|[b]\rangle_{\varphi} = \varphi(b^*a)$$
 for $[a], [b] \in A/N_{\varphi}$.

We let H_{φ} denote the norm completion of A/N_{φ} .

For each $x \in A$, we can define a bounded operator

$$\pi_{\varphi}(x) : [a] \in A/N_{\varphi} \to [xa] \in A/N_{\varphi}$$

with $\|\pi_{\varphi}(x)\| \leq \|x\|$. We use $\pi_{\varphi}(x)$ denote the extension to H_{φ} . Then

$$\pi_{\varphi} : x \in A \to \pi_{\varphi}(x) \in B(H_{\varphi}).$$

is a unital *-homomorphism. Finally, we let $\xi_{\varphi} = [1] \in H_{\varphi}$ and get

$$\varphi(x) = \varphi(1^*x) = \langle [x] | [1] \rangle_{\varphi} = \langle \pi_{\varphi}(x) \xi_{\varphi} | \xi_{\varphi} \rangle_{\varphi}.$$

The representation is cyclic since $\pi_{\varphi}(A)\xi_{\varphi} = A/N_{\varphi}$ is norm dense in H_{φ} .

Appendix III

Using GNS representation theorem, we can prove Gelfand-Namimark theorem for C*-algebras. The idea is to consider

$$\pi = \oplus_{\varphi} \pi_{\varphi} : a \in A \to \oplus_{\varphi} \pi_{\varphi}(a) \in B(\oplus_{\varphi} H_{\varphi}),$$

where φ run through all states, i.e. positive linear functional of norm one, on A.

References

- (1) A Course in Operator Theory, J. Conway
- (2) C^* -algebras by examples, K. Davidson
- (3) Fundementals of the Theory of Operator Algebras I. Kadison and Ringrose
- (4) Completely Bounded Maps and Operator Algebras, V. Paulsen
- (5) Theory of Operator Algebras I. M. Takesaki