Spectral Synthesis and Ideal Theory Lecture 1

Eberhard Kaniuth

University of Paderborn, Germany

Fields Institute, Toronto, March 27, 2014

[Fiel](#page-1-0)[ds Inst](#page-0-0)[it](#page-1-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014 1

 $\overline{21}$

A a commutative Banach algebra over C

 $\Delta(A)=\{\varphi:A\to\mathbb{C}\, \text{ surjective homomorphism}\}\subseteq A_1^*$ w*-topology on $\Delta(A)$: weakest topology, for which all the functions $\widehat{a}: \Delta(A) \to \mathbb{C}, \varphi \to \widehat{a}(\varphi) = \varphi(a), a \in A$, are continuous $\Delta(A)$ is a locally compact Hausdorff space and $\Delta(A) \subseteq \Delta(A) \cup \{0\}$ \widehat{a} vanishes at infinity on $\Delta(A)$ (Riemann-Lebesgue), and $\Phi : a \rightarrow \widehat{a}$ is a norm decreasing homomorphism and

$$
\sigma(a)\setminus\{0\}\subseteq \widehat{a}(\Delta(A))\subseteq \sigma(a).
$$

 Φ is an isometry if and only if $\|a^2\|=\|a\|$ for every $a\in A.$

 Φ is surjective if, in addition, $\Phi(A)$ is closed under complex conjugation.

Every commutative C^* -algebra A is isometrically isomorphic to $C_0(\Delta(A)).$

[Fiel](#page-2-0)[ds](#page-0-0) [Inst](#page-1-0)[it](#page-2-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

Definition

- $(\Delta(A), w^*)$ is called the Gelfand spectrum of A
- $A \to C_0(\Delta(A)), a \to \hat{a}$ is called the Gelfand homomorphism
- A is semisimple if $a \rightarrow \widehat{a}$ is injective
- The w^{*}-topology is also called the Gelfand topology

Remark

(1) If A is unital, then $\Delta(A)$ is closed in A_1^* , hence compact

 $\overline{}$ [Fiel](#page-3-0)[ds](#page-1-0) [Inst](#page-2-0)[it](#page-3-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) 27

/ 21

(2) When does $\Delta(A)$ compact imply that A is unital?

Ideals and Quotients

Let I be a closed ideal of A and $q : A \rightarrow A/I$ the quotient homomorphism

- $\bullet \varphi \to \varphi \circ q$ embeds $\Delta(A/I)$ topologically into $\Delta(A)$
- \triangle Δ (A/I) is closed in Δ (A)
- $\triangle(A) \setminus \triangle(A/I) = \{ \varphi \in \triangle(A) : \varphi|_I \neq 0 \}$

Every $\psi \in \Delta(I)$ extends uniquely to some $\widetilde{\psi} \in \Delta(A)$ by

$$
\widetilde{\psi}(a)=\frac{\psi(ab)}{\psi(b)},\quad a\in A,
$$

where $b \in I$ is such that $\psi(b) \neq 0$. • $\psi \to \psi$ is a homeomorphism from $\Delta(I)$ onto $\Delta(A) \setminus \Delta(A/I)$.

 F_{field} F_{in} F_{in} F_{in} F_{in} F_{out} F_{out}

Definition

Let A be a Banach algebra. An ideal I of A is called *modular* if the quotient algebra A/I has an idenity.

- Every modular ideal is contained in a maximal modular ideal
- Every maximal modular ideal is closed

Suppose that A is commutative.

- Then every maximal modular ideal has codimension one
- The map $\varphi \to \ker \varphi$ is a bijection between $\Delta(A)$ and $\mathsf{Max}(A)$, the set of all proper maximal modular ideals

 F_{fields} F_{fields} F_{fields} [Inst](#page-4-0)[it](#page-5-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

The Hull-Kernel Topology

For $E \subseteq \Delta(A) = \text{Max}(A)$ the kernel of E is defined by

$$
k(E)=\{a\in A: \varphi(a)=0 \text{ for all } \varphi\in E\}=\bigcap \{\ker(\varphi): \varphi\in E\}
$$

if $E \neq \emptyset$ and $k(\emptyset) = A$. If $E = {\varphi}$, write $k(\varphi)$ instead of $k({\varphi})$ or ker(φ) For $B \subset A$, the *hull* of B is defined by

$$
h(B) = \{ \varphi \in \Delta(A) : \varphi(B) = \{0\} \} = \{ M \in \text{Max}(A) : B \subseteq M \}.
$$

Remark

- $k(E)$ is a closed ideal of A
- $h(B)$ is a closed subset of $\Delta(A)$
- \bullet $E \subseteq h(k(E))$
- • h(k($E_1 \cup E_2$)) = h(k(E_1)) \cup h(k(E_2))

Definition

For $E \subseteq \Delta(A)$, let $\overline{E} = h(k(E))$. Then $E \to \overline{E}$ is a closure operation, i.e. (1) $E \subset \overline{E}$ and $\overline{\overline{E}} = \overline{E}$ (2) $\overline{E_1 \cup E_2} = \overline{E_1} \cup \overline{E_2}$.

There exists a unique topology on $\Delta(A)$ such that \overline{E} is the closure of E , the hull-kernel topology.

The hk-topology on $\Delta(A)$ is weaker than the Gelfand topology and in general not Hausdorff.

Problem: When do the two topologies on $\Delta(A)$ coincide?

모든 제1 제1 제1 제1 제1 제1 제1
[Fiel](#page-7-0)[ds](#page-5-0) [Inst](#page-6-0)[it](#page-7-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) 27

Regular Commutive Banach Algebras

Definition

A is called *regular* if for any closed subset E of $\Delta(A)$ which is closed in the Gelfand topology, and any $\varphi_0 \in \Delta(A) \setminus E$, there exists $a \in A$ such that

 $\varphi_0(a) \neq 0$ and $\varphi|_E = 0$.

Theorem

For a commutative Banach algebra A, the following three conditions are equivalent.

 \bullet A is regular.

 \bullet The hull-kernel topology and the Gelfand topology on $\Delta(A)$ coincide.

3 \hat{a} is continuous on $(\Delta(A), hk)$ for every $a \in A$.

 \overrightarrow{F} [Fiel](#page-8-0)[ds](#page-6-0) [Inst](#page-7-0)[it](#page-8-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

Proof of $(1) \Rightarrow (2)$

Suppose that A is regular and let $E \subseteq \Delta(A)$ be closed in the Gelfand topology. To show that E is closed in the hk -topology, consider any $\varphi \in \Delta(A) \setminus E$:

- there exists $a_{\varphi} \in A$ such that $\widehat{a}_{\varphi}(\varphi) \neq 0$ and $\widehat{a}_{\varphi} = 0$ on E
- \bullet it follows that $k(E) \not\subseteq k(\varphi)$ for each $\varphi \in \Delta(A) \setminus E$
- thus $E = h(k(E))$, i.e. E is hk-closed

Since the Gelfand topology is the weak topology defined by the functions \widehat{a} , $a \in A$, the equivalence of (2) and (3) is clear. The proof of (3) \Rightarrow (1) is somewhat more complicated.

 F_{fields} F_{fields} F_{fields} [Inst](#page-8-0)[it](#page-9-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

Theorem

Let I be a closed ideal of the commutative Banach algebra A. Then the following conditions are equivalent.

- A is regular
- \bullet I and A/I are both regular

Theorem

A regular commutative Banach algebra A is even normal in the following sense.

Given a closed subset E of $\Delta(A)$ and a compact subset C of $\Delta(A)$ such that $C \cap E = \emptyset$, then there exists a $\in A$ such that

$$
\widehat{a} = 1 \text{ on } C \quad \text{and} \quad \widehat{a} = 0 \text{ on } E.
$$

Corollary

Let A be semisimple and regular. If $\Delta(A)$ is compact, then A has an identity.

Examples $C_0(X)$

 X a locally compact Hausdorff space $C_0(X) = \{f : X \to \mathbb{C} : f \text{ is continuous and vanishes at infinity}\}$

 $C_0(X)$ is a commutative Banach algebra with pointwise operations and the sup-norm. For each closed subset E of X , let

$$
I(E) = \{f \in C_0(X) : f = 0 \text{ on } E\}.
$$

Theorem

The assignment $E \rightarrow I(E)$ is a bijection between the collection of all closed subsets E of X and the closed ideals of $C_0(X)$.

The proof is essentially an application of a variant of Urysohn's lemma: given a compact subset C of $X \setminus E$, there exists $f \in C_0(X)$ such that

$$
f|_E = 0
$$
, $f|_C = 1$ and $f(X) \subseteq [0,1]$.

 F_{fields} F_{fields} F_{fields} [Inst](#page-10-0)[it](#page-11-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

Corollary

For $x \in X$, let

$$
\bullet \ \varphi_x(f) = f(x) \ \text{for} \ f \in C_0(X)
$$

•
$$
M(x) = \{f \in C_0(X) : f(x) = 0\}
$$

Then $x \to \varphi_x$ (resp., $x \to M(x) = \ker(\varphi_x)$) is a homeomorphism between X and $\Delta(C_0(X))$ (resp., $\text{Max}(C_0(X))$). In particular, $C_0(X)$ is regular.

Proof.

The map $x \to \varphi_x, X \to \Delta(C_0(X))$ is continuous since $x \to f(x)$ is continuous for each f .

Moreover, given $x \in X$ and an open neighbourhood V of x in X, by Urysohn's lemma there exists $f \in C_0(X)$ such that $f(x) \neq 0$ and $f = 0$ on $f = 0$ on $X \setminus V$. Thus

$$
V \supseteq \{y \in X : |\varphi_y(f) - \varphi_x(f)| < |f(x)|\}
$$

which is a neighbourhood of x in the Gelfand topology.

Example $Cⁿ[a, b]$

Let $a, b \in \mathbb{R}$, $a < b$, $n \in \mathbb{N}$ and

 $C^{n}[a, b] = \{f : [a, b] \rightarrow \mathbb{C} : f \text{ } n\text{-times continuously differentiable}\}.$

With pointwise operations and the norm

$$
||f|| = \sum_{k=0}^{n} \frac{1}{n!} ||f^{(k)}||_{\infty},
$$

 $Cⁿ[a, b]$ is a unital commutative Banach algebra. For $t \in [a, b]$, let

$$
\varphi_t(f)=f(t),\quad f\in C^n[a,b].
$$

Theorem

The map $t \to \varphi_t$ is a homeomorphism from [a, b] onto $\Delta(C^n[a, b])$, and $Cⁿ[a, b]$ is regular.

Outline of Proof

- $t\rightarrow \varphi_{\textit{t}}$ is an embedding of $[\textit{a},\textit{b}]$ into $\Delta(\textit{C}^{\textit{n}}[\textit{a},\textit{b}])$ because
- the mapping is injective and continuous
- [a, b] is compact and $\Delta(C^n[a, b])$ is Hausdorff.

To show surjectivity, let $M\in\mathsf{Max}(\overline{\mathcal{C}^n[a,b]})$, and assume that $M\neq\ker(\varphi_t)$ for every \in [a, b]. Then, for each t, there exists $f_t \in M$ such that $f_t(t) \neq 0$. Then $f_t \neq 0$ in a neighbourhood V_t of t and hence

$$
[a,b]=\bigcup_{j=1}^r V_{t_j}
$$

for certain t_1, \ldots, t_r and the function

$$
f=\sum_{j=1}^r f_{t_j} \overline{f_{t_j}}\in M
$$

 \overline{F} [Fiel](#page-14-0)[ds](#page-12-0) [Inst](#page-13-0)[it](#page-14-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

 21

Eberhard Kaniuth (University of Paderborn, C Genetral Synthesis and Ideal Theory

has the property that $f(t) > 0$ for all $t \in [a, b]$. Then $\frac{1}{f} \in C^n[a, b]$, and hence $1 \in M$, which is a contradiction.

Regularity of $Cⁿ[a, b]$:

Given $t_0 \in [a,b]$ and $\epsilon > 0$, construct $f \in C^n[a,b]$ such that $f(t_0) \neq 0$ and $f(t) = 0$ for $t \in [a, b]$ such that $|t - t_0| \geq \epsilon$.

To each $t \in [a, b]$ and $0 \leq k \leq n$, associate the closed ideal

$$
I_k(t) = \{f \in C^n[a,b] : f^{(j)}(t) = 0 \text{ for } 0 \le j \le n\}.
$$

It is clear that

$$
I_n(t) \subseteq I_{n-1}(t) \subseteq \ldots \subseteq I_1(t) \subseteq I_0(t) = M(t),
$$

and one can show that all the inclusions are proper.

Moreover, $h(I_k(t)) = \{t\}$ and there are now other closed ideals with hull $= \{t\}.$

 \overrightarrow{F} [Fiel](#page-15-0)[ds](#page-13-0) [Inst](#page-14-0)[it](#page-15-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

$L^1(G)$, G abelian

G a locally compact abelian group, \widehat{G} the dual group of G, equipped with the topology of uniform convergence on compact subsets of G. For $\gamma \in \widehat{G}$, define $\varphi_{\gamma}: L^1(G) \rightarrow \mathbb{C}$ by

$$
\varphi_{\gamma}(f)=\int_G f(x)\overline{\gamma(x)}\,dx,\quad f\in L^1(G).
$$

- \bullet $\gamma \rightarrow \varphi_{\gamma}$ is a homeomorphism from \hat{G} onto $\Delta(L^1(G))$
- \bullet $L^1(G)$ is regular and semisimple
- \bullet $L^1(G)$ has an approximate identity with norm bound one, consisting of functions f such that \hat{f} has compact support

Examples

(1)
$$
\widehat{\mathbb{R}^n} = \mathbb{R}^n
$$
: $\gamma_y(x) = e^{i\langle x, y \rangle}$, $x, y \in \mathbb{R}^n$
(2) $\widehat{\mathbb{Z}} = \mathbb{T}$: $\gamma_z(n) = z^n$, $z \in \mathbb{T}$, $n \in \mathbb{Z}$

The Fourier Algebra A(G)

Let G be a locally compact group and $B(G)$ the Fourier-Stielties algebra of G.

The Fourier algebra $A(G)$ is the closure in $B(G)$ of the linear span of all functions of the form $f * \widetilde{g}$, $f, g \in C_c(G)$, where $\widetilde{g}(x) = g(x^{-1})$. Then

•
$$
A(G) = \{f * \widetilde{g} : f, g \in L^2(G)\}
$$

• $A(G) \subset C_0(G)$ and $A(G)$ is uniformly dense in $C_0(G)$.

Lemma

Let $x \in G$ and $u \in A(G)$ such that $u(x) = 0$. Then, given $\epsilon > 0$, there exists $v \in A(G)$ such that v vanishes in a neighbourhood of x and $||u - v|| \leq \epsilon$.

Proof of the Lemma

• We can assume that $u \neq 0$, $u \in C_c(G)$, $\epsilon \leq ||u||_{\infty}$ and $\epsilon < 1$. Let

$$
W=\{y\in G:\|u-R_yu\|_{A(G)}\leq\epsilon\}.
$$

• Choose $V \subseteq W$, V an open neighbourhood of e such that

$$
\sup\{|u(xy)|: y \in V\} \leq \epsilon.
$$

• Choose $U \subseteq V$, U a compact symmetric neighbourhood of e in G such that $|U| > |V|(1 - \epsilon)$.

 \bullet Let $f=|U|^{-1}1_U$ and $g=1_{\mathsf{xV}}\cdot u: \quad f,g\in \mathsf{L}^2(G)$

• Let $v = (u - g) * f \in A(G)$; then v has compact support and $v(y) = 0$ whenever $vU \subseteq xV$; so $v = 0$ in a neighbourhood of x

$$
\bullet \|u-v\|_{A(G)} \leq \epsilon + \epsilon \left(\frac{1}{1-\epsilon}\right)^{1/2}.
$$

 $\overline{}$ [Fiel](#page-18-0)[ds](#page-16-0) [Inst](#page-17-0)[it](#page-18-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [27, 2](#page-20-0)014

The Spectrum of $A(G)$

Lemma

Let C be a compact subset of G and U an open subset of G containing C . Then there exists a function u on G with the following properties:

(1)
$$
0 \le u \le 1
$$
, $u|_C = 1$ and $u|_{G \setminus U} = 0$.

(2) u is a finite linear combination of functions in $P(G) \cap C_c(G)$.

Proof.

There exists a compact neighbourhood V of e in \emph{G} such that $V=V^{-1}$ and $CV^2 \n\subset U$. Then the function

$$
u(x) = |V|^{-1} (1|_{CV} * 1|_V)(x) = |V|^{-1} \cdot |xV \cap CV|, \ x \in G,
$$

satisfies (1). (2) follows from the polar identity for $f * g$.

Theorem

Let G be an arbitrary locally compact group. For $x \in G$, let

$$
\varphi_x:A(G)\to\mathbb{C},\quad u\to u(x).
$$

Then the map $x \to \varphi_x$ is a homeomorphism from G onto $\Delta(A(G))$. Moreover, $A(G)$ is regular.

Proof.

Clearly, $\varphi_x \in \Delta(A(G))$, and $x \to \varphi_x$ is injective. To show surjectivity, let $\varphi \in \Delta(A(G))$ be given and assume that $\varphi \neq \varphi_X$ for all $x \in G$. Then, for each $x \in G$, there exists $u_x \in A(G)$ such that

$$
\varphi(u_x)=1 \quad \text{and} \quad \varphi_x(u_x)=0.
$$

Then u_x is the limit of a sequence $(v_n)_n \subseteq A(G)$ such that $v_n = 0$ is a neighbourhood of x. Therefore, we can assume that $u_x = 0$ in a neighbourhood of x .

 F_{field} [Inst](#page-19-0)[it](#page-20-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) $27, 2014$

Proof continued

Since $A(G) \cap C_c(G)$ is dense in $A(G)$, there exists $u_0 \in C_c(G) \cap A(G)$ with $\varphi(u_0) = 1$. Choose $x_1, \ldots, x_n \in \text{supp}(u_0)$ such that

$$
\text{supp}(u_0) \subseteq \bigcup_{j=1}^n V_{x_j}
$$

and let $u = u_0 \cdot \prod_{j=1}^n u_{x_j} \in A(G).$ Then $u(x) = 0$ for all $x \in G.$ but

$$
\varphi(u)=\varphi(u_0)\cdot\prod_{j=1}^n\varphi(u_{x_j})=1.
$$

Thus the map $x \to \varphi_x$, $G \to \Delta(A(G))$ is surjective. It is a homeomorphism since, because $A(G)$ is uniformly dense in $C_0(G)$, the topology on G coincides with the weak topology defined by the set of functions

$$
x\to u(x)=\varphi_x(u),\quad u\in A(G).
$$