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A.M.S., to appear).

In this talk, we are interested in permanence properties

for crossed products and fixed point algebras by finite

groups. For the most part, we consider the following

loosely related properties:

• The ideal property.

• The projection property.

• Topological dimension zero.

• Pure infiniteness for nonsimple C∗-alg.

Topological dimension zero

Definition (L. G. Brown-Pedersen, 2009):

A C∗-alg. A is said to have topological dimension zero

if Prim(A) = a basis of compact-open sets.

• (Bratteli-Elliott, J.F.A. 1978): If X = Prim(A) for

some A = C∗-alg. + sep., then: X = Prim(B) for some

AF alg. B ⇔ A has topological dimension zero.
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Definition (Kirchberg-Rørdam):

A C∗-alg. A is said to be purely infinite if:

(1) A has no characters (or, equivalently, no non-zero

abelian quotients), and

(2) ∀a, b ∈ A+ such that a ∈ AbA⇒ ∃{xn} ⊂ A such that

a = lim
n→∞

x∗nbxn.

Remark:

The study of purely infinite C∗-alg. was motivated by

Kirchberg’s classification of the sep., nuclear C∗-alg.

that tensorially absorb the Cuntz algebra O∞ up to sta-

ble isomorphism by an ideal related KK-theory.
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The ideal property

Definition:

A C∗-alg. A is said to have the ideal property (i.p.) if

each (closed, two-sided) ideal of A is generated (as an

ideal) by its projections.

Some remarks and results:

• A = simple + unital ⇒ A = i.p.

• RR(A) = 0⇒ A = i.p.

• (Rørdam-Sierakowski): Let (A,G, α) be a C∗-dynamical

system, where G = discrete amenable group and the ac-

tion of G on Â is free. Then A = i.p. ⇒ C∗(G,A, α) =

i.p.

• (P.-Phillips, 2004): Let α : G → Aut(A) be an action

of a finite group on A with the Rokhlin property. Then

A = i.p. ⇒ C∗(G,A, α) = i.p.

• (Cuntz-Echterhoff-Li): If R is a ring of integers in a

number field ⇒ the semigroup C∗-alg. C∗r(R o R×) =

i.p. (+ purely infinite + RR(C∗r(R oR×)) 6= 0)
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• (K. Stevens): Classification of a certain class of AI

alg. + i.p.

• (P.): Classification of the AH alg. + i.p. + s.d.g., up

to a shape equivalence.

• (P.): Several characterizations of the i.p. for an arbi-

trary AH alg.

• (P.): If A = AH alg. + i.p. + s.d.g. Then:

(1) sr(A) = 1;

(2) K0(A) = Riesz group + weakly unperforated (in the

sense of Elliott).

• (Gong-Jiang-Li-P.): If A = AH alg. + i.p. + no

dim. growth. ⇒ A can be rewritten as an AH alg. with

(special) local spectra of dim ≤ 3.
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• (P.-Rørdam, J.F.A. 2000): i.p. ⊗ i.p. 6= i.p. (even in

the sep. case). If at least one of the ”factors” is exact,

then we have ”equality”.

• (P.-Rørdam, Crelle’s Journal 2007): Let A = C∗-alg.

+ sep. + purely infinite. T.F.A.E.:

(1) A = i.p.;

(2) A = topological dimension zero.

• (P.-Rørdam, Crelle’s Journal 2007): Let A = C∗-alg.

+ sep. T.F.A.E.:

(1) A⊗O2 = i.p.;

(2) RR(A⊗O2) = 0;

(3) A = topological dimension zero.
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Definition:

A C∗-alg. A is said to be an AH algebra (AH alg.), if A

is the inductive limit C∗-alg. of:

A1
φ1,2−→ A2

φ2,3−→ A3
φ3,4−→ · · · φn−1,n−→ An

φn,n+1−→ · · ·

with An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i, where the local

spectra Xn,i = finite, connected CW complexes, tn, [n, i] ∈
N and each Pn,i ∈ P(M[n,i](C(Xn,i))).

Definition (P., 2002):

A C∗-alg. A is said to have the projection property (p.p.)

if any ideal of A has an increasing approximate identity

consisting of projections.

• (P.): If A = AH alg., then: A = p.p. ⇔ A = i.p.

• (P.): i.p. ; p.p. (even in the sep. case).
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ROKHLIN ACTIONS OF FINITE GROUPS

Definition:

Let C be a class of C∗-alg. A strong local C-algebra

is a C∗-alg A such that for every finite set S ⊂ A and

every ε > 0, there is a C∗-alg. B ∈ C and a homomor-

phism ϕ : B → A (not necessarily injective) such that

dist(a, ϕ(B)) < ε for all a ∈ S. We also say that A can

be locally approximated by C.

Theorem (Osaka-Phillips):

Let A = unital C∗-algebra, let G = finite group, and let

α : G→ Aut(A) be an action with the Rokhlin property.

Then C∗(G,A, α) can be locally approximated by the

class of matrix algebras over corners of A.
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Proposition (P.-Phillips):

Let A = purely infinite unital C∗-alg., let G = finite

group, and let α : G → Aut(A) be an action with the

Rokhlin property. Then C∗(G,A, α) and Aα = purely

infinite unital C∗-alg.

Theorem (P.-Phillips):

Let C be the class of unital (sep. nuclear) C∗-alg. that

are direct limits of sequences of finite direct sums of

Kirchberg C∗-alg. satisfying the UCT. Let A ∈ C, let G

= finite group, and let α : G→ Aut(A) be an action with

the Rokhlin property. Then C∗(G,A, α) and Aα are both

in C.

Remark (P.-Phillips):

The above result implies (using also a theorem of Dadarlat-

P. (J.F.A. 2005) a classification result for crossed prod-

ucts and fixed point algebras of Rokhlin actions of finite

groups on algebras in C by a topological invariant.
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Definition (Carrion-P.):

A C∗-alg. A is a WB algebra if for any ideal I ⊂ A that

is generated by its projections, the extension

0 −→ I −→ A −→ A/I −→ 0

is quasidiagonal, that is, there is an approximate identity

for I consisting of projections (pλ)λ∈Λ (not necessarily

countable or increasing) such that lim ‖pλa − apλ‖ = 0

for all a ∈ A.

Remark (P.-Phillips):

Note that: AH alg. ⊂ GAH alg. ⊂ LB alg., and in the

unital case we have LB alg. ⊂WB alg.

Proposition (P.-Phillips):

Let A = unital WB algebra + i.p., let G = finite group,

and let α : G → Aut(A) be an action with the Rokhlin

property. Then C∗(G,A, α) and Aα = unital WB alg. +

i.p.
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STRONGLY POINTWISE OUTER ACTIONS AND

THE IDEAL AND PROJECTION PROPERTIES

Definition (Phillips):

An action α : G→ Aut(A) is said to be strongly pointwise

outer if, for every g ∈ G \ {1} and any two αg-invariant

ideals I ⊂ J ⊂ A with I 6= J, the automorphism of J/I

induced by αg is outer.

Definition (Sierakowski):

Let α : G→ Aut(A) be an action of a discrete group G on

a C∗-alg. A. We say that A separates the ideals in the

reduced crossed product C∗r (G,A, α) (or in C∗(G,A, α)

when G is amenable) if each ideal of C∗r (G,A, α) has the

form C∗r (G, I, α) for some α-invariant ideal I ⊂ A.

Theorem (P.-Phillips):

Let G = finite group, let A = C∗-alg., and let α : G →
Aut(A) be a strongly pointwise outer action. Then A

separates the ideals in C∗(G,A, α).
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Corollary (P.-Phillips):

Let G = finite group, let A = unital C∗-alg., and let

α : G→ Aut(A) be an action with the Rokhlin property.

Then A separates the ideals in C∗(G,A, α).

Corollary (P.-Phillips):

Crossed products by strongly pointwise outer actions of

finite groups preserve the i.p. and the p.p.

Remark (P.-Phillips):

We do not know of any example of any action at all of

a finite group on a C∗-alg. = i.p. such that the crossed

product does not have the i.p. Similarly, we do not know

of any example of any action at all of a finite group on

a C∗-alg. = p.p. such that the crossed product does

not have the p.p.
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Question: Does the i.p. pass to fixed point alg. of

actions of finite groups?

Answer (P.-Phillips): No.

Question: Does the p.p. pass to fixed point alg. of

actions of finite groups?

Answer (P.-Phillips): No.

Remark (P.-Phillips):

In fact, we produce an example of a pointwise outer

(but not strongly pointwise outer) action of Z/2Z on a

C∗-alg. = p.p. such that the fixed point algebra does

not even have the i.p.

12



Question (Carrion-P., 2008): Let A = C∗-alg., let

n ∈ N, and suppose that Mn(A) = i.p. Does it follow

that A = i.p.?

Answer (P.-Phillips): No.

Question: Let A = C∗-alg., let n ∈ N, and suppose that

Mn(A) = p.p. Does it follow that A = p.p.?

Answer (P.-Phillips): No.

Remark (P.-Phillips):

In fact, we construct a A = C∗-alg. such that M2(A) =

p.p. but A 6= i.p.
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TOPOLOGICAL DIMENSION ZERO

Definition (P.-Rørdam):

An ideal I in a C∗-alg. A is said to be compact if

whenever (Iλ)λ∈Λ is an increasing net of ideals in A such

that I =
⋃
λ∈Λ Iλ, then there is λ ∈ Λ such that I = Iλ.

Theorem (P.-Phillips):

Let α : G→ Aut(A) be an action of a finite group G on a

C∗-algebra A. Suppose that Aα = topological dimension

zero. Suppose also that whenever I ⊂ Aα is a compact

ideal, then AIA ∩Aα = compact ideal in Aα. Then A =

topological dimension zero.
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Theorem (P.-Phillips):

Let α : G → Aut(A) be an action of a finite abelian

group G on a C∗-alg. A. Suppose that A = topological

dimension zero. Then C∗(G,A, α) and Aα = topological

dimension zero.

Proposition (P.-Phillips):

Let α : G → Aut(A) be an action of a finite group G

on a C∗-alg. A. Assume that A separates the ideals in

C∗(G,A, α). Suppose that A = topological dimension

zero. Then C∗(G,A, α) and Aα = topological dimension

zero.
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Let α : G→ Aut(A) be an action of G = discrete group

on a C∗-alg. A. Let E : C∗r (G,A, α)→ A be the canonical

conditional expectation. It is immediate that if I ⊂ A is

an α-invariant ideal, then

E(C∗r (G, I, α)) = I. (1)

It follows that for α-invariant ideals I1, I2 ⊂ A, we have

I1 ⊂ I2 if and only if C∗r (G, I1, α) ⊂ C∗r (G, I2, α). (2)

Lemma (P.-Phillips):

Let α : G→ Aut(A) be an action of G = discrete group

on a C∗-alg. A. Suppose A separates the ideals in C∗r (G,A, α).

Let I = α-invariant ideal of A. If I = compact, then

C∗r (G, I, α) = compact.

Proof. Let (Jλ)λ∈Λ = an increasing net of ideals in

C∗r (G,A, α) such that

C∗r (G, I, α) =
⋃
λ∈Λ

Jλ.

By hypothesis, there are α-invariant ideals Iλ such that

Jλ = C∗r (G, Iλ, α) for all λ ∈ Λ. By (2), we have Iλ ⊂ I

for all λ ∈ Λ, and moreover (Iλ)λ∈Λ is increasing. By (1)

and because E = continuous, we have

I = E(C∗r (G, I, α)) = E

(⋃
λ∈Λ

C∗r (G, Iλ, α)

)

⊂ E

(⋃
λ∈Λ

C∗r (G, Iλ, α)

)
=
⋃
λ∈Λ

E(C∗r (G, Iλ, α)) =
⋃
λ∈Λ

Iλ ⊂ I.
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Thus I =
⋃
λ∈Λ Iλ. Since I = compact, there is λ ∈ Λ

such that I = Iλ. Then C∗r (G, I, α) = C∗r (G, Iλ, α) = Jλ.

This shows that C∗r (G, I, α) is compact.

Proof of the Proposition. We first consider C∗(G,A, α).

It is not difficult to see that a C∗-alg. D = topological

dimension zero if and only if every ideal in D is the

closure of the union of an increasing net of compact

ideals.

So let J = an arbitrary ideal in C∗(G,A, α). By hypoth-

esis, there is an α-invariant ideal I ⊂ A such that J =

C∗(G, I, α). Since A = topological dimension zero, there

is an increasing net (Iλ)λ∈Λ of compact ideals of A such

that I =
⋃
λ∈Λ Iλ. For λ ∈ Λ, define Lλ =

∑
g∈G αg(Iλ).

Then (Lλ)λ∈Λ = increasing net of α-invariant ideals and⋃
λ∈ΛLλ = I. Since a finite union of compact sets is com-

pact, it follows that Lλ = compact for all λ ∈ Λ. The

ideals C∗(G,Lλ, α) = compact by the above Lemma.

By (2), these ideals are increasing and satisfy⋃
λ∈Λ

C∗(G,Lλ, α) = C∗(G, I, α).

This completes the proof for C∗(G,A, α).

The result for Aα now follows from the fact that topo-

logical dimension zero passes to hereditary subalgebras

and a result of Rosenberg saying that if α : G→ Aut(B)

is an action of G = compact group on a C∗-alg. B, then

Bα is isomorphic to a corner of C∗(G,B, α).
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Corollary (P.-Phillips):

Let α : G→ Aut(A) be a strongly pointwise outer action

of a finite group G on a C∗-alg. A. Suppose that A =

topological dimension zero. Then C∗(G,A, α) and Aα =

topological dimension zero.
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PURELY INFINITE C*-ALGEBRAS WITH FINITE

PRIMITIVE SPECTRUM

Theorem (P.-Phillips):

Let α : G→ Aut(A) be an action of a finite group G on

a C∗-alg. A. Assume that A = finitely many α-invariant

ideals. Then Prim(C∗(G,A, α)) = finite. Moreover, if in

addition A = purely infinite, then C∗(G,A, α) = purely

infinite.

Corollary (P.-Phillips):

Let α : G → Aut(A) be an action of a finite group G

on a C∗-alg. A. If A = purely infinite + finitely many

α-invariant ideals, then C∗(G,A, α) = i.p.

Corollary (P.-Phillips):

Let α : G→ Aut(A) be an action of a finite group G on

a C∗-alg. A. Assume that A = finitely many α-invariant

ideals. Then Prim(Aα) = finite. Moreover, if in addition

A = purely infinite, then Aα = purely infinite.
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Theorem (P.-Phillips):

Let A = purely infinite C∗-alg. Suppose there is an

ordinal κ and a composition series (Iλ)λ≤κ for A such

that Prim(Iλ+1/Iλ) = finite for all λ < κ. Let G = finite

group, and let α : G→ Aut(A) be any action of G on A.

Then C∗(G,A, α) and Aα = purely infinite + composition

series in which all the subquotients have finite primitive

ideal spaces.

Proposition (P.-Phillips):

Let α : G→ Aut(A) be an action of a finite group G on

a C∗-alg. A. Suppose that there is a set I of ideals in A,

each of which is purely infinite and has finite primitive

ideal space, with the following property. For every finite

subset S ⊂ A and every ε > 0, there is I ∈ I such that

dist(a, I) < ε for all a ∈ S. Then C∗(G,A, α) and Aα =

purely infinite + i.p.
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