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Unitary Representations

In this lecture, we assume that all groups under consideration are dis-

crete. Many results are still true for general locally compact groups.

Let G be a discrete group. A unitary representation on a Hilbert space

H is a map

πU : s ∈ G→ Us ∈ U(H), the unitary group in B(H).

such that

UsUt = Ust.

In this case,

πU : f =
∑

αsδs ∈ `1(G)→ πU(f) =
∑

αsUs ∈ B(H)

is a contractive unital *-homomorphism from `1(G) into B(H), and

π(`1(G)) = {π(f) : f ∈ `1(G)} is a unital *-subalgebra in B(H).
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Group C* and von Neumann Algebras

We let C∗π(G) = π(`1(G))−‖·‖ and V Nπ(G) = π(`1(G))−s.o.t. denote the
group C*-algebra and group von Neumann algebra associated with the
unitary representation π. In particular, for the left regular representation

λ : s ∈ G→ λs ∈ B(`2(G)),

we get the reduced left group C*-algebra C∗λ(G) and the left group von
Neumann algebra V Nλ(G).

There is a universal representation

πu : s ∈ G→ us = ⊕αUαs ∈ B(⊕αHα),

where the direct sum is taken over all non-equivalent classes of cyclic
unitary representations. In this case, we can obtain the full group C*-
algebra C∗(G) = πu(`1(G))−‖·‖.

It is known that there is a natural unital *-homomorphism

πλ : C∗(G)→ C∗λ(G)

from C∗(G) onto C∗λ(G).
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Fourier Algebras A(G)

Let A(G) = {f : G → C such that f(s) = 〈λsξ|η〉} be the space of all

coeficient functions of the left regular representation λ. It was shown

by Eymard in 1964 that A(G) with the norm

‖f‖A(G) = inf{‖ξ‖‖η‖ : f(s) = 〈λsξ|η〉}

and pointwise multiplication

(fg)(s) = f(s)g(s)

is a commutative Banach algebra. We call A(G) the Fourier algebra

of G. It is known that we have the isometric identification A(G) =

V Nλ(G)∗.

Therefore, if G is an abelian group, then we have

C∗λ(G) ∼= C(Ĝ), V Nλ(G) ∼= L∞(Ĝ), and A(G) ∼= L1(Ĝ).
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Fourier Stieltjes Algebras

We let B(G) = {f : G → C such that f(s) = 〈usξ|η〉} be the space of
all coefifcient functions of the universal unitary representation πu of G.
Then B(G) with the norm

‖f‖B(G) = {‖ξ‖‖η‖ : f(s) = 〈usξ|η〉}

and the pointwise multiplication is a unital commutative Banach algebra.
We call B(G) the Fourier-Stieltjes algebra of G. In general, we have the
isometric indetification

B(G) = C∗(G)∗.

A function f : G → C is positive definite (or simply p.d.) if for any
s1, · · · , sn ∈ G, [f(s−1

i sj)] is positive in Mn(C).

Theorem: A function f : G → C is p.d. if and only if f(s) = 〈Usξ|ξ〉 for
some unitary representation πU of G.

Therefore, every p.d. function f uniquely corresponds to a positive
linear functional on C∗(G).

5



Bλ(G)

Moreover, we let Bλ(G) = C∗λ(G)∗. Then the C*-quitent πλ : C∗(G) →
C∗λ(G) induces an isometric inclusion

Bλ(G) ↪→ B(G),

and by a standard duality argument, we have

C∗(G) ∼= C∗λ(G) if and only if B(G) = Bλ(G).

In general, A(G) and Bλ(G) are two-sided ideals in B(G) and we have

the isometric inclusions

A(G) ↪→ Bλ(G) ↪→ B(G).
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Amenable Groups

A discrete group G is amenable if `∞(G) has a left invariant mean, i.e.
there is a state m : `∞(G) → C such that m(s · h) = m(h) for all s ∈ G
and h ∈ `∞(G), where we let s ·h(t) = h(s−1t). Since `∞(G)∗ = `1(G)∗∗,
this is equivalent to δs ? m = m for all s ∈ G.

Theorem: Let G be a discrete group. TFAE:

(1) G is amenable,

(2) There exists a net of fα ≥ 0 in `1(G) such that ‖fα‖1 = 1 and
‖δs ? fα − fα‖1 → 0 for all s ∈ G,

(2’) For every finite subset F ⊆ G and ε > 0, there exists a f ≥ 0 in `1(G)
such that ‖f‖1 = 1 and ‖δs ? f − f‖1 < ε for all s ∈ F.

(3) G satisfies the Følner condition, i.e. for any finite set F ⊆ G and ε >
0, there exists a finite set K ⊆ G such that |s·K∆K|

|K| < ε for all s ∈ F.
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Theorem: Let G be a discrete group. TFAE:

(1) G is amenable,

(2) There exists a net of unit vectors ξα ∈ `2(G) (with finite support)

such that ‖λsξα − ξα‖2 → 0 for all s ∈ G,

(3) There exists a net of (positive definite) contractive ϕα ∈ A(G) (with

finite support) such that ϕα(s)→ 1 for all s ∈ G.

(4) A(G) has a bounded appriximate identity,

(5) C∗(G) = C∗λ(G) or equivalently B(G) = Bλ(G).
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Outline of Proof: (1) ⇔ (2) If G is amenable, we get a net of positive

functions {fα} in (2) of previous theorem. Then ξα = f
1
2
α is a net of unit

vectors in `2(G)+ such that

‖λsξα − ξα‖22 =
∑
t∈G
|ξα(s−1t)− ξα(t)|2

≤
∑
t∈G
|ξα(s−1t)− ξα(t)||ξα(s−1t) + ξα(t)|

=
∑
t∈G
|fα(s−1t)− fα(t)| = ‖δs ? fα − fα‖1 → 0.

By an appropriate approximation, we can choose ξα with finite support.

On the other hand, if we have (2), then Then fα = |ξα|2 is a net of
positive functions contained in `1(G) such that ‖fα‖1 = 1 and

‖δs ? fα − fα‖1 =
∑
t∈G
|fα(s−1t)− fα(t)|

=
∑
t∈G
|ξα(s−1t)− ξα(t)||ξα(s−1t) + ξα(t)|

≤ (
∑
t∈G
|ξα(s−1t)− ξα(t)|2)

1
2(

∑
t∈G
|ξα(s−1t) + ξα(t)|2)

1
2

= ‖λsξα − ξα‖2‖λsξα + ξα‖2 ≤ 2‖λsξα − ξα‖2 → 0.
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(2) ⇒ (3) If we have (2), then ϕα(s) = 〈λsξα|ξα〉 is a net of positive

definite contractive functions in A(G) such that

|ϕα(s)− 1| = |〈λsξα − ξα|ξα〉| → 0 for all s ∈ G.

If ξα has a finite support, then so is ϕα.

(3) ⇒ (4) Suppose we have (3). We want to show that the net of

contractive {ϕα} in A(G) is an approximate identity of A(G). Let us

first note that each δs is contained in A(G) since δs(t) = 〈λtδe|δs〉. We

also note that the linear span of {δs : s ∈ G} is norm dense in A(G). So

it sufficies to show that for all s ∈ G,

‖ϕαδs − δs‖A(G) = ‖ϕα(s)δs − δs‖A(G) = |ϕα(s)− 1|‖δs‖A(G) → 0.

(4) ⇒ (5) Suppose that A(G) has a bounded approximate identity {ϕα}.
Reversing the above calculation, we can

|ϕα(s)− 1| = |ϕα(s)− 1|‖δs‖A(G) = ‖ϕαδs − δs‖A(G) → 0.

So ϕα(s)→ 1 for all s ∈ G.
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Let ϕ ∈ B(G) = C∗(G)∗. For any s1, · · · , sn ∈ G, we have

ϕ(si) = 1 · ϕ(si) = lim
α
ϕα(si)ϕ(si) = lim

α
(ϕαϕ)(si)

Then for any x =
∑
aiπu(si) ∈ C∗(G), we have

ϕ(x) = lim
α

(ϕαϕ)(x).

Since ϕαϕ is a net of bounded elements in A(G), we can conclude that
for any x ∈ ker πλ ⊆ C∗(G),

ϕ(x) = lim
α

(ϕαϕ)(x) = lim
α

(ϕαϕ)(πλ(x)) = 0.

This shows that kerπλ = {0} and thus πλ is an isometric *-isomorphism
from C∗(G) onto C∗λ(G).

(5) ⇒ (1) suppose C∗(G) = C∗λ(G). Then A(G) ↪→ Bλ(G) = B(G) is
weak* dense in B(G). For 1 ∈ B(G), we can find a net of unit vectors
ξα ∈ `2(G)+ such that for any s ∈ G,

1 = lim
α
〈λsξα|ξα〉 = ϕα(s).

This implies (2), i.e.

‖λsξα − ξα‖2 = ‖λsξα‖2 + ‖ξα‖2 − 2Re〈λsξα|ξα〉 → 0

for s ∈ G. So it follows from (1) ⇔ (2) that G is amenable.
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Completely Bounded and Completely Positive Maps

Let A be a C*-algebra. Then for each n ∈ N, there exists a unique C*-
algebra norm on Mn(A). Indeed, we can assume that A ⊆ B(H). Then
we can get a C*-algebra norm on Mn(A) by the following identification

Mn(A) = {[xij] : xij ∈ A} ⊆Mn(B(H)) = B(Hn).

If T : x ∈ A → T (x) ∈ B is a bounded linear map, then for each n ∈ N,
we obtain a bounded linear map Tn : Mn(A)→Mn(B) defined by

Tn([xij]) = [T (xij] for all [xij] ∈Mn(A).

T is completely bounded (or simply cb) if ‖T‖cb = sup{‖Tn‖ : n ∈ N} <∞.
T is completely positive (or simply cp) if each Tn : Mn(A) → Mn(B) is
positive.

Theorem: Every bounded/positive T : A → C(Ω) (in particular, T :
A→ C) is cb/cp.

Theorem: If T : A→Mn(C(Ω)) is n-positive, then it is cp.

Theorem: A linear map T : Mn(C)→ B is cp if and only if for the matrix
unit {eij} of Mn(C), Tn([eij]) = [T (eij)] is positive in Mn(B).
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Stinespring/Arveson-Wittstock-Hahn-Banach Extension Theorem Let

A ↪→ B be C*-algebras and let T : A → B(H) be a cp/cb map.

Then there exists a cp/cb map T̃ : B → B(H) such that T̃|A = T

and ‖T̃‖cb = ‖T‖cb.

Theorem [Stinespring]: Let T : A → B(H) be a cp map. Then there

exist a Hilbert space K, a unital *-homomorphsim π : A→ B(K), and a

bounded linear map V : H → K such that

T (x) = V ∗π(x)V

and ‖T‖cb = ‖V ‖2.

Theorem [Wittstock]: Let T : A → B(H) be a cb map. Then there

exist a Hilbert space K, a unital *-homomorphsim π : A → B(K), and

bounded linear maps V,W : H → K such that

T (x) = V ∗π(x)W

and ‖T‖cb = ‖V ‖‖W‖.
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C*-algebra Tensor Product and Nuclearity of C*-algebras

Let A ⊆ B(H) and B ⊆ B(K) be two C*-algebras. We can obtain a

natural injective representation A⊗alg B ⊆ B(H ⊗K). We define

A⊗min B = (A⊗alg B)−‖·‖ ⊆ B(H ⊗K).

We define A⊗maxB to be the norm closure of A⊗alg B under the norm

‖x‖max = sup{‖πA · πB(x)‖ = ‖
∑

πA(xi)πB(yi)‖ if x =
∑

xi ⊗ yi},

where the supremum is taken over all representations : πA : A → B(H)

and πB : B → B(H) with commutating range, i.e. πA(x)πB(y) =

πB(y)πA(x) for all x ∈ A and y ∈ B. In general ‖ · ‖max ≥ ‖ · ‖min

and the identity map on a⊗alg B exntends to a C*-quotient map

A⊗max B → A⊗min B.

A C*-algebra A is nuclear (by C. Lance in the early 1970’s) if for any

C*-algebra B, we have the C*-isomorphism

A⊗max B = A⊗min B.
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Nuclear C*-algebras and Semidiscrete von Neumann Algebras

Theorem [Choi-Effros]; A C*-algebra A is nuclear if and only if there

exists two nets of cp and contractive maps Sα : A → Mn(α) and Tα :

Mn(α) → A such that

‖Tα ◦ Sα(x)− x‖ → 0 for all x ∈ A.

A C*-algebra A is said to have the CPAP if there exists a net of cp and

contractive finite rank maps Tα : A→ A such that

‖Tα(x)− x‖ → 0 for all x ∈ A.

A von Neumann algebra M is said to be semidiscrete if it has the weak*

version of CPAP, i.e. there exists a net of weak* continuous cp and

contractive finite rank maps Tα : M →M such that

〈Tα(x)− x, ω〉 → 0 for all x ∈M and ω ∈M∗.

13



Examples of Nuclear C*-algebras

Finite Dimensional C*-algebras A = Mn1 ⊕ · · · ⊕Mnk,

Comm C*-algebra C(Ω)

Rotation algebra Aθ,

CAR algebra A2∞,

Matrix algebras Mn(A), inductive limit and c0-direct sum of nulcear C*-

algebras A ...
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Theorem: For discrete group G, we can easily prove that TFAE:

(1) G is amenable,

(2) C∗λ(G) is nuclear,

(3) C∗λ(G) has the CPAP,

(4) V Nλ(G) is semidiscrete.
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Outline of Proof: (1) ⇒ (2) Suppose that G is amenable. It is known

from the Følner condition that for any finite set F in G and ε > 0, there

exists a finite subset Kα = K(F,ε) in G such that

|s ·Kα∆Kα|
|Kα|

< ε

for all s ∈ F .

Let ια be the isometric inclusion `2(Kα) ↪→ `2(G) and Pα : `2(G) →
`2(Kα) be the projection. We obtain a complete contraction

Sα : x ∈ C∗λ(G)→ Pαxια ∈ B(`2(Kα)) = Mn(α),

where n(α) = |Kα| is the cardinality of Kα.
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Let {eαs,t}s,t∈Kα be the matrix unit of B(`2(Kα)). We can define a map

Tα : eαs,t ∈ B(`2(Kα)) = Mn(α) →
λst−1

n(α)
∈ C∗λ(G).

Now it is easy to verify that

eαs,sλp(g)eαt,t =

{
eαs,t if g = st−1

0 otherwise.

Therefore, for any g ∈ G, we have

Sα(λg) = Pαλgια =
∑

s,t∈Kα
eαs,sλge

α
t,t =

∑
s∈Kα∩gKα

eα
s,g−1s

,

and thus

Tα ◦ Sα(λg) =
|Kα ∩ gKα|

n(α)
λg.

It follows that

‖Tα ◦ Sα(λg)− λg‖ ≤
|Fα∆gFα|
n(α)

‖λg‖ < ε for all g ∈ E.

Therefore, we have ‖Tα ◦ Sα(x)− x‖ → 0 for every x ∈ C∗λ(G).

(2) ⇒ (3) is obvious.

17



(3) ⇒ (1) Suppose that we have C∗λ(G) has the CPAP, i.e. there exists

a net of cp finite rank contractions Tα : C∗λ(G) → C∗λ(G) ⊆ B(`2(G))

such that ‖Tα(x)− x‖ → 0 for all x ∈ C∗λ(G).

Then we can get a net of functions {ϕα} on G defined by

ϕα(s) = 〈λ∗sTα(λs)δe|δe〉 = 〈Tα(λs)δe|λsδe〉.

Since Tα are completely positive maps, each ϕα is a positive definite

function contained in B(G) and we have

‖ϕα‖B(G) = ϕα(e) = 〈Tα(1)δe|δe〉 ≤ ‖Tα(1)‖ ≤ 1.

Moreover, it is known by Haagerup that since each Tα is finite rank,

then ϕα ∈ `2(G) ⊆ A(G) with ‖ϕα‖A(G) = ‖ϕα‖B(G) ≤ 1.

Finally, we see that for each s ∈ G, Tα(λs)→ λs in norm-topology implies

that

ϕα(s) = 〈Tα(λs)δe|λsδe〉 → 〈λsδe|λsδe〉 = 1.

This shows that the group G is amenable.
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Remark: It is quite often to consider the following proof of (2) ⇒ (1).

Suppose that C∗λ(G) is nuclear. Then there exists two nets of cp and
contractive maps Sα : C∗λ(G) → Mn(α) and Tα : Mn(α) → C∗λ(G) such
that

‖Tα ◦ Sα(x)− x‖ → 0 for all x ∈ C∗λ(G).

For each α, we can obtain a cp extension S̃α : B(`2(G))→Mn(α) of Sα.
Then we obtain a net of cp maps

Φα = Tα ◦ S̃α : B(`2(G))→ C∗λ(G) ⊆ V Nλ(G).

Since V Nλ(G) is a dual space, there exists a subnet of {Φα} converging
in the point-weak* topology to a cp map Φ : B(`2(G)) → V Nλ(G). In
this case, we have Φ(x) = x for all x ∈ C∗λ(G) and

Φ(λsxλt) = λsΦ(x)λt

for all x ∈ B(`2(G)). Let τ be the canonical trace on V Nλ(G), then
τ ◦Φ(x) defines a state on B(`2(G)). The restriction m = τ ◦Φ|`∞(G) is
a left invariant mean on `∞(G) since

m(s · h) = τ(Φ(λshλs−1)) = τ(λsΦ(h)λs−1) = τ(Φ(h)) = m(h).

This shows that G is amenable.
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Theorem [Choi-Effros/Effros-Lance]: Let A be a C*-algebra. TFAE:

(1) A is nuclear,

(2) A has the CPAP,

(3) A∗∗ is demidiscrete.

20



References

(1) C*-algebras and Finite-Dimensional Approximations, N. Brown and

N. Ozawa

(2) C*-algebras by examples, K. Davidson

(3) Operator Spaces, E. Effros and Z-J Ruan

(4) Completely Bounded Maps and Operator Algebras, V. Paulsen

(5) Introduction to Operator Spaces, G. Pisier

21


