Expansive Automorphisms of Totally Disconnected, Locally Compact Groups

Helge Glöckner (Paderborn)

Joint work with C.R.E. Raja

Thematic Program on Abstract Harmonic Analysis, Banach and Operator Algebras

(Fields Institute, Toronto, Canada)

February 13, 2014

Throughout the talk:

 G a totally disconnected, locally compact group

Defn Automorphism $\alpha: G \to G$ is expansive if

$$
\bigcap_{k \in \mathbb{Z}} \alpha^k(V) = \{1\}
$$

for some identity neighborhood $V \subseteq G$.

[Without loss of generality V a compact open subgroup]

Structure of talk:

I. General theory of expansive automorphisms

(II. Special case of p -adic Lie groups)

§1 Expansive automorphisms: basic facts

Defn Automorphism $\alpha: G \rightarrow G$ is expansive if

$$
V_0 := \bigcap_{k \in \mathbb{Z}} \alpha^k(V) = \{1\}
$$

for some compact open subgroup $V \subset G$.

Ex If an automorphism $\alpha: G \to G$ is contractive (i.e., $\alpha^n(x) \to 1$ as $n \to \infty$ for all $x \in G$), then α is expansive.

In fact, G has a compact open subgroup V such that

$$
V \supseteq \alpha(V) \supseteq \alpha^2(V) \supseteq \cdots
$$

and $\bigcap_{k=0}^{\infty} \alpha^k(V) = \{1\}$ (Siebert 1986).

Ex $\alpha(x,y) := (px, p^{-1}y)$ is an expansive automorphism of $\mathbb{Q}_p \times \mathbb{Q}_p$, as

$$
\bigcap_{k\in\mathbb{Z}}\alpha^k(\mathbb{Z}_p\times\mathbb{Z}_p) = \bigcap_{k\in\mathbb{Z}}(p^k\mathbb{Z}_p\times p^{-k}\mathbb{Z}_p) = \{(0,0)\}.
$$

More generally: If $\alpha: G \to G$ and $\beta: H \to H$ are contractive, then $\alpha \times \beta^{-1}$ is an expansive automorphism of $G \times H$.

The contraction group of $\alpha \in \text{Aut}(G)$ is

$$
U_{\alpha} := \{ x \in G \colon \alpha^n(x) \to 1 \text{ as } n \to \infty \}
$$

 U_{α} is a subgroup of G; need not be closed

Basic Lemma (Link between contractive and expansive automorphisms)

If $\alpha \in \text{Aut}(G)$ is expansive, then

$$
U_\alpha U_{\alpha^{-1}}
$$

is an open subset of G .

Rem (a) $U_{\alpha}U_{\alpha-1}$ need not be a subgroup (b) U_{α} need not normalize $U_{\alpha^{-1}}$ (c) It can happen that $U_{\alpha} \cap U_{\alpha-1} \neq \{1\}.$

Main consequence If $\alpha \in \text{Aut}(G)$ is expansive, $H\subseteq G$ a subgroup which is not open in G, then $H \cap U_\alpha \subsetneq U_\alpha$ or $H \cap U_{\alpha^{-1}} \subsetneq U_{\alpha^{-1}}$

Otherwise $H \supseteq (H \cap U_{\alpha})(H \cap U_{\alpha^{-1}}) = U_{\alpha}U_{\alpha^{-1}}$, i.e. H is an identity neighborhood, thus open

Basic Lemma

 $\alpha \in \text{Aut}(G)$ expansive $\Rightarrow U_{\alpha}U_{\alpha^{-1}}$ open in G If $V \subset G$ is a compact open subgroup, write

$$
V_{-} := \bigcap_{k=0}^{\infty} \alpha^{-k}(V), \quad V_{--} := \bigcup_{k=0}^{\infty} \alpha^{-k}(V_{-}).
$$

Lemma If $\alpha \in Aut(G)$ is expansive and $V \subset G$ a compact open subgroup such that $V_0 := \bigcap_{k \in \mathbb{Z}} \alpha^k(V) = \{1\}$, then $U_\alpha = V_{--}$.

In fact, $V_{--} = U_\alpha V_0$ for each c.o. subgroup V by Baumgartner-Willis (2004), Prop. 3.16.

Proof of Basic Lemma There exists a c.o. subgroup $V \subseteq G$ such that $V_0 = \{1\}$. After replacing V with $\bigcap_{k=0}^n \alpha^k(V)$ for some n , may assume $V = V_+V_-$. Then

$$
U_{\alpha}U_{\alpha^{-1}} = V_{--}V_{++} \supseteq V_{-}V_{+} = V.
$$

Hence $U_{\alpha}U_{\alpha^{-1}}$ is an identity neighborhood and hence open.

We also deduce a lemma by Siebert (1989):

Lemma If $\alpha \in \text{Aut}(G)$ is expansive, then U_{α} can be made locally compact, i.e., its topology can be refined to a locally compact group topology τ^* such that α remains contractive on $U^*_\alpha := (U_\alpha, \tau^*)$.

Proof (sketch) For V as above, give U_{α} = $V_{--} \, = \, \cup_{k=0}^{\infty} \, \alpha^{-k} (V_{-})$ the group topology τ^* making $V_$ a compact open subgroup.

Further simple facts

(a) If $\alpha \in \text{Aut}(G)$ is expansive, then also $\alpha|_H$ for each α -stable closed subgroup $H \subseteq G$.

(b) If $\alpha \in \text{Aut}(G)$ is expansive, then G is metrizable (cf. Lam (1970)).

Take a c.o. subgroup $V\subseteq G$ with $\bigcap_{k\in\mathbb{Z}}\alpha^k(V)=0$ $\{1\}$. Then $\bigcap_{k=-n}^{n} \alpha^k(V)$, $n \in \mathbb{N}$, is a countable basis of identity neighborhoods.

§2 Main Results

Theorem A (G.-Raja 2013) Let $\alpha \in \text{Aut}(G)$ and $N \subseteq G$ be an α -stable closed normal subgroup. Then α is expansive if and only if both $\alpha|_N$ and the induced automorphism

 $\overline{\alpha}$: $G/N \rightarrow G/N$, $qN \mapsto \alpha(q)N$

are expansive.

Main point: α expansive $\Rightarrow \overline{\alpha}$ expansive

The second main result concerns the divisible part D_{α} of the contraction group U_{α} , for $\alpha: G \to G$ an expansive automorphism.

Recall from G.-Willis (2010):

If $\alpha \in \text{Aut}(G)$ is contractive, then the set

$tor(G)$

of torsion elements is a characteristic subgroup (a torsion group of finite exponent); the set

$div(G)$

of all divisible elements is a subgroup; and

$$
G = \text{div}(G) \times \text{tor}(G)
$$

internally as a topological group. Moreover,

$$
\mathsf{div}(G) = G_{p_1} \times \cdots \times G_{p_n}
$$

with certain α -stable p-adic Lie groups G_p .

Now α expansive $\Rightarrow U^*_{\alpha}$ locally compact, so

 U^*_{α} $\alpha^* = D_\alpha \times T_\alpha$ with $D_\alpha := \text{div } U_\alpha^*$ and $T_\alpha := \text{tor } U_\alpha^*.$ Although U_{α} need not be closed, we have:

Theorem B (G.-Raja (2013)) If U_α can be made locally compact (e.g., if $\alpha \in \text{Aut}(G)$ is expansive), then D_{α} is closed in G.

§3 Tools for the proof of Theorem A

Observation (G.-Willis (2010)) If α is a contractive automorphism of $G \neq \{1\}$ and

 $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{1\}$

are α -stable closed subgroups of G such that G_j is normal in G_{j-1} for $j \in \{1, \ldots, n\}$, then the module $\Delta(\alpha^{-1})$ is an integer ≥ 2 and n is bounded by the number of prime factors of $\Delta(\alpha^{-1})$. Conclude:

Lemma Let $\alpha \in \text{Aut}(G)$ be expansive,

 $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{1\}$

be α -stable closed subgroups of G such that G_j is normal in G_{j-1} for $j\in\{1,\ldots,n\}$ and

 $J \; := \; \Big\{ j \in \{1, \ldots, n\} \colon G_j \; \text{is not open in} \; G_{j-1} \Big\}.$ Then $\#J$ is bounded by the number of prime factors of $\Delta(\alpha^{-1}|_{U^*_\alpha})\Delta(\alpha|_{U^*_\alpha})$ α^{-1}).

In fact, if G_j is not open in G_{j-1} , then $G_j \cap U_\alpha \subsetneq$ $G_{j-1} \cap U_\alpha$ or $G_j \cap U_{\alpha^{-1}} \subsetneq G_{j-1} \cap U_{\alpha^{-1}}$

For compact (pro-finite) G , see Willis (2012) for the following result:

Prop. If G is pro-discrete and $\alpha \in \text{Aut}(G)$, then $G = \lim$ $\overset{\cdots}{\leftarrow}$ G/N for N in a filter basis of α stable closed normal subgroups of G s.t. the automorphism induced on G/N is expansive.

Proof. For each open normal subgroup $V \subseteq G$,

$$
V_0 := \bigcap_{k \in \mathbb{Z}} \alpha^k(U)
$$

is an α -stable closed normal subgroup of G such that α induces an expansive automorphism on G/V_0 . Moreover, $G = \lim_{\leftarrow} G/V_0$.

By Baumgartner/Willis (2004), the Levi factor $M_{\alpha} := \left\{ x \in G \colon \{ \alpha^k(x) \colon k \in \mathbb{Z} \right\} \text{ is relatively compact} \right\}$ is a closed subgroup of G which normalizes U_{α} .

 $M_{\alpha} := \left\{ x \in G \colon \{ \alpha^k(x) \colon k \in \mathbb{Z} \right\} \text{ is relatively compact} \right\}$

Lemma (G.-Raja) $\alpha \in Aut(G)$ is expansive if and only if $\alpha|_{M_\alpha}$ is expansive.

Proof. Let $V \subseteq M_\alpha$ be open with

$$
\bigcap_{k\in\mathbb{Z}}\alpha^k(V)=\{1\}.
$$

Choose a c.o. subgroup $W \subseteq G$ such that

 $W \cap M_{\alpha} \subseteq V$.

If $x\, \in\, \bigcap_{k\in\mathbb{Z}} \alpha^k(W) \, =: \, I, \,$ then $\, \alpha^k(x) \, \in\, W\,$ for each k and thus $x \in M_{\alpha}$ (since W is compact). Thus $I \subseteq W \cap M_\alpha \subseteq V$ and thus

$$
I = \bigcap_{k \in \mathbb{Z}} \alpha^k(I) \subseteq \bigcap_{k \in \mathbb{Z}} \alpha^k(V) = \{1\}.
$$

§4 Proof of Theorem A

Let $\alpha \in \text{Aut}(G)$ be expansive. To show: $\overline{\alpha}$ on G/N is expansive.

Use $q: G \to G/N$, $q(x) := xN$.

Without loss $G/N = M_{\overline{\alpha}}$.

Indeed, only need $\overline{\alpha}$ is expansive on $M_{\overline{\alpha}}$. So replace G with $q^{-1}(M_{\overline{\alpha}})$.

Without loss G/N is compact.

Let $V \subseteq G/N$ be a c.o. subgroup tidy for $\overline{\alpha}$. As all two-sided $\overline{\alpha}$ -orbits are relatively compact, $V = V_+ = V_-$ and thus $\overline{\alpha}(V) = V$. Now replace G with $q^{-1}(V)$.

Since G/N is profinite and metrizable, there are $\overline{\alpha}$ -stable closed normal subgroups

$$
H_1 \supseteq H_2 \supseteq \cdots
$$

of G/N such that the automorphism α_n induced by $\overline{\alpha}$ on $(G/N)/H_n$ is expansive and

$$
G/N = \lim_{\leftarrow} (G/N)/H_n.
$$

Then $\bigcap_{n=1}^{\infty} H_n = \{1\}$, so $\bigcap_{n=1}^{\infty} q^{-1}(H_n) = N$.

§4 Proof of Theorem A

Let $\alpha \in Aut(G)$ be expansive. Show: $\overline{\alpha}$ on G/N is expansive if G/N is compact. Use $q: G \to G/N$.

Since G/N is profinite and metrizable, there are $\overline{\alpha}$ -stable closed normal subgroups

 $H_1 \supset H_2 \supseteq \cdots$

of G/N such that the automorphism α_n induced by $\overline{\alpha}$ on $(G/N)/H_n$ is expansive and

> $G/N =$ lim $\varprojlim \left(G/N \right) / H_n.$

Then $\bigcap_{n=1}^{\infty} H_n = \{1\}$, so $\bigcap_{n=1}^{\infty} q^{-1}(H_n) = N$. Since $q^{-1}(H_1)\rhd q^{-1}(H_2)\rhd \cdots$, there is n such that $q^{-1}(H_m)$ is open in $q^{-1}(H_n)$ for all $m \geq n$. Thus $q^{-1}(H_n)\cap U_\alpha, q^{-1}(H_n)\cap U_{\alpha^{-1}}\subseteq q^{-1}(H_m)$ for $m \geq n$ and hence $q^{-1}(H_n) \cap U_\alpha, q^{-1}(H_n) \cap U_{\alpha^{-1}} \subseteq \bigcap q^{-1}(H_m) = N.$ m≥n

Thus $(q^{-1}(H_n) \cap U_\alpha)(q^{-1}(H_n) \cap U_{\alpha^{-1}}) \subseteq N,$ whence N is open in $q^{-1}(H_n)$ and $H_n = q^{-1}(H_n)/N$ is discrete, hence finite.

Since $\bigcap_{m\geq n}H_m = \{1\}$, find $m\geq n$ such that $H_m = \{\overline{1}\}\.$ Since $\overline{\alpha}$ corresponds to α_m on $(G/N)/H_m \cong G/N$, it is expansive.

§5 Tools for the proof of Theorem B

Thm B. If U_{α} can be made locally compact (e.g., if $\alpha \in$ $\operatorname{\mathsf{Aut}}(G)$ is expansive), then $D_\alpha:=\operatorname{\mathsf{div}}(U_\alpha^*)$ is closed in $G.$

We shall use the nub U_0 of $\alpha \in \text{Aut}(G)$, defined as the intersection of all compact open subgroups tidy for α .

Facts (a) The closure of U_{α} is $\overline{U_{\alpha}} = U_{\alpha}U_{\alpha}$. (b) $U_0 \cap U_\alpha$ is dense in U_0 .

See Baumgartner-Willis (2004) for (a), Willis (2012) for (b).

Consequence (G.-Raja) If U_α can be made locally compact (e.g., $\alpha \in Aut(G)$ expansive), then $U_0 \cap U_\alpha = U_0 \cap T_\alpha$ and thus $U_0 = \overline{U_0 \cap T_\alpha}$.

 $U_0 \cap U_\alpha^*$ Icp, hence $U_0 \cap U_\alpha$ can be made Icp, hence $U_0 \cap U_\alpha = DT$ with D divisible, T torsion. Then $D = \{1\}$ as U_0 (like any finite or profinite group) has no divisible elements. So $U_0 \cap U_\alpha = T = U_0 \cap T_\alpha.$

§6 Proof of Theorem B

Thm B. If U_{α} can be made locally compact (e.g., if $\alpha \in$ Aut (G) is expansive), then $D_\alpha:=\mathsf{div}(U_\alpha^*)$ is closed in $G.$

Proof. Replacing G with $\overline{U_{\alpha}}$, w.l.o.g. $G =$ $\overline{U_{\alpha}} = U_{\alpha}U_0$. As U_0 normalizes U_{α} , have $U_{\alpha} \lhd G$. Since D_{α} and T_{α} are characteristic in U_{α} , also $D_{\alpha} \lhd G$ and $T_{\alpha} \lhd G$. Hence $\overline{T_{\alpha}} \lhd G$.

Since $\overline{T_{\alpha}}$ is a torsion group (as T_{α} has finite exponent) and D_{α} is torsion-free, we have

$$
D_{\alpha} \cap \overline{T_{\alpha}} = \{1\}.
$$

Moreover, $G = \overline{U_{\alpha}} = U_{\alpha}U_0 = D_{\alpha}T_{\alpha}\overline{U_0 \cap T_{\alpha}} =$ $D_{\alpha}\overline{T_{\alpha}}$. Hence $G = D_{\alpha} \times \overline{T_{\alpha}}$ as an abstract group. Thus

$$
D^*_{\alpha} \times \overline{T_{\alpha}} \to G, \quad G, \quad (x, y) \mapsto xy
$$

is continuous and an isomorphism of abstract groups, hence an isomorphism of topological groups (by the Open Mapping Theorem), as the groups on both sides are locally compact and σ -compact. Notably, D_{α} is closed in G.

The proof showed more:

Theorem C. (G.-Raja (2013)) If U_α can be made locally compact (e.g., if $\alpha \in Aut(G)$ is expansive), then

$$
\overline{U_{\alpha}} = D_{\alpha} \times \overline{T_{\alpha}}
$$

(internally) as a topological group.

§7 Expansive automorphisms of Lie groups

Let G be a Lie group over a totally disconnected local field \mathbb{K} (e.g., \mathbb{Q}_p) and $\alpha: G \to G$ be a K-analytic automorphism. Then $\beta := T_1(\alpha)$ is a linear automorphism of the Lie algebra $g := T_1(G)$.

For $\rho > 0$, define

$$
\mathfrak{g}_\rho:=\mathfrak{g}\cap\bigoplus_{|\lambda|=\rho}(\mathfrak{g}\otimes_\mathbb{K}\overline{\mathbb{K}})_\lambda,
$$

where $\overline{\mathbb{K}}$ is an algebraic closure, |.| the unique extension of the absolute value on $\mathbb K$ to $\overline{\mathbb K}$ and

$$
(\mathfrak{g} \otimes_{\mathbb{K}} \overline{\mathbb{K}})_{\lambda} \quad \text{ for } \lambda \in \overline{\mathbb{K}}
$$

the generalized eigenspace of $\beta\otimes_{\mathbb{K}}$ id $_{\overline{\mathbb{K}}}$. Then

$$
\mathfrak{g}=U_\beta\oplus M_\beta\oplus U_{\beta^{-1}}
$$

with $M_{\beta} = \mathfrak{g}_1$,

$$
U_{\beta} = \bigoplus_{\rho < 1} \mathfrak{g}_{\rho} \text{ and } U_{\beta^{-1}} = \bigoplus_{\rho > 1} \mathfrak{g}_{\rho}.
$$

Theorem D (G.-Raja (2013))

(a) If α is expansive, then $M_{\beta} = \{0\}$, i.e., $|\lambda| \neq 1$ for all eigenvalues $\lambda \in \overline{\mathbb{K}}$ of $\beta \otimes_{\mathbb{K}} \text{id}_{\overline{\mathbb{K}}}$. (b) If U_α closed, then α expansive iff $M_\beta = \{0\}$.

Proof. (b) If $M_\beta \neq \{0\}$ and $U \subseteq G$ is an identity neighborhood, then U contains a socalled center manifold $W \subseteq G$, which can be chosen as an α -stable Lie subgroup with Lie algebra M_{β} , by the theory of time-discrete \mathbb{K} analytic dynamical systems (G. (2013)). Then $W\subseteq \bigcap_{k\in\mathbb{Z}}\alpha^k(U)$ and thus α is not expansive.

(a) If U_α is closed then M_α is a Lie subgroup with Lie algebra M_{β} (cf. G. (2008)), which is $\{0\}$ iff M_{α} is discrete. Now apply next lemma.

Lemma (G.-Raja (2013)) If G is a t.d.l.c. group, $\alpha \in \text{Aut}(G)$ and U_{α} is closed, then α is expansive iff M_{α} is discrete.

Rem. If α is expansive, then g is nilpotent (this follows with an exercise from Bourbaki). Hence, if $\mathbb{K} = \mathbb{Q}_p$, then G has an open nilpotent subgroup. Can it be chosen α -stable?

Lemma (G.-Raja (2013)) If G is a t.d.l.c. group, $\alpha \in \text{Aut}(G)$ and U_{α} is closed, then α is expansive iff M_{α} is discrete.

Proof. \Rightarrow Let V be a c.o. subgroup of G such that $V_0 = \{1\}$. Since U_α is closed, M_α has a c.o. subgroup $W \subseteq M_\alpha \cap V$ which is tidy for α and hence α -stable. Thus $W \subseteq V_0$ and thus $W = \{1\}$, whence M_{α} is discrete.

 \Leftarrow Since U_{α} is closed, the set $U_{\alpha}M_{\alpha}U_{\alpha^{-1}}$ is an open identity neighborhood in G and the product map

 $U_{\alpha} \times M_{\alpha} \times U_{\alpha^{-1}} \to U_{\alpha} M_{\alpha} U_{\alpha^{-1}}, (x, y, z) \mapsto xyz$ is a homeomorphism (G. (2005); cf. Wang (1984) for the p-adic case). Hence, if M_{α} is discrete, then $U_{\alpha}U_{\alpha^{-1}}$ is open in G and

$$
\bigcap_{k \in \mathbb{Z}} \alpha^k(VW) = \{1\}
$$

for all compact open identity neighborhoods $V \subseteq U_\alpha$, $W \subseteq U_{\alpha^{-1}}$.

Rem. If α is expansive, then g is nilpotent. Hence, if $\mathbb{K} = \mathbb{Q}_p$, then G has an open nilpotent subgroup. Can it be chosen α -stable?

Theorem E (G.-Raja (2013)) Let α be an expansive automorphism of a p-adic Lie group G. If G is linear in the sense that there exists an injective continuous homomorphism $G \to \mathsf{GL}_n(\mathbb{Q}_p)$, then G has an α -stable, open nilpotent subgroup.

Rem For α expansive and G a closed subgroup of $GL_n(\mathbb{Q}_p)$, can show $U_\alpha U_{\alpha^{-1}}$ is a subgroup of G (which is α -stable and nilpotent).

References

- 1. Baumgartner, U. and G. A. Willis, Contraction groups and scales of automorphisms of totally disconnected locally compact groups, Israel J. Math. 142 (2004), $221 - 248$.
- 2. Glöckner, H., Contraction groups for tidy automorphisms of totally disconnected groups, Glasgow Math. J. 47 (2005), 329–333.
- 3. Glöckner, H., Invariant manifolds for analytic dynamical systems over ultrametric fields, Expo. Math. 31 (2013), 116–150 (cf. extended preprint version, arXiv:0808.2709v2)
- 4. Glöckner, H., Lectures on Lie groups over local fields, preprint, arXiv:0804.2234v3
- 5. Glöckner, H. and G. A. Willis, Classification of the simple factors appearing in composition series of totally disconnected contraction groups, J. Reine Angew. Math. 634 (2010), 141–169.
- 6. Lam, P., On expansive transformation groups, Trans. Amer. Math. Soc. 150 (1970), 131–138.
- 7. Siebert, E., Contractive automorphisms on locally compact groups, Math. Z. 191 (1986), 73-90.
- 8. Siebert, E., Semistable convolution semigroups and the topology of contraction groups, pp. 325–343 in: "Probability Measures on Groups, IX" (Oberwolfach, 1988), Lecture Notes in Math. 1379, Springer, Berlin, 1989.
- 9. Wang, J.S.P., The Mautner phenomenon for padic Lie groups, Math. Z. 185 (1984), 403-412.
- 10. Willis, G. A., The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), 341–363.
- 11. Willis, G. A., The nub of an automorphism of a totally disconnected, locally compact group, Ergodic Theory Dyn. Systems, in print (DOI: http://dx.doi.org/10.1017/etds.2012.172)