Introduction to Banach and Operator Algebras Lecture 8

Zhong-Jin Ruan University of Illinois at Urbana-Champaign

> Winter School at Fields Institute Friday January 17, 2014

Exact C*-algebras

Let $\pi : B(\ell_2) \to Q(\ell_2) = B(\ell_2)/K(\ell_2)$ be the canonical quotient map. For any C^* -algebra A, we obtain a *-homomorphism

 $\pi \otimes id : B(\ell_2) \otimes^{\mathsf{min}} A \rightarrow Q(\ell_2) \otimes^{\mathsf{min}} A.$

It is clear that $K(\ell_2) \otimes^{min} A$ is contained in the kernel of $\pi \otimes id$.

According to Kirchberg, a C^* -algebra A is an exact C^* -algebra if

$$
K(\ell_2) \otimes^{\min} A = \ker(\pi \otimes id),
$$

i.e. if we have the short exact sequence

$$
0 \to K(\ell_2) \otimes^{\mathsf{min}} A \hookrightarrow B(\ell_2) \otimes^{\mathsf{min}} A \to Q(\ell_2) \otimes^{\mathsf{min}} A \to 0.
$$

Theorem [Kirchberg]: A C^{*}-algebra A is exact if and only if there exists two nets of completely positive and contractive maps

 $S_{\alpha}: A \to M_{n(\alpha)}$ and $T_{\alpha}: M_{n(\alpha)} \to B(H)$

such that $||T_\alpha \circ S_\alpha(x) - x|| \to 0$ for all $x \in A$.

It follows from Kirchberg theorem that every nuclear C^* -algebra is exact.

Proposition: If a C^* -algebra A has the CBAP, then A is exact.

Proof: Suppose we have a net of finite rank maps $T_{\alpha}(x) = \sum_i f_i^{\alpha}$ $j^{\alpha}(x)b^{\alpha}_i$ i on A such that $||T_\alpha||_{cb} \leq C < \infty$ and $T_\alpha \rightarrow id$ in the point-norm topology. Then for any $u \in \text{ker}(\pi \otimes id) \subseteq B(\ell_2) \otimes^{\text{min}} A$, we have

$$
(id \otimes T_{\alpha})(u) = \sum_{i} (id \otimes f_i^{\alpha})(u) \otimes b_i^{\alpha} \to u
$$

in the norm topology in $B(\ell_2) \otimes^{min} A$. Notice that

$$
\pi((id \otimes f_i^{\alpha})(u)) = f_i^{\alpha}(\pi \otimes id)(u)) = 0.
$$

This shows that each $(id \otimes T_\alpha)(u)$ is contained in $K(\ell_2) \otimes A$ and thus $u \in K(\ell_2) \otimes^{\min} A$.

Examples of Exact C[∗] -algebras

• For C*-algebras, we have

Nulcearity \Rightarrow CBAP \Rightarrow Exactness

• For any discrete group G , we have

Amenability \Rightarrow Weakly Amenability \Rightarrow Exactness, i.e. $C_{\lambda}^{*}(G)$ is exact

• Groups like $G = \mathbb{F}_n, \mathbb{Z}^2 \rtimes SL(2, \mathbb{Z}), G = SL(3, \mathbb{Z})$ are exact.

Non-Examples of Exact C^{*}-algebras

• $C^*(\mathbb{F}_n)$ for $n \geq 2$ and $B(H)$ if dim $H = \infty$.

Some Interesting Theorems

It is easy to see that if A is an exact C^* -algebra, then any C^* -subalgebra or subspace of A is also exact. Therefore, every C^* -subalgebra of nuclear C*-algebra is exact.

Theorem [Kirchberg and Phillips 2000]: If A is a separable exact C^{*}-algebra, then A is ^{*}-isomorphic to a C^{*}-subalgebra of O_2 .

The Cuntz algebra O_2 is the universal C^{*}-algebra generated by isometries S_1 and S_2 such that $S_1S_1^* + S_2S_2^* = 1$.

It is known that the Cuntz algebra is nuclear, simple, purely infinite C*-algebra.

How about group C*-algebras ?

Roe Algebra $C^*_u(G)$

Now let G be a discrete group. Then $span\{f\lambda_s: f\in \ell_\infty(G), s\in G\}$ is a unital *-subalgebra of $B(\ell_2(G))$.

It is clearly unital. It is subalgebra since

$$
(f\lambda_s)(g\lambda_t) = f\lambda_s g\lambda_{s-1}\lambda_{st} = (f\,sg)\lambda_{st}.
$$

It is also closed under the involution since

$$
(f\lambda_s)^* = \lambda_{s-1}\overline{f} = (\lambda_{s-1}\overline{f}\lambda_s)\lambda_{s-1} = (s^{-1}\overline{f})\lambda_{s-1}.
$$

Therefore,

$$
C_u^*(G) = \overline{span\{f\lambda_s : f \in \ell_\infty(G), s \in G\}}^{\|\cdot\|} \subseteq B(\ell_2(G))
$$

is a unital C*-algebra, which is called uniform Roe algebra. In fact, $C^*_u(G) = \ell_\infty(G) \rtimes G$. It contains $C^*_\lambda(G), \ell_\infty(G)$ and $K(\ell_2(G)) = c_0(G) \rtimes G$.

C*-algebra Crossed Product

Let $A \subseteq B(H)$ be a unital C^{*}-algebra and $\alpha : G \curvearrowright A$ is an action of G on A. We can obtain a representation $\pi : A \to B(H \otimes \ell_2(G))$ given by

$$
\pi(a)(\xi\otimes\delta_s)=\alpha_{s^{-1}}(a)(\xi)\otimes\delta_s
$$

and an unitary represntation $\tilde{\lambda}_s : G \to B(H \otimes \ell_2(G))$

$$
\tilde{\lambda}_s=1\otimes\lambda_s.
$$

Then the reduced C^{*}-algebra crossed product

 $A \rtimes_{\alpha,r} G = \{ \sum \pi(a_s) \tilde{\lambda}_s \}^{-\|\cdot\|} \subseteq B(H \otimes \ell_2(G)).$

To simplify notation we simply write $\sum_s \pi(a_s) \tilde{\lambda}_s$ as $\sum_s a_s \lambda_s$.

Positive Definite Schur Multipliers

A function $\phi: G \times G \to \mathbb{C}$ is a positive definite Schur multiplier if for any $s_1, \cdots, s_n \in G$, $[\phi(s_i, s_j)]$ is a positive definite matrix in $M_n(\mathbb{C})$.

Remark: If $\varphi: G \to \mathbb{C}$ is a p.d. Herz-Schur multiplier, then

$$
\phi(s,t) = \varphi(s^{-1}t)
$$

defines a (left invariant) Schur multiplier.

Theorem: Let $\phi: G \times G \rightarrow \mathbb{C}$. TFAE:

(1) ϕ is a p.d. Schur multiplier,

(2) the Schur map $T_{\phi} : [x_{s,t}] \in B(\ell_2(G)) \to [\phi(s,t)x_{s,t}] \in B(\ell_2(G))$ defines a (weak* continuous) cp map on $B(\ell_2(G))$,

(3) there exists a bounded map $\alpha : G \to \ell_2(I)$ such that $\phi(s,t) = \langle \alpha(s) | \alpha(t) \rangle = \alpha(s)^* \alpha(t).$

General Schur Multipliers

A function $\phi: G \times G \to \mathbb{C}$ is a Schur multiplier if the Schur map

 $T_{\phi}: [x_{s,t}] \in B(\ell_2(G)) \to [\phi(s,t)x_{s,t}] \in B(\ell_2(G))$

defines a (weak* continuous) cb map on $B(\ell_2(G))$. This is equivalent to say that there exists two bounded maps $\alpha, \beta : G \to \ell_2(I)$ such that

$$
\phi(s,t) = \langle \alpha(t) | \beta(s) \rangle = \beta(s)^* \alpha(t).
$$

If $\varphi: G \to \mathbb{C}$ is a completely bounded/Herz-Schur multiplier, then

$$
\phi(s,t)=\varphi(s^{-1}t)
$$

defines a (left invariant) Schur multiplier.

The following theorem was first observed by Guentner and Kaminker, but was finally proved by Ozawa.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:

- 1. G is exact, i.e the reduced group C^{*}-algebra $C_{\lambda}^{*}(G)$ is exact;
- 2. for any finite subset $E \subseteq G$ and $\varepsilon > 0$, there exists a finite subset $F \subseteq G$ and a positive definite Schur multiplier $u : G \times G \to \mathbb{C}$ such that

$$
|u(s,t)-1| < \varepsilon \text{ if } s^{-1}t \in E \text{ and } u(s,t) = 0 \quad \text{if } s^{-1}t \notin F.
$$

3. $C^*_u(G) = \ell_\infty(G) \rtimes G$ is nuclear.

Let E be a subset of G . We define

$$
\triangle_E = \{(s, t) : s^{-1}t \in E\}
$$

to be a strip associated with E. In particular, if $E = \{e\}$,

$$
\triangle_e = \{(s, t), s^{-1}t \in \{e\}\} = \{(s, s) : s \in G\}
$$

is just the diagonal of $G \times G$. Here we are mainly interested in the finite strips, i.e. strips with finite subsets $E \subseteq G$.

Now we can restate the theorem as follows.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:

- 1. G is exact, i.e the reduced group C^{*}-algebra $C_{\lambda}^{*}(G)$ is exact;
- 2. for any finite subset $E \subseteq G$ and $\varepsilon > 0$, there exists a finite subset $F\subseteq G$ and a positive definite Schur multiplier $\phi_{(E,\varepsilon)}^{\varepsilon}:G\times G\rightarrow \mathbb{C}$ such that

$$
|\phi_{(E,\varepsilon)}(s,t)-1| < \varepsilon \text{ if } s^{-1}t \in E \text{ and } \phi_{(E,\varepsilon)}(s,t) = 0 \quad \text{if } s^{-1}t \notin F,
$$

- (2') there exists a net of positive definite Schur multipliers $\phi_\alpha:G\times G\to\mathbb C$ such that 1) $\phi_{\alpha} \rightarrow 1$ uniformly on each finite strip Δ_E 2) each ϕ_α is supported on some finite strip \triangle_{F_α} ,
	- 3. $C^*_u(G) = \ell_\infty(G) \rtimes G$ is nuclear.

Coarse Embedding

In his study of large scale properties of finitely generated groups, Gromov introduced the notion of coarse embeddability. We recall that a metric space $(\mathcal{X}, d_{\mathcal{X}})$ is coarsely embeddable into another metric space $(\mathcal{Y}, d_{\mathcal{Y}})$ if there is a function $f: \mathcal{X} \rightarrow \mathcal{Y}$ for which there exist non-decreasing functions

$$
\rho_{\pm}:\mathbb{R}_+\to\mathbb{R}_+
$$

such that lim $r\rightarrow+\infty$ $\rho_\pm(r)=\infty$ and

 $\rho_{-}(d_{\mathcal{X}}(x,y)) \leq d_{\mathcal{Y}}(f(x),f(y)) \leq \rho_{+}(d_{\mathcal{X}}(x,y))$

for all $x, y \in \mathcal{X}$.

Some Equivalent Theorems

Theorem [Dadarlat and Guentner 2003]: A countable discrete group G is coarsely embeddable into a Hilbert space if and only if there exists a sequence of positive definite Schur multipliers $\phi_n: G \times G \to \mathbb{C}$ such that

- 1) each ϕ_n is in $C_0(G \times G, \triangle_e)$,
- 2) $\phi_n \to 1$ uniformly on finite strips Δ_E .

We say that a Schur mulriplier ϕ is vanishing off the diagonal, $\phi \in$ $C_0(G \times G, \triangle_e)$, if for arbitrary $\varepsilon > 0$, there exists a finite set $F \subseteq G$ such that for all $(s,t) \notin \Delta_F$, we have $|\phi(s,t)| < \varepsilon$.

Examples of Coarsely Embeddable Groups

- Amenable groups, hyperpobic groups, $SL(3, \mathbb{Z})$, exact groups
- Groups with the Haagerup property

Non-example of Coarsely Embeddable Groups

• Gromov's example of finitely generated groups with a sequence of spanders

Summaring our discussion, we have

Amenable Groups **Exact Groups**

Groups has the HP Coarsely Embeddable Gr

Consider completely bounded p.d. multipliers Consider p.d.Schur multip $\varphi: G \to \mathbb{C}$ $\phi: G \times G \to \mathbb{C}.$

If we have $\varphi: G \to \mathbb{C}$, then we get $\phi: G \times G \to \mathbb{C}$ with

 $\phi(s,t) = \varphi(s^{-1}t).$

Thank you for your attention.