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Exact C*-algebras

Let π : B(`2) → Q(`2) = B(`2)/K(`2) be the canonical quotient map.

For any C*-algebra A, we obtain a *-homomorphism

π ⊗ id : B(`2)⊗min A→ Q(`2)⊗min A.

It is clear that K(`2)⊗min A is contained in the kernel of π ⊗ id.

According to Kirchberg, a C*-algebra A is an exact C*-algebra if

K(`2)⊗min A = ker(π ⊗ id),

i.e. if we have the short exact sequence

0→ K(`2)⊗min A ↪→ B(`2)⊗min A→ Q(`2)⊗min A→ 0.

Theorem [Kirchberg]: A C*-algebra A is exact if and only if there

exists two nets of completely positive and contractive maps

Sα : A→Mn(α) and Tα : Mn(α) → B(H)

such that ‖Tα ◦ Sα(x)− x‖ → 0 for all x ∈ A.
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It follows from Kirchberg theorem that every nuclear C*-algebra is exact.

Proposition: If a C*-algebra A has the CBAP, then A is exact.

Proof: Suppose we have a net of finite rank maps Tα(x) =
∑
i f
α
i (x)bαi

on A such that ‖Tα‖cb ≤ C <∞ and Tα → id in the point-norm topology.

Then for any u ∈ ker(π ⊗ id) ⊆ B(`2)⊗min A , we have

(id⊗ Tα)(u) =
∑
i

(id⊗ fαi )(u)⊗ bαi → u

in the norm topology in B(`2)⊗min A. Notice that

π((id⊗ fαi )(u)) = fαi (π ⊗ id)(u)) = 0.

This shows that each (id ⊗ Tα)(u) is contained in K(`2) ⊗ A and thus

u ∈ K(`2)⊗min A.
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Examples of Exact C∗-algebras

• For C*-algebras, we have

Nulcearity ⇒ CBAP ⇒ Exactness

• For any discrete group G, we have

Amenability ⇒ Weakly Amenability ⇒ Exactness, i.e. C∗λ(G) is exact

• Groups like G = Fn,Z2 o SL(2,Z), G = SL(3,Z) are exact.

Non-Examples of Exact C∗-algebras

• C∗(Fn) for n ≥ 2 and B(H) if dim H =∞.
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Some Interesting Theorems

It is easy to see that if A is an exact C*-algebra, then any C*-subalgebra

or subspace of A is also exact. Therefore, every C*-subalgebra of nuclear

C*-algebra is exact.

Theorem [Kirchberg and Phillips 2000]: If A is a separable exact

C*-algebra, then A is *-isomorphic to a C*-subalgebra of O2.

The Cuntz algebra O2 is the universal C*-algebra generated by isome-

tries S1 and S2 such that S1S
∗
1 + S2S

∗
2 = 1.

It is known that the Cuntz algebra is nuclear, simple, purely infinite

C*-algebra.
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How about group C*-algebras ?
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Roe Algebra C∗u(G)

Now let G be a discrete group. Then span{fλs : f ∈ `∞(G), s ∈ G} is a

unital *-subalgebra of B(`2(G)).

It is clearly unital. It is subalgebra since

(fλs)(gλt) = f λsgλs−1 λst = (f sg)λst.

It is also closed under the involution since

(fλs)
∗ = λs−1f̄ = (λs−1f̄λs)λs−1 = (s−1f̄)λs−1.

Therefore,

C∗u(G) = span{fλs : f ∈ `∞(G), s ∈ G}‖·‖ ⊆ B(`2(G))

is a unital C*-algebra, which is called uniform Roe algebra. In fact,

C∗u(G) = `∞(G)oG. It contains C∗λ(G), `∞(G) and K(`2(G)) = c0(G)oG.
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C*-algebra Crossed Product

Let A ⊆ B(H) be a unital C*-algebra and α : G y A is an action of G

on A. We can obtain a representation π : A→ B(H ⊗ `2(G)) given by

π(a)(ξ ⊗ δs) = αs−1(a)(ξ)⊗ δs

and an unitary represntation λ̃s : G→ B(H ⊗ `2(G))

λ̃s = 1⊗ λs.

Then the reduced C*-algebra crossed product

A oα,r G = {
∑

π(as)λ̃s}−‖·‖ ⊆ B(H ⊗ `2(G)).

To simplify notation we simply write
∑
s π(as)λ̃s as

∑
s asλs.

7



Positive Definite Schur Multipliers

A function φ : G × G → C is a positive definite Schur multiplier if for
any s1, · · · , sn ∈ G, [φ(si, sj)] is a positive definite matrix in Mn(C).

Remark: If ϕ : G→ C is a p.d. Herz-Schur multiplier, then

φ(s, t) = ϕ(s−1t)

defines a (left invariant) Schur multiplier.

Theorem: Let φ : G×G→ C. TFAE:

(1) φ is a p.d. Schur multiplier,

(2) the Schur map Tφ : [xs,t] ∈ B(`2(G)) → [φ(s, t)xs,t] ∈ B(`2(G)) de-
fines a (weak* continuous) cp map on B(`2(G)),

(3) there exists a bounded map α : G→ `2(I) such that

φ(s, t) = 〈α(s) | α(t)〉 = α(s)∗α(t).
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General Schur Multipliers

A function φ : G×G→ C is a Schur multiplier if the Schur map

Tφ : [xs,t] ∈ B(`2(G))→ [φ(s, t)xs,t] ∈ B(`2(G))

defines a (weak* continuous) cb map on B(`2(G)). This is equivalent

to say that there exists two bounded maps α, β : G→ `2(I) such that

φ(s, t) = 〈α(t) | β(s)〉 = β(s)∗α(t).

If ϕ : G→ C is a completely bounded/Herz-Schur multiplier, then

φ(s, t) = ϕ(s−1t)

defines a (left invariant) Schur multiplier.
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The following theorem was first observed by Guentner and Kaminker,

but was finally proved by Ozawa.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:

1. G is exact, i.e the reduced group C*-algebra C∗λ(G) is exact;

2. for any finite subset E ⊆ G and ε > 0, there exists a finite subset

F ⊆ G and a positive definite Schur multiplier u : G × G → C such

that

|u(s, t)− 1| < ε if s−1t ∈ E and u(s, t) = 0 if s−1t /∈ F.

3. C∗u(G) = `∞(G) oG is nuclear.
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Let E be a subset of G. We define

4E = {(s, t) : s−1t ∈ E}

to be a strip associated with E. In particular, if E = {e},

4e = {(s, t), s−1t ∈ {e}} = {(s, s) : s ∈ G}

is just the diagonal of G×G. Here we are mainly interested in the finite

strips, i.e. strips with finite subsets E ⊆ G.
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Now we can restate the theorem as follows.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:

1. G is exact, i.e the reduced group C*-algebra C∗λ(G) is exact;

2. for any finite subset E ⊆ G and ε > 0, there exists a finite subset
F ⊆ G and a positive definite Schur multiplier φ(E,ε) : G × G → C
such that

|φ(E,ε)(s, t)− 1| < ε if s−1t ∈ E and φ(E,ε)(s, t) = 0 if s−1t /∈ F,

(2’) there exists a net of positive definite Schur multipliers φα : G×G→ C
such that
1) φα → 1 uniformly on each finite strip 4E
2) each φα is supported on some finite strip 4Fα,

3. C∗u(G) = `∞(G) oG is nuclear.
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Coarse Embedding

In his study of large scale properties of finitely generated groups, Gromov

introduced the notion of coarse embeddability. We recall that a metric

space (X , dX ) is coarsely embeddable into another metric space (Y, dY)

if there is a function f : X → Y for which there exist non-decreasing

functions

ρ± : R+ → R+

such that lim
r→+∞

ρ±(r) =∞ and

ρ−(dX (x, y)) ≤ dY(f(x), f(y)) ≤ ρ+(dX (x, y))

for all x, y ∈ X .
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Some Equivalent Theorems

Theorem [Dadarlat and Guentner 2003]: A countable discrete group
G is coarsely embeddable into a Hilbert space if and only if there exists
a sequence of positive definite Schur multipliers φn : G × G → C such
that
1) each φn is in C0(G×G,4e),
2) φn → 1 uniformly on finite strips 4E.

We say that a Schur mulriplier φ is vanishing off the diagonal, φ ∈
C0(G×G,4e), if for arbitrary ε > 0, there exists a finite set F ⊆ G such
that for all (s, t) /∈ 4F , we have |φ(s, t)| < ε.

Examples of Coarsely Embeddable Groups

• Amenable groups, hyperpobic groups, SL(3,Z), exact groups

• Groups with the Haagerup property

Non-example of Coarsely Embeddable Groups

• Gromov’s example of finitely generated groups with a sequence of
spanders
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Summaring our discussion, we have

Amenable Groups Exact Groups

Groups has the HP Coarsely Embeddable Groups

Consider completely bounded p.d. multipliers Consider p.d.Schur multipliers
ϕ : G→ C φ : G×G→ C.

If we have ϕ : G→ C, then we get φ : G×G→ C with

φ(s, t) = ϕ(s−1t).
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Thank you for your attention.
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