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Throughout the talk:

G a totally disconnected, locally compact group

Defn Automorphism α : G→ G is expansive if⋂
k∈Z

αk(V ) = {1}

for some identity neighborhood V ⊆ G.

[Without loss of generality V a compact open subgroup]

Structure of talk:

I. General theory of expansive automorphisms

(II. Special case of p-adic Lie groups)



§1 Expansive automorphisms: basic facts

Defn Automorphism α : G→ G is expansive if

V0 :=
⋂

k∈Z
αk(V ) = {1}

for some compact open subgroup V ⊆ G.

Ex If an automorphism α : G→ G is contractive

(i.e., αn(x) → 1 as n → ∞ for all x ∈ G), then
α is expansive.

In fact, G has a compact open subgroup V
such that

V ⊇ α(V ) ⊇ α2(V ) ⊇ · · ·
and

⋂∞
k=0 αk(V ) = {1} (Siebert 1986).

Ex α(x, y) := (px, p−1y) is an expansive auto-
morphism of Qp ×Qp, as⋂
k∈Z

αk(Zp×Zp) =
⋂

k∈Z
(pkZp×p−kZp) = {(0,0)}.

More generally: If α : G → G and β : H → H
are contractive, then α × β−1 is an expansive
automorphism of G×H.



The contraction group of α ∈ Aut(G) is

Uα := {x ∈ G : αn(x)→ 1 as n→∞}

Uα is a subgroup of G; need not be closed

Basic Lemma (Link between contractive and

expansive automorphisms)

If α ∈ Aut(G) is expansive, then

UαUα−1

is an open subset of G.

Rem (a) UαUα−1 need not be a subgroup

(b) Uα need not normalize Uα−1

(c) It can happen that Uα ∩ Uα−1 6= {1}.

Main consequence If α ∈ Aut(G) is expansive,
H ⊆ G a subgroup which is not open in G, then
H ∩ Uα ( Uα or H ∩ Uα−1 ( Uα−1

Otherwise H ⊇ (H ∩ Uα)(H ∩ Uα−1) = UαUα−1,
i.e. H is an identity neighborhood, thus open



Basic Lemma

α ∈ Aut(G) expansive ⇒ UαUα−1 open in G

If V ⊆ G is a compact open subgroup, write

V− :=
∞⋂

k=0

α−k(V ), V−− :=
∞⋃

k=0

α−k(V−).

Lemma If α ∈ Aut(G) is expansive and
V ⊆ G a compact open subgroup such that
V0 :=

⋂
k∈Z αk(V ) = {1}, then Uα = V−−.

In fact, V−− = UαV0 for each c.o. subgroup V

by Baumgartner-Willis (2004), Prop. 3.16.

Proof of Basic Lemma There exists a c.o.
subgroup V ⊆ G such that V0 = {1}. After
replacing V with

⋂n
k=0 αk(V ) for some n, may

assume V = V+V−. Then

UαUα−1 = V−−V++ ⊇ V−V+ = V.

Hence UαUα−1 is an identity neighborhood and
hence open.

We also deduce a lemma by Siebert (1989):



Lemma If α ∈ Aut(G) is expansive, then Uα

can be made locally compact, i.e., its topol-

ogy can be refined to a locally compact group

topology τ∗ such that α remains contractive

on U∗α := (Uα, τ∗).

Proof (sketch) For V as above, give Uα =

V−− =
⋃∞

k=0 α−k(V−) the group topology τ∗

making V− a compact open subgroup.

Further simple facts

(a) If α ∈ Aut(G) is expansive, then also α|H
for each α-stable closed subgroup H ⊆ G.

(b) If α ∈ Aut(G) is expansive, then G is metriz-

able (cf. Lam (1970)).

Take a c.o. subgroup V ⊆ G with
⋂

k∈Z αk(V ) =

{1}. Then
⋂n

k=−n αk(V ), n ∈ N, is a countable

basis of identity neighborhoods.



§2 Main Results

Theorem A (G.-Raja 2013) Let α ∈ Aut(G)

and N ⊆ G be an α-stable closed normal sub-

group. Then α is expansive if and only if both

α|N and the induced automorphism

α : G/N → G/N, gN 7→ α(g)N

are expansive.

Main point: α expansive ⇒ α expansive

The second main result concerns the divisi-

ble part Dα of the contraction group Uα, for

α : G→ G an expansive automorphism.

Recall from G.-Willis (2010):



If α ∈ Aut(G) is contractive, then the set

tor(G)

of torsion elements is a characteristic subgroup

(a torsion group of finite exponent); the set

div(G)

of all divisible elements is a subgroup; and

G = div(G)× tor(G)

internally as a topological group. Moreover,

div(G) = Gp1 × · · · ×Gpn

with certain α-stable p-adic Lie groups Gp.

Now α expansive ⇒ U∗α locally compact, so

U∗α = Dα×Tα with Dα := div U∗α and Tα := tor U∗α.

Although Uα need not be closed, we have:

Theorem B (G.-Raja (2013)) If Uα can be

made locally compact (e.g., if α ∈ Aut(G) is

expansive), then Dα is closed in G.



§3 Tools for the proof of Theorem A

Observation (G.-Willis (2010)) If α is a
contractive automorphism of G 6= {1} and

G = G0 ) G1 ) · · · ) Gn = {1}
are α-stable closed subgroups of G such that
Gj is normal in Gj−1 for j ∈ {1, . . . , n}, then
the module ∆(α−1) is an integer ≥ 2 and n

is bounded by the number of prime factors of
∆(α−1). Conclude:

Lemma Let α ∈ Aut(G) be expansive,

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}
be α-stable closed subgroups of G such that
Gj is normal in Gj−1 for j ∈ {1, . . . , n} and

J :=
{
j ∈ {1, . . . , n} : Gj is not open in Gj−1

}
.

Then #J is bounded by the number of prime
factors of ∆(α−1|U∗α)∆(α|U∗

α−1
).

In fact, if Gj is not open in Gj−1, then Gj∩Uα (
Gj−1 ∩ Uα or Gj ∩ Uα−1 ( Gj−1 ∩ Uα−1



For compact (pro-finite) G, see Willis (2012)

for the following result:

Prop. If G is pro-discrete and α ∈ Aut(G),

then G = lim← G/N for N in a filter basis of α-

stable closed normal subgroups of G s.t. the

automorphism induced on G/N is expansive.

Proof. For each open normal subgroup V ⊆ G,

V0 :=
⋂

k∈Z
αk(U)

is an α-stable closed normal subgroup of G

such that α induces an expansive automor-

phism on G/V0. Moreover, G = lim← G/V0.

By Baumgartner/Willis (2004), the Levi factor

Mα :=
{
x ∈ G : {αk(x): k ∈ Z} is relatively compact

}
is a closed subgroup of G which normalizes Uα.



Mα :=
{
x ∈ G : {αk(x): k ∈ Z} is relatively compact

}
Lemma (G.-Raja) α ∈ Aut(G) is expansive if

and only if α|Mα is expansive.

Proof. Let V ⊆Mα be open with⋂
k∈Z

αk(V ) = {1}.

Choose a c.o. subgroup W ⊆ G such that

W ∩Mα ⊆ V.

If x ∈
⋂

k∈Z αk(W ) =: I, then αk(x) ∈ W for

each k and thus x ∈Mα (since W is compact).

Thus I ⊆W ∩Mα ⊆ V and thus

I =
⋂

k∈Z
αk(I) ⊆

⋂
k∈Z

αk(V ) = {1}.



§4 Proof of Theorem A

Let α ∈ Aut(G) be expansive. To show: α on
G/N is expansive.

Use q : G→ G/N , q(x) := xN .

Without loss G/N = Mα.

Indeed, only need α is expansive on Mα. So
replace G with q−1(Mα).

Without loss G/N is compact.

Let V ⊆ G/N be a c.o. subgroup tidy for α. As
all two-sided α-orbits are relatively compact,
V = V+ = V− and thus α(V ) = V . Now replace
G with q−1(V ).

Since G/N is profinite and metrizable, there
are α-stable closed normal subgroups

H1 ⊇ H2 ⊇ · · ·
of G/N such that the automorphism αn in-
duced by α on (G/N)/Hn is expansive and

G/N = lim← (G/N)/Hn.

Then
⋂∞

n=1 Hn = {1}, so
⋂∞

n=1 q−1(Hn) = N .



§4 Proof of Theorem A

Let α ∈ Aut(G) be expansive. Show: α on G/N is

expansive if G/N is compact. Use q : G→ G/N .

Since G/N is profinite and metrizable, there
are α-stable closed normal subgroups

H1 ⊇ H2 ⊇ · · ·
of G/N such that the automorphism αn in-
duced by α on (G/N)/Hn is expansive and

G/N = lim← (G/N)/Hn.

Then
⋂∞

n=1 Hn = {1}, so
⋂∞

n=1 q−1(Hn) = N .

Since q−1(H1) � q−1(H2) � · · · , there is n such
that q−1(Hm) is open in q−1(Hn) for all m ≥ n.

Thus q−1(Hn) ∩ Uα, q−1(Hn) ∩ Uα−1 ⊆ q−1(Hm)
for m ≥ n and hence

q−1(Hn)∩Uα, q−1(Hn)∩Uα−1 ⊆
⋂

m≥n

q−1(Hm) = N.

Thus (q−1(Hn) ∩ Uα)(q−1(Hn) ∩ Uα−1) ⊆ N ,
whence N is open in q−1(Hn) and Hn = q−1(Hn)/N
is discrete, hence finite.

Since
⋂

m≥n Hm = {1}, find m ≥ n such that
Hm = {1}. Since α corresponds to αm on
(G/N)/Hm

∼= G/N , it is expansive.



§5 Tools for the proof of Theorem B

Thm B. If Uα can be made locally compact (e.g., if α ∈
Aut(G) is expansive), then Dα := div(U∗α) is closed in G.

We shall use the nub U0 of α ∈ Aut(G), de-
fined as the intersection of all compact open
subgroups tidy for α.

Facts (a) The closure of Uα is Uα = UαU0.

(b) U0 ∩ Uα is dense in U0.

See Baumgartner-Willis (2004) for (a), Willis
(2012) for (b).

Consequence (G.-Raja) If Uα can be made
locally compact (e.g., α ∈ Aut(G) expansive),
then U0 ∩Uα = U0 ∩ Tα and thus U0 = U0 ∩ Tα.

U0 ∩ U∗α lcp, hence U0 ∩ Uα can be made lcp,
hence U0 ∩ Uα = DT with D divisible, T tor-
sion. Then D = {1} as U0 (like any finite or
profinite group) has no divisible elements. So
U0 ∩ Uα = T = U0 ∩ Tα.



§6 Proof of Theorem B

Thm B. If Uα can be made locally compact (e.g., if α ∈
Aut(G) is expansive), then Dα := div(U∗α) is closed in G.

Proof. Replacing G with Uα, w.l.o.g. G =

Uα = UαU0. As U0 normalizes Uα, have Uα �G.

Since Dα and Tα are characteristic in Uα, also

Dα � G and Tα � G. Hence Tα � G.

Since Tα is a torsion group (as Tα has finite

exponent) and Dα is torsion-free, we have

Dα ∩ Tα = {1}.

Moreover, G = Uα = UαU0 = DαTαU0 ∩ Tα =

DαTα. Hence G = Dα × Tα as an abstract

group. Thus

D∗α × Tα → G, G, (x, y) 7→ xy

is continuous and an isomorphism of abstract

groups, hence an isomorphism of topological

groups (by the Open Mapping Theorem), as

the groups on both sides are locally compact

and σ-compact. Notably, Dα is closed in G.



The proof showed more:

Theorem C. (G.-Raja (2013)) If Uα can be

made locally compact (e.g., if α ∈ Aut(G) is

expansive), then

Uα = Dα × Tα

(internally) as a topological group.



§7 Expansive automorphisms of Lie groups

Let G be a Lie group over a totally discon-

nected local field K (e.g., Qp) and α : G→ G be

a K-analytic automorphism. Then β := T1(α)

is a linear automorphism of the Lie algebra

g := T1(G).

For ρ > 0, define

gρ := g ∩
⊕
|λ|=ρ

(g⊗K K)λ,

where K is an algebraic closure, |.| the unique

extension of the absolute value on K to K and

(g⊗K K)λ for λ ∈ K

the generalized eigenspace of β ⊗K idK. Then

g = Uβ ⊕Mβ ⊕ Uβ−1

with Mβ = g1,

Uβ =
⊕
ρ<1

gρ and Uβ−1 =
⊕
ρ>1

gρ.



Theorem D (G.-Raja (2013))

(a) If α is expansive, then Mβ = {0}, i.e.,
|λ| 6= 1 for all eigenvalues λ ∈ K of β ⊗K idK.

(b) If Uα closed, then α expansive iff Mβ = {0}.

Proof. (b) If Mβ 6= {0} and U ⊆ G is an
identity neighborhood, then U contains a so-
called center manifold W ⊆ G, which can be
chosen as an α-stable Lie subgroup with Lie
algebra Mβ, by the theory of time-discrete K-
analytic dynamical systems (G. (2013)). Then
W ⊆

⋂
k∈Z αk(U) and thus α is not expansive.

(a) If Uα is closed then Mα is a Lie subgroup
with Lie algebra Mβ (cf. G. (2008)), which is
{0} iff Mα is discrete. Now apply next lemma.

Lemma (G.-Raja (2013)) If G is a t.d.l.c. group,
α ∈ Aut(G) and Uα is closed, then α is expan-
sive iff Mα is discrete.

Rem. If α is expansive, then g is nilpotent
(this follows with an exercise from Bourbaki).
Hence, if K = Qp, then G has an open nilpotent
subgroup. Can it be chosen α-stable?



Lemma (G.-Raja (2013)) If G is a t.d.l.c. group,

α ∈ Aut(G) and Uα is closed, then α is expan-

sive iff Mα is discrete.

Proof. ⇒ Let V be a c.o. subgroup of G such

that V0 = {1}. Since Uα is closed, Mα has a

c.o. subgroup W ⊆ Mα ∩ V which is tidy for α

and hence α-stable. Thus W ⊆ V0 and thus

W = {1}, whence Mα is discrete.

⇐ Since Uα is closed, the set UαMαUα−1 is

an open identity neighborhood in G and the

product map

Uα ×Mα × Uα−1 → UαMαUα−1, (x, y, z) 7→ xyz

is a homeomorphism (G. (2005); cf. Wang

(1984) for the p-adic case). Hence, if Mα is

discrete, then UαUα−1 is open in G and⋂
k∈Z

αk(V W ) = {1}

for all compact open identity neighborhoods

V ⊆ Uα, W ⊆ Uα−1.



Rem. If α is expansive, then g is nilpotent. Hence, if

K = Qp, then G has an open nilpotent subgroup. Can it

be chosen α-stable?

Theorem E (G.-Raja (2013)) Let α be an ex-

pansive automorphism of a p-adic Lie group G.

If G is linear in the sense that there exists

an injective continuous homomorphism

G → GLn(Qp), then G has an α-stable, open

nilpotent subgroup.

Rem For α expansive and G a closed subgroup

of GLn(Qp), can show UαUα−1 is a subgroup

of G (which is α-stable and nilpotent).
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