Introduction to Banach and Operator Algebras Lecture 6

Zhong-Jin Ruan University of Illinois at Urbana-Champaign

> Winter School at Fields Institute Tuesday January 14, 2014

Unitary Representations

In this lecture, we assume that all groups under consideration are discrete. Many results are still true for general locally compact groups.

Let G be a discrete group. A unitary representation on a Hilbert space H is a map

 $\pi_U : s \in G \to U_s \in \mathcal{U}(H)$, the unitary group in $B(H)$.

such that

$$
U_s U_t = U_{st}.
$$

In this case,

$$
\pi_U : f = \sum \alpha_s \delta_s \in \ell_1(G) \to \pi_U(f) = \sum \alpha_s U_s \in B(H)
$$

is a contractive unital *-homomorphism from $\ell_1(G)$ into $B(H)$, and $\pi(\ell_1(G)) = {\pi(f) : f \in \ell_1(G)}$ is a unital *-subalgebra in $B(H)$.

Group C* and von Neumann Algebras

We let $C^*_\pi(G) = \pi(\ell_1(G))^{-\| \cdot \|}$ and $VN_\pi(G) = \pi(\ell_1(G))^{-s.o.t.}$ denote the group C*-algebra and group von Neumann algebra associated with the unitary representation π . In particular, for the left regular representation

$$
\lambda : s \in G \to \lambda_s \in B(\ell_2(G)),
$$

we get the reduced left group C * -algebra $C_\lambda^*(G)$ and the left group von Neumann algebra $VN_\lambda(G)$.

There is a universal representation

$$
\pi_u : s \in G \to u_s = \bigoplus_{\alpha} U_s^{\alpha} \in B(\bigoplus_{\alpha} H_{\alpha}),
$$

where the direct sum is taken over all non-equivalent classes of cyclic unitary representations. In this case, we can obtain the full group C^* algebra $C^*(G) = \pi_u(\ell_1(G))^{-\|\cdot\|}.$

It is known that there is a natural unital *-homomorphism

$$
\pi_{\lambda}: C^*(G) \to C^*_{\lambda}(G)
$$

from $C^*(G)$ onto $C^*_{\lambda}(G)$.

Fourier Algebras $A(G)$

Let $A(G) = \{f : G \to \mathbb{C} \text{ such that } f(s) = \langle \lambda_s \xi | \eta \rangle \}$ be the space of all coeficient functions of the left regular representation λ . It was shown by Eymard in 1964 that $A(G)$ with the norm

$$
||f||_{A(G)} = \inf{||\xi|| ||\eta|| : f(s) = \langle \lambda_s \xi | \eta \rangle}
$$

and pointwise multiplication

$$
(fg)(s) = f(s)g(s)
$$

is a commutative Banach algebra. We call $A(G)$ the Fourier algebra of G. It is known that we have the isometric identification $A(G)$ = $VN_\lambda(G)_*.$

Therefore, if G is an abelian group, then we have

 C^*_{λ} $C^*_\lambda(G) \cong C(\widehat{G}), \ VN_\lambda(G) \cong L_\infty(\widehat{G}), \ \text{and} \ A(G) \cong L_1(\widehat{G}).$

Fourier Stieltjes Algebras

We let $B(G) = \{f : G \to \mathbb{C} \text{ such that } f(s) = \langle u_s \xi | \eta \rangle \}$ be the space of all coefifcient functions of the universal unitary representation π_u of G. Then $B(G)$ with the norm

$$
||f||_{B(G)} = {||\xi|| ||\eta|| : f(s) = \langle u_s \xi | \eta \rangle}
$$

and the pointwise multiplication is a unital commutative Banach algebra. We call $B(G)$ the Fourier-Stieltjes algebra of G. In general, we have the isometric indetification

$$
B(G) = C^*(G)^*.
$$

A function $f: G \to \mathbb{C}$ is positive definite (or simply p.d.) if for any $s_1, \cdots, s_n \in G$, $[f(s_i^{-1})]$ $\binom{-1}{i}s_j)$] is positive in $M_n({\mathbb C})$.

Theorem: A function $f: G \to \mathbb{C}$ is p.d. if and only if $f(s) = \langle U_s \xi | \xi \rangle$ for some unitary representation π_U of G.

Therefore, every p.d. function f uniquely corresponds to a positive linear functional on $C^*(G)$.

$B_{\lambda}(G)$

Moreover, we let $B_\lambda(G) = C^*_\lambda(G)^*$. Then the C*-quitent $\pi_\lambda : C^*(G) \to C^*(G)$ $C^{*}_{\lambda}(G)$ induces an isometric inclusion

$$
B_{\lambda}(G) \hookrightarrow B(G),
$$

and by a standard duality argument, we have

$$
C^*(G) \cong C^*_{\lambda}(G)
$$
 if and only if $B(G) = B_{\lambda}(G)$.

In general, $A(G)$ and $B_{\lambda}(G)$ are two-sided ideals in $B(G)$ and we have the isometric inclusions

$$
A(G) \hookrightarrow B_{\lambda}(G) \hookrightarrow B(G).
$$

Amenable Groups

A discrete group G is amenable if $\ell_{\infty}(G)$ has a left invariant mean, i.e. there is a state $m : \ell_{\infty}(G) \to \mathbb{C}$ such that $m(s \cdot h) = m(h)$ for all $s \in G$ and $h \in \ell_{\infty}(G)$, where we let $s \cdot h(t) = h(s^{-1}t)$. Since $\ell_{\infty}(G)^* = \ell_1(G)^{**}$, this is equivalent to $\delta_s \star m = m$ for all $s \in G$.

Theorem: Let G be a discrete group. TFAE:

 (1) G is amenable,

- (2) There exists a net of $f_\alpha \geq 0$ in $\ell_1(G)$ such that $||f_\alpha||_1 = 1$ and $\|\delta_s \star f_\alpha - f_\alpha\|_1 \to 0$ for all $s \in G$,
- (2') For every finite subset $F \subseteq G$ and $\varepsilon > 0$, there exists a $f \geq 0$ in $\ell_1(G)$ such that $||f||_1 = 1$ and $||\delta_s * f - f||_1 < \varepsilon$ for all $s \in F$.
- (3) G satisfies the Følner condition, i.e. for any finite set $F\subseteq G$ and $\varepsilon > 0$ 0, there exists a finite set $K \subseteq G$ such that $\frac{|s \cdot K \Delta K|}{|K|} < \varepsilon$ for all $s \in F$.

Theorem: Let G be a discrete group. TFAE:

 (1) G is amenable,

- (2) There exists a net of unit vectors $\xi_{\alpha} \in \ell_2(G)$ (with finite support) such that $\|\lambda_s \xi_\alpha - \xi_\alpha\|_2 \to 0$ for all $s \in G$,
- (3) There exists a net of (positive definite) contractive $\varphi_{\alpha} \in A(G)$ (with finite support) such that $\varphi_{\alpha}(s) \to 1$ for all $s \in G$.

(4) $A(G)$ has a bounded appriximate identity,

(5) $C^*(G) = C^*_{\lambda}(G)$ or equivalently $B(G) = B_{\lambda}(G)$.

Outline of Proof: (1) \Leftrightarrow (2) If G is amenable, we get a net of positive functions $\{f_\alpha\}$ in (2) of previous theorem. Then $\xi_\alpha=f$ 1 $\overline{c}^{\overline{2}}$ is a net of unit vectors in $\ell_2(G)^+$ such that

$$
\begin{array}{rcl}\n\|\lambda_s \xi_\alpha - \xi_\alpha\|_2^2 &=& \sum_{t \in G} |\xi_\alpha(s^{-1}t) - \xi_\alpha(t)|^2 \\
& \leq & \sum_{t \in G} |\xi_\alpha(s^{-1}t) - \xi_\alpha(t)| |\xi_\alpha(s^{-1}t) + \xi_\alpha(t)| \\
&=& \sum_{t \in G} |f_\alpha(s^{-1}t) - f_\alpha(t)| = \|\delta_s \star f_\alpha - f_\alpha\|_1 \to 0.\n\end{array}
$$

By an appropriate approximation, we can choose ξ_{α} with finite support.

On the other hand, if we have (2), then Then $f_{\alpha} = |\xi_{\alpha}|^2$ is a net of positive functions contained in $\ell_1(G)$ such that $||f_\alpha||_1 = 1$ and

$$
\|\delta_s \star f_{\alpha} - f_{\alpha}\|_1 = \sum_{t \in G} |f_{\alpha}(s^{-1}t) - f_{\alpha}(t)|
$$

\n
$$
= \sum_{t \in G} |\xi_{\alpha}(s^{-1}t) - \xi_{\alpha}(t)||\xi_{\alpha}(s^{-1}t) + \xi_{\alpha}(t)|
$$

\n
$$
\leq (\sum_{t \in G} |\xi_{\alpha}(s^{-1}t) - \xi_{\alpha}(t)|^2)^{\frac{1}{2}} (\sum_{t \in G} |\xi_{\alpha}(s^{-1}t) + \xi_{\alpha}(t)|^2)^{\frac{1}{2}}
$$

\n
$$
= \|\lambda_s \xi_{\alpha} - \xi_{\alpha}\|_2 \|\lambda_s \xi_{\alpha} + \xi_{\alpha}\|_2 \leq 2 \|\lambda_s \xi_{\alpha} - \xi_{\alpha}\|_2 \to 0.
$$

 $(2) \Rightarrow (3)$ If we have (2) , then $\varphi_{\alpha}(s) = \langle \lambda_s \xi_{\alpha} | \xi_{\alpha} \rangle$ is a net of positive definite contractive functions in $A(G)$ such that

$$
|\varphi_{\alpha}(s) - 1| = |\langle \lambda_s \xi_{\alpha} - \xi_{\alpha} | \xi_{\alpha} \rangle| \to 0 \text{ for all } s \in G.
$$

If ξ_α has a finite support, then so is φ_α .

 $(3) \Rightarrow (4)$ Suppose we have (3) . We want to show that the net of contractive $\{\varphi_{\alpha}\}\$ in $A(G)$ is an approximate identity of $A(G)$. Let us first note that each δ_s is contained in $A(G)$ since $\delta_s(t) = \langle \lambda_t \delta_e | \delta_s \rangle$. We also note that the linear span of $\{\delta_s : s \in G\}$ is norm dense in $A(G)$. So it sufficies to show that for all $s \in G$,

$$
\|\varphi_{\alpha}\delta_s-\delta_s\|_{A(G)}=\|\varphi_{\alpha}(s)\delta_s-\delta_s\|_{A(G)}=|\varphi_{\alpha}(s)-1|\|\delta_s\|_{A(G)}\rightarrow 0.
$$

 $(4) \Rightarrow (5)$ Suppose that $A(G)$ has a bounded approximate identity $\{\varphi_{\alpha}\}.$ Reversing the above calculation, we can

$$
|\varphi_{\alpha}(s) - 1| = |\varphi_{\alpha}(s) - 1| \|\delta_s\|_{A(G)} = \|\varphi_{\alpha}\delta_s - \delta_s\|_{A(G)} \to 0.
$$

So $\varphi_{\alpha}(s) \to 1$ for all $s \in G$.

Let $\varphi \in B(G) = C^*(G)^*$. For any $s_1, \dots, s_n \in G$, we have

 $\varphi(s_i) = 1 \cdot \varphi(s_i) = \lim_{\alpha} \varphi_\alpha(s_i) \varphi(s_i) = \lim_{\alpha} (\varphi_\alpha \varphi)(s_i)$

Then for any $x = \sum a_i \pi_u(s_i) \in C^*(G)$, we have

$$
\varphi(x) = \lim_{\alpha} (\varphi_{\alpha}\varphi)(x).
$$

Since $\varphi_{\alpha}\varphi$ is a net of bounded elements in $A(G)$, we can conclude that for any $x \in \text{ker } \pi_\lambda \subseteq C^*(G)$,

$$
\varphi(x) = \lim_{\alpha} (\varphi_{\alpha}\varphi)(x) = \lim_{\alpha} (\varphi_{\alpha}\varphi)(\pi_{\lambda}(x)) = 0.
$$

This shows that $ker \pi_{\lambda} = \{0\}$ and thus π_{λ} is an isometric *-isomorphism from $C^*(G)$ onto $C^*_{\lambda}(G)$.

 $(5) \Rightarrow (1)$ suppose $C^*(G) = C^*_\lambda(G)$. Then $A(G) \hookrightarrow B_\lambda(G) = B(G)$ is weak* dense in $B(G)$. For $1 \in B(G)$, we can find a net of unit vectors $\xi_{\alpha} \in \ell_2(G)^+$ such that for any $s \in G$,

$$
1 = \lim_{\alpha} \langle \lambda_s \xi_{\alpha} | \xi_{\alpha} \rangle = \varphi_{\alpha}(s).
$$

This implies (2), i.e.

$$
\|\lambda_s \xi_\alpha - \xi_\alpha\|_2 = \|\lambda_s \xi_\alpha\|^2 + \|\xi_\alpha\|^2 - 2Re\langle \lambda_s \xi_\alpha | \xi_\alpha \rangle \to 0
$$

for $s \in G$. So it follows from $(1) \Leftrightarrow (2)$ that G is amenable.

Completely Bounded and Completely Positive Maps

Let A be a C^{*}-algebra. Then for each $n \in \mathbb{N}$, there exists a unique C^{*}algebra norm on $M_n(A)$. Indeed, we can assume that $A \subseteq B(H)$. Then we can get a C^{*}-algebra norm on $M_n(A)$ by the following identification

 $M_n(A) = \{ [x_{ij}] : x_{ij} \in A \} \subseteq M_n(B(H)) = B(H^n).$

If $T: x \in A \rightarrow T(x) \in B$ is a bounded linear map, then for each $n \in \mathbb{N}$, we obtain a bounded linear map $T_n: M_n(A) \to M_n(B)$ defined by

 $T_n([x_{ij}]) = [T(x_{ij}]$ for all $[x_{ij}] \in M_n(A)$.

T is completely bounded (or simply cb) if $||T||_{cb} = \sup{||T_n|| : n \in \mathbb{N} \} < \infty$. T is completely positive (or simply cp) if each $T_n : M_n(A) \to M_n(B)$ is positive.

Theorem: Every bounded/positive $T : A \to C(\Omega)$ (in particular, T : $A \to \mathbb{C}$) is cb/cp.

Theorem: If $T: A \to M_n(C(\Omega))$ is n-positive, then it is cp.

Theorem: A linear map $T: M_n(\mathbb{C}) \to B$ is cp if and only if for the matrix unit $\{e_{ij}\}$ of $M_n(\mathbb{C})$, $T_n([e_{ij}]) = [T(e_{ij})]$ is positive in $M_n(B)$.

Stinespring/Arveson-Wittstock-Hahn-Banach Extension Theorem Let $A \hookrightarrow B$ be C^{*}-algebras and let $T : A \rightarrow B(H)$ be a cp/cb map. Then there exists a cp/cb map $\tilde{T}: B \to B(H)$ such that $\tilde{T}|_A = T$ and $\|\tilde{T}\|_{cb} = \|T\|_{cb}$.

Theorem [Stinespring]: Let $T : A \rightarrow B(H)$ be a cp map. Then there exist a Hilbert space K, a unital *-homomorphsim $\pi : A \to B(K)$, and a bounded linear map $V : H \to K$ such that

$$
T(x) = V^* \pi(x) V
$$

and $||T||_{cb} = ||V||^2$.

Theorem [Wittstock]: Let $T : A \rightarrow B(H)$ be a cb map. Then there exist a Hilbert space K, a unital *-homomorphsim $\pi : A \to B(K)$, and bounded linear maps $V, W : H \to K$ such that

$$
T(x) = V^* \pi(x) W
$$

and $||T||_{cb} = ||V|| ||W||$.

C*-algebra Tensor Product and Nuclearity of C*-algebras

Let $A \subseteq B(H)$ and $B \subseteq B(K)$ be two C^{*}-algebras. We can obtain a natural injective representation $A \otimes_{alg} B \subseteq B(H \otimes K)$. We define

$$
A\otimes^{\mathsf{min}} B=(A\otimes_{alg} B)^{-\|\cdot\|}\subseteq B(H\otimes K).
$$

We define $A\otimes^{\text{max}} B$ to be the norm closure of $A\otimes_{alg} B$ under the norm

$$
||x||_{\max} = \sup\{||\pi_A \cdot \pi_B(x)|| = ||\sum \pi_A(x_i)\pi_B(y_i)|| \text{ if } x = \sum x_i \otimes y_i\},
$$

where the supremum is taken over all representations : $\pi_A : A \to B(H)$ and π_B : $B \to B(H)$ with commutating range, i.e. $\pi_A(x)\pi_B(y)$ = $\pi_B(y)\pi_A(x)$ for all $x \in A$ and $y \in B$. In general $\|\cdot\|_{\max} \geq \|\cdot\|_{\min}$ and the identity map on $a \otimes_{alg} B$ exntends to a C*-quotient map

$$
A\otimes^{\text{max}} B\to A\otimes^{\text{min}} B.
$$

A C^* -algebra A is nuclear (by C. Lance in the early 1970's) if for any C^* -algebra B, we have the C^* -isomorphism

$$
A\otimes^{\text{max}} B = A\otimes^{\text{min}} B.
$$

Nuclear C*-algebras and Semidiscrete von Neumann Algebras

Theorem [Choi-Effros]; A C^{*}-algebra A is nuclear if and only if there exists two nets of cp and contractive maps $S_{\alpha}: A \rightarrow M_{n(\alpha)}$ and T_{α} : $M_{n(\alpha)} \rightarrow A$ such that

$$
||T_{\alpha}\circ S_{\alpha}(x)-x||\to 0 \text{ for all } x\in A.
$$

A C^* -algebra A is said to have the $CPAP$ if there exists a net of cp and contractive finite rank maps $T_{\alpha}: A \rightarrow A$ such that

$$
||T_{\alpha}(x) - x|| \to 0 \text{ for all } x \in A.
$$

A von Neumann algebra M is said to be semidiscrete if it has the weak* version of CPAP, i.e. there exists a net of weak* continuous cp and contractive finite rank maps $T_{\alpha}: M \to M$ such that

$$
\langle T_{\alpha}(x) - x, \omega \rangle \to 0 \text{ for all } x \in M \text{ and } \omega \in M_{*}.
$$

Examples of Nuclear C*-algebras

Finite Dimensional C*-algebras $A = M_{n_1} \oplus \cdots \oplus M_{n_k}$,

```
Comm C<sup>*</sup>-algebra C(\Omega)
```

```
Rotation algebra A_{\theta},
```

```
CAR algebra A_2\infty,
```
Matrix algebras $M_n(A)$, inductive limit and c_0 -direct sum of nulcear C^{*}algebras A ...

Theorem: For discrete group G , we can easily prove that $TFAE$:

 (1) G is amenable,

(2) $C^*_{\lambda}(G)$ is nuclear,

(3) $C^*_{\lambda}(G)$ has the CPAP,

(4) $VN_{\lambda}(G)$ is semidiscrete.

Outline of Proof: (1) \Rightarrow (2) Suppose that G is amenable. It is known from the Følner condition that for any finite set F in G and $\varepsilon > 0$, there exists a finite subset $K_{\alpha}=K_{(F,\varepsilon)}$ in G such that

$$
\frac{|s \cdot K_{\alpha} \Delta K_{\alpha}|}{|K_{\alpha}|} < \varepsilon
$$

for all $s \in F$.

Let ι_{α} be the isometric inclusion $\ell_2(K_{\alpha}) \hookrightarrow \ell_2(G)$ and $P_{\alpha} : \ell_2(G) \rightarrow$ $\ell_2(K_\alpha)$ be the projection. We obtain a complete contraction

$$
S_{\alpha}: x \in C_{\lambda}^{*}(G) \to P_{\alpha}x_{\alpha} \in B(\ell_{2}(K_{\alpha})) = M_{n(\alpha)},
$$

where $n(\alpha) = |K_{\alpha}|$ is the cardinality of K_{α} .

Let $\{e_{s,t}^{\alpha}\}_{s,t\in K_{\alpha}}$ be the matrix unit of $B(\ell_2(K_{\alpha}))$. We can define a map

$$
T_{\alpha}: e_{s,t}^{\alpha} \in B(\ell_2(K_{\alpha})) = M_{n(\alpha)} \to \frac{\lambda_{st-1}}{n(\alpha)} \in C_{\lambda}^*(G).
$$

Now it is easy to verify that

$$
e_{s,s}^{\alpha} \lambda_p(g) e_{t,t}^{\alpha} = \begin{cases} e_{s,t}^{\alpha} & \text{if } g = st^{-1} \\ 0 & \text{otherwise.} \end{cases}
$$

Therefore, for any $g \in G$, we have

$$
S_{\alpha}(\lambda_g) = P_{\alpha}\lambda_g \iota_{\alpha} = \sum_{s,t \in K_{\alpha}} e_{s,s}^{\alpha} \lambda_g e_{t,t}^{\alpha} = \sum_{s \in K_{\alpha} \cap gK_{\alpha}} e_{s,g^{-1}s}^{\alpha},
$$

and thus

$$
T_{\alpha}\circ S_{\alpha}(\lambda_g)=\frac{|K_{\alpha}\cap gK_{\alpha}|}{n(\alpha)}\lambda_g.
$$

It follows that

$$
||T_{\alpha}\circ S_{\alpha}(\lambda_{g}) - \lambda_{g}|| \leq \frac{|F_{\alpha}\Delta gF_{\alpha}|}{n(\alpha)}||\lambda_{g}|| < \varepsilon \quad \text{for all } g \in E.
$$

Therefore, we have $||T_\alpha \circ S_\alpha(x) - x|| \to 0$ for every $x \in C^*_\lambda(G)$.

 $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$ Suppose that we have $C_{\lambda}^{*}(G)$ has the CPAP, i.e. there exists a net of cp finite rank contractions $T_\alpha\,:\,C^*_\lambda(G)\,\to\,C^*_\lambda(G)\,\subseteq\,B(\ell_2(G))$ such that $||T_\alpha(x)-x|| \to 0$ for all $x \in C^*_\lambda(G)$.

Then we can get a net of functions $\{\varphi_{\alpha}\}$ on G defined by

 $\varphi_{\alpha}(s) = \langle \lambda_s^* T_{\alpha}(\lambda_s) \delta_e | \delta_e \rangle = \langle T_{\alpha}(\lambda_s) \delta_e | \lambda_s \delta_e \rangle.$

Since T_{α} are completely positive maps, each φ_{α} is a positive definite function contained in $B(G)$ and we have

$$
\|\varphi_{\alpha}\|_{B(G)} = \varphi_{\alpha}(e) = \langle T_{\alpha}(1)\delta_e|\delta_e\rangle \leq \|T_{\alpha}(1)\| \leq 1.
$$

Moreover, it is known by Haagerup that since each T_{α} is finite rank, then $\varphi_{\alpha} \in \ell_2(G) \subseteq A(G)$ with $\|\varphi_{\alpha}\|_{A(G)} = \|\varphi_{\alpha}\|_{B(G)} \leq 1$.

Finally, we see that for each $s \in G$, $T_{\alpha}(\lambda_s) \to \lambda_s$ in norm-topology implies that

$$
\varphi_{\alpha}(s) = \langle T_{\alpha}(\lambda_s)\delta_e | \lambda_s \delta_e \rangle \rightarrow \langle \lambda_s \delta_e | \lambda_s \delta_e \rangle = 1.
$$

This shows that the group G is amenable.

Remark: It is quite often to consider the following proof of $(2) \Rightarrow (1)$.

Suppose that $C_{\lambda}^{*}(G)$ is nuclear. Then there exists two nets of cp and contractive maps $S_\alpha\,:\,C^*_\lambda(G)\,\to\,M_{n(\alpha)}\,$ and $T_\alpha\,:\,M_{n(\alpha)}\,\to\,C^*_\lambda(G)\,$ such that

> $||T_{\alpha}\circ S_{\alpha}(x)-x||\rightarrow 0$ for all $x\in C_{\lambda}^{*}$ $\chi^*(G).$

For each α , we can obtain a cp extension $\tilde{S}_{\alpha}: B(\ell_2(G)) \to M_{n(\alpha)}$ of S_{α} . Then we obtain a net of cp maps

$$
\Phi_{\alpha} = T_{\alpha} \circ \tilde{S}_{\alpha} : B(\ell_2(G)) \to C_{\lambda}^*(G) \subseteq VN_{\lambda}(G).
$$

Since $VN_\lambda(G)$ is a dual space, there exists a subnet of $\{\Phi_\alpha\}$ converging in the point-weak* topology to a cp map $\Phi : B(\ell_2(G)) \to VN_\lambda(G)$. In this case, we have $\Phi(x)=x$ for all $x\in C^{*}_{\lambda}(G)$ and

$$
\Phi(\lambda_s x \lambda_t) = \lambda_s \Phi(x) \lambda_t
$$

for all $x \in B(\ell_2(G))$. Let τ be the canonical trace on $VN_\lambda(G)$, then $\tau \circ \Phi(x)$ defines a state on $B(\ell_2(G))$. The restriction $m = \tau \circ \Phi_{|\ell_{\infty}(G)}$ is a left invariant mean on $\ell_{\infty}(G)$ since

$$
m(s \cdot h) = \tau(\Phi(\lambda_s h \lambda_{s-1})) = \tau(\lambda_s \Phi(h) \lambda_{s-1}) = \tau(\Phi(h)) = m(h).
$$

This shows that G is amenable.

Theorem [Choi-Effros/Effros-Lance]: Let A be a C*-algebra. TFAE:

 (1) A is nuclear,

(2) A has the CPAP,

(3) A^{**} is demidiscrete.

References

- (1) C^{*}-algebras and Finite-Dimensional Approximations, N. Brown and N. Ozawa
- (2) C^* -algebras by examples, K. Davidson
- (3) Operator Spaces, E. Effros and Z-J Ruan
- (4) Completely Bounded Maps and Operator Algebras, V. Paulsen
- (5) Introduction to Operator Spaces, G. Pisier