Spectral Synthesis and Ideal Theory Lecture 1

Eberhard Kaniuth

University of Paderborn, Germany

Fields Institute, Toronto, March 27, 2014

Fields Institute, Toronto, March 27, 2014

A a commutative Banach algebra over $\mathbb C$

 $\Delta(A) = \{\varphi : A \to \mathbb{C} \text{ surjective homomorphism}\} \subseteq A_1^*$ w^* -topology on $\Delta(A)$: weakest topology, for which all the functions $\hat{a} : \Delta(A) \to \mathbb{C}, \varphi \to \hat{a}(\varphi) = \varphi(a), a \in A$, are continuous $\Delta(A)$ is a locally compact Hausdorff space and $\overline{\Delta(A)} \subseteq \Delta(A) \cup \{0\}$ \hat{a} vanishes at infinity on $\Delta(A)$ (Riemann-Lebesgue), and $\Phi : a \to \hat{a}$ is a norm decreasing homomorphism and

$$\sigma(a) \setminus \{0\} \subseteq \widehat{a}(\Delta(A)) \subseteq \sigma(a).$$

 Φ is an isometry if and only if $||a^2|| = ||a||$ for every $a \in A$.

 Φ is surjective if, in addition, $\Phi(A)$ is closed under complex conjugation. Every commutative C^* -algebra A is isometrically isomorphic to $C_0(\Delta(A))$.

Definition

- $(\Delta(A), w^*)$ is called the *Gelfand spectrum* of A
- $A o C_0(\Delta(A)), a o \widehat{a}$ is called the *Gelfand homomorphism*
- A is semisimple if $a \rightarrow \hat{a}$ is injective
- The w*-topology is also called the Gelfand topology

Remark

(1) If A is unital, then $\Delta(A)$ is closed in A_1^* , hence compact

Fields Institute, Toronto, March 27,

21

(2) When does $\Delta(A)$ compact imply that A is unital?

Ideals and Quotients

Let I be a closed ideal of A and $q: A \rightarrow A/I$ the quotient homomorphism

- $\varphi \rightarrow \varphi \circ q$ embeds $\Delta(A/I)$ topologically into $\Delta(A)$
- $\Delta(A/I)$ is closed in $\Delta(A)$
- $\Delta(A) \setminus \Delta(A/I) = \{ \varphi \in \Delta(A) : \varphi|_I \neq 0 \}$

Every $\psi \in \Delta(I)$ extends uniquely to some $\widetilde{\psi} \in \Delta(A)$ by

$$\widetilde{\psi}(\mathsf{a}) = rac{\psi(\mathsf{a}b)}{\psi(b)}, \quad \mathsf{a} \in \mathsf{A},$$

where $b \in I$ is such that $\psi(b) \neq 0$.

• $\psi \to \widetilde{\psi}$ is a homeomorphism from $\Delta(I)$ onto $\Delta(A) \setminus \Delta(A/I)$.

Definition

Let A be a Banach algebra. An ideal I of A is called *modular* if the quotient algebra A/I has an idenity.

- Every modular ideal is contained in a maximal modular ideal
- Every maximal modular ideal is closed

Suppose that A is commutative.

- Then every maximal modular ideal has codimension one
- The map $\varphi \to \ker \varphi$ is a bijection between $\Delta(A)$ and Max(A), the set of all proper maximal modular ideals

The Hull-Kernel Topology

For $E \subseteq \Delta(A) = Max(A)$ the *kernel* of *E* is defined by

$$k(E) = \{a \in \mathsf{A}: arphi(a) = 0 ext{ for all } arphi \in E\} = igcap_{\{ extsf{ker}(arphi): arphi \in E\}}$$

if $E \neq \emptyset$ and $k(\emptyset) = A$. If $E = \{\varphi\}$, write $k(\varphi)$ instead of $k(\{\varphi\})$ or ker (φ) For $B \subseteq A$, the *hull* of B is defined by

$$h(B) = \{ \varphi \in \Delta(A) : \varphi(B) = \{0\} \} = \{ M \in \mathsf{Max}(A) : B \subseteq M \}.$$

Remark

- k(E) is a closed ideal of A
- h(B) is a closed subset of $\Delta(A)$
- $E \subseteq h(k(E))$
- $h(k(E_1 \cup E_2)) = h(k(E_1)) \cup h(k(E_2))$

Definition

For $E \subseteq \Delta(A)$, let $\overline{E} = h(k(E))$. Then $E \to \overline{E}$ is a closure operation, i.e. (1) $E \subseteq \overline{E}$ and $\overline{\overline{E}} = \overline{E}$ (2) $\overline{E_1 \cup E_2} = \overline{E_1} \cup \overline{E_2}$.

There exists a unique topology on $\Delta(A)$ such that \overline{E} is the closure of E, the *hull-kernel topology*.

The *hk*-topology on $\Delta(A)$ is weaker than the Gelfand topology and in general not Hausdorff.

Problem: When do the two topologies on $\Delta(A)$ coincide?

Regular Commutive Banach Algebras

Definition

A is called *regular* if for any closed subset E of $\Delta(A)$ which is closed in the Gelfand topology, and any $\varphi_0 \in \Delta(A) \setminus E$, there exists $a \in A$ such that

 $\varphi_0(a) \neq 0$ and $\varphi|_E = 0$.

Theorem

For a commutative Banach algebra A, the following three conditions are equivalent.

A is regular.

2 The hull-kernel topology and the Gelfand topology on $\Delta(A)$ coincide.

(3) \widehat{a} is continuous on $(\Delta(A), hk)$ for every $a \in A$.

Proof of $(1) \Rightarrow (2)$

Suppose that A is regular and let $E \subseteq \Delta(A)$ be closed in the Gelfand topology. To show that E is closed in the *hk*-topology, consider any $\varphi \in \Delta(A) \setminus E$:

- there exists $a_{arphi}\in A$ such that $\widehat{a}_{arphi}(arphi)
 eq 0$ and $\widehat{a}_{arphi}=0$ on E
- it follows that $k(E) \not\subseteq k(\varphi)$ for each $\varphi \in \Delta(A) \setminus E$
- thus E = h(k(E)), i.e. E is hk-closed

Since the Gelfand topology is the weak topology defined by the functions \hat{a} , $a \in A$, the equivalence of (2) and (3) is clear. The proof of (3) \Rightarrow (1) is somewhat more complicated.

Theorem

Let I be a closed ideal of the commutative Banach algebra A. Then the following conditions are equivalent.

- A is regular
- I and A/I are both regular

Theorem

A regular commutative Banach algebra A is even normal in the following sense.

Given a closed subset E of $\Delta(A)$ and a compact subset C of $\Delta(A)$ such that $C \cap E = \emptyset$, then there exists $a \in A$ such that

$$\hat{a} = 1$$
 on C and $\hat{a} = 0$ on E .

Corollary

Let A be semisimple and regular. If $\Delta(A)$ is compact, then A has an identity.

Examples $C_0(X)$

X a locally compact Hausdorff space

 $C_0(X) = \{f : X \to \mathbb{C} : f \text{ is continuous and vanishes at infinity}\}$

 $C_0(X)$ is a commutative Banach algebra with pointwise operations and the sup-norm. For each closed subset E of X, let

$$I(E) = \{ f \in C_0(X) : f = 0 \text{ on } E \}.$$

Theorem

The assignment $E \to I(E)$ is a bijection between the collection of all closed subsets E of X and the closed ideals of $C_0(X)$.

The proof is essentially an application of a variant of Urysohn's lemma: given a compact subset C of $X \setminus E$, there exists $f \in C_0(X)$ such that

$$f|_{E} = 0,, f|_{C} = 1 \text{ and } f(X) \subseteq [0,1].$$

Corollary

For $x \in X$, let

•
$$\varphi_x(f) = f(x)$$
 for $f \in C_0(X)$

•
$$M(x) = \{f \in C_0(X) : f(x) = 0\}$$

Then $x \to \varphi_x$ (resp., $x \to M(x) = \ker(\varphi_x)$) is a homeomorphism between X and $\Delta(C_0(X))$ (resp., $\operatorname{Max}(C_0(X))$). In particular, $C_0(X)$ is regular.

Proof.

The map $x \to \varphi_x, X \to \Delta(C_0(X))$ is continuous since $x \to f(x)$ is continuous for each f.

Moreover, given $x \in X$ and an open neighbourhood V of x in X, by Urysohn's lemma there exists $f \in C_0(X)$ such that $f(x) \neq 0$ and f = 0 on f = 0 on $X \setminus V$. Thus

$$V \supseteq \{y \in X : |arphi_y(f) - arphi_x(f)| < |f(x)|,$$

which is a neighbourhood of x in the Gelfand topology.

Example $C^n[a, b]$

Let $a, b \in \mathbb{R}$, a < b, $n \in \mathbb{N}$ and

 $C^{n}[a, b] = \{f : [a, b] \rightarrow \mathbb{C} : f \text{ n-times continuously differentiable}\}.$

With pointwise operations and the norm

$$||f|| = \sum_{k=0}^{n} \frac{1}{n!} ||f^{(k)}||_{\infty},$$

 $C^{n}[a, b]$ is a unital commutative Banach algebra. For $t \in [a, b]$, let

$$\varphi_t(f) = f(t), \quad f \in C^n[a, b].$$

Theorem

The map $t \to \varphi_t$ is a homeomorphism from [a, b] onto $\Delta(C^n[a, b])$, and $C^n[a, b]$ is regular.

Outline of Proof

- $t
 ightarrow arphi_t$ is an embedding of [a, b] into $\Delta(C^n[a, b])$ because
- the mapping is injective and continuous
- [a, b] is compact and $\Delta(C^n[a, b])$ is Hausdorff.

To show surjectivity, let $M \in Max(C^n[a, b])$, and assume that $M \neq ker(\varphi_t)$ for every $\in [a, b]$. Then, for each t, there exists $f_t \in M$ such that $f_t(t) \neq 0$. Then $f_t \neq 0$ in a neighbourhood V_t of t and hence

$$[a,b] = \bigcup_{j=1}^r V_{t_j}$$

for certain t_1, \ldots, t_r and the function

$$f=\sum_{j=1}^r f_{t_j}\overline{f_{t_j}}\in M$$

Eberhard Kaniuth (University of Paderborn, C Spectral Synthesis and Ideal Theory

Fields Institute, Toronto, March 27, 2014

has the property that f(t) > 0 for all $t \in [a, b]$. Then $\frac{1}{f} \in C^n[a, b]$, and hence $1 \in M$, which is a contradiction.

Regularity of $C^n[a, b]$:

Given $t_0 \in [a, b]$ and $\epsilon > 0$, construct $f \in C^n[a, b]$ such that $f(t_0) \neq 0$ and f(t) = 0 for $t \in [a, b]$ such that $|t - t_0| \ge \epsilon$.

To each $t \in [a, b]$ and $0 \le k \le n$, associate the closed ideal

$$I_k(t) = \{ f \in C^n[a, b] : f^{(j)}(t) = 0 \text{ for } 0 \le j \le n \}.$$

It is clear that

$$I_n(t) \subseteq I_{n-1}(t) \subseteq \ldots \subseteq I_1(t) \subseteq I_0(t) = M(t),$$

and one can show that all the inclusions are proper.

Moreover, $h(I_k(t)) = \{t\}$ and there are now other closed ideals with hull $= \{t\}$.

$L^1(G)$, G abelian

G a locally compact abelian group, \widehat{G} the dual group of *G*, equipped with the topology of uniform convergence on compact subsets of *G*. For $\gamma \in \widehat{G}$, define $\varphi_{\gamma} : L^{1}(G) \to \mathbb{C}$ by

$$\varphi_{\gamma}(f) = \int_{\mathcal{G}} f(x)\overline{\gamma(x)} \, dx, \quad f \in L^1(\mathcal{G}).$$

- $\gamma o \varphi_{\gamma}$ is a homeomorphism from \widehat{G} onto $\Delta(L^1(G))$
- $L^1(G)$ is regular and semisimple
- $L^1(G)$ has an approximate identity with norm bound one, consisting of functions f such that \hat{f} has compact support

Examples

(1)
$$\widehat{\mathbb{R}^n} = \mathbb{R}^n$$
: $\gamma_y(x) = e^{i\langle x, y \rangle}$, $x, y \in \mathbb{R}^n$
(2) $\widehat{\mathbb{Z}} = \mathbb{T}$: $\gamma_z(n) = z^n$, $z \in \mathbb{T}$, $n \in \mathbb{Z}$

The Fourier Algebra A(G)

Let G be a locally compact group and B(G) the Fourier-Stieltjes algebra of G.

The Fourier algebra A(G) is the closure in B(G) of the linear span of all functions of the form $f * \tilde{g}$, $f, g \in C_c(G)$, where $\tilde{g}(x) = \overline{g(x^{-1})}$. Then

•
$$A(G) = \{f * \widetilde{g} : f, g \in L^2(G)\}$$

• $A(G) \subseteq C_0(G)$ and A(G) is uniformly dense in $C_0(G)$.

Lemma

Let $x \in G$ and $u \in A(G)$ such that u(x) = 0. Then, given $\epsilon > 0$, there exists $v \in A(G)$ such that v vanishes in a neighbourhood of x and $||u - v|| \le \epsilon$.

Proof of the Lemma

• We can assume that $u \neq 0$, $u \in C_c(G)$, $\epsilon \leq \|u\|_{\infty}$ and $\epsilon < 1$. Let

$$W = \{y \in G : \|u - R_y u\|_{A(G)} \leq \epsilon\}.$$

• Choose $V \subseteq W$, V an open neighbourhood of e such that

$$\sup\{|u(xy)|: y \in V\} \le \epsilon.$$

- Choose $U \subseteq V$, U a compact symmetric neighbourhood of e in G such that $|U| \ge |V|(1 \epsilon)$.
- Let $f = |U|^{-1} \mathbb{1}_U$ and $g = \mathbb{1}_{xV} \cdot u$: $f, g \in L^2(G)$
- Let $v = (u g) * f \in A(G)$; then v has compact support and v(y) = 0 whenever $yU \subseteq xV$; so v = 0 in a neighbourhood of x

•
$$\|u - v\|_{\mathcal{A}(G)} \le \epsilon + \epsilon \left(\frac{1}{1-\epsilon}\right)^{1/2}$$

The Spectrum of A(G)

Lemma

Let C be a compact subset of G and U an open subset of G containing C. Then there exists a function u on G with the following properties:

(1)
$$0 \le u \le 1, u|_{C} = 1$$
 and $u|_{G \setminus U} = 0$.

(2) *u* is a finite linear combination of functions in $P(G) \cap C_c(G)$.

Proof.

There exists a compact neighbourhood V of e in G such that $V = V^{-1}$ and $CV^2 \subseteq U$. Then the function

$$u(x) = |V|^{-1} (1|_{CV} * 1|_V) (x) = |V|^{-1} \cdot |xV \cap CV|, \ x \in G,$$

satisfies (1). (2) follows from the polar identity for f * g.

Theorem

Let G be an arbitrary locally compact group. For $x \in G$, let

$$\varphi_x : A(G) \to \mathbb{C}, \quad u \to u(x).$$

Then the map $x \to \varphi_x$ is a homeomorphism from G onto $\Delta(A(G))$. Moreover, A(G) is regular.

Proof.

Clearly, $\varphi_x \in \Delta(A(G))$, and $x \to \varphi_x$ is injective. To show surjectivity, let $\varphi \in \Delta(A(G))$ be given and assume that $\varphi \neq \varphi_x$ for all $x \in G$. Then, for each $x \in G$, there exists $u_x \in A(G)$ such that

$$\varphi(u_x) = 1$$
 and $\varphi_x(u_x) = 0$.

Fields Institute, Toronto, March 27, 2014

21

Then u_x is the limit of a sequence $(v_n)_n \subseteq A(G)$ such that $v_n = 0$ is a neighbourhood of x. Therefore, we can assume that $u_x = 0$ in a neighbourhood of x.

Proof continued

Since $A(G) \cap C_c(G)$ is dense in A(G), there exists $u_0 \in C_c(G) \cap A(G)$ with $\varphi(u_0) = 1$. Choose $x_1, \ldots, x_n \in \text{supp}(u_0)$ such that

$$\operatorname{supp}(u_0) \subseteq \bigcup_{j=1}^n V_{x_j}$$

and let $u = u_0 \cdot \prod_{j=1}^n u_{x_j} \in A(G)$. Then u(x) = 0 for all $x \in G$, but

$$\varphi(u) = \varphi(u_0) \cdot \prod_{j=1}^n \varphi(u_{x_j}) = 1.$$

Thus the map $x \to \varphi_x$, $G \to \Delta(A(G))$ is surjective. It is a homeomorphism since, because A(G) is uniformly dense in $C_0(G)$, the topology on G coincides with the weak topology defined by the set of functions

$$x \to u(x) = \varphi_x(u), \quad u \in A(G).$$