Spectral Synthesis and Ideal Theory Lecture 2

Eberhard Kaniuth

University of Paderborn, Germany

Fields Institute, Toronto, March 28, 2014

 $\overline{}$ [Fiel](#page-1-0)[ds Inst](#page-0-0)[it](#page-1-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014

 21

Synthesis Notions

A a regular and semisimple commutative Banach algebra. For a closed subset E of $\Delta(A)$, let

 $i(E) = \{a \in A : \hat{a}$ has compact support disjoint from E}.

Then, if I is any ideal in A with $h(I) = E$,

 $j(E) \subseteq I \subseteq k(E)$.

Definition

E is called a set of synthesis or spectral set if $\overline{i(E)} = k(E)$ (equivalently, $I = k(E)$ for any closed ideal I with $h(I) = E$).

We say that spectral synthesis holds for A if every closed subset of $\Delta(A)$ is a set of synthesis.

Definition

 $E \subseteq \Delta(A)$ closed is called Ditkin set if $a \in \overline{a}(E)$ for every $a \in k(E)$. Thus

• Every Ditkin set is a set of synthesis

• \emptyset is a Ditkin set if and only if given $a \in A$ and $\epsilon > 0$, there exists $b \in A$ such that \widehat{b} has compact support and $\|a - ab\| \leq \epsilon$ (in this case we also say that A satisfies Ditkin's condition at infinity)

A is called Tauberian if the set of all $a \in A$ such that \widehat{a} has compact support, is dense in A. Thus

• A is Tauberian if and only if \emptyset is a set of synthesis.

모든 제1 제1 제1 제1 제1 제1 제1
[Fiel](#page-3-0)[ds](#page-1-0) [Inst](#page-2-0)[it](#page-3-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) 28,

When does Spectral Synthesis hold for A?

Spectral synthesis holds for $C_0(X)$, X a locally compact Hausdorff space

Spectral synthesis does not hold for $Cⁿ[a, b]$, $n \ge 1$: singletons $\{t\}$, $t \in [a, b]$, are not sets of synthesis

Remark

Suppose that spectral synthesis holds for A. Then $a \in \overline{aA}$ for each $a \in A$. Proof:

Let $E = \{ \varphi \in \Delta(A) : \varphi(a) = 0 \}$. Then E is closed in $\Delta(A)$ and $E = h(\overline{aA})$. Thus $a \in k(E) = \overline{aA}$ since E is of synthesis.

The condition that $a \in \overline{aA}$ for every $a \in A$ is satisfied, if A has an approximate identity.

 \overline{P} [Fiel](#page-4-0)[ds](#page-2-0) [Inst](#page-3-0)[it](#page-4-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) 28,

Lemma

Let A be a regular and semisimple commutative Banach algebra and E an open and closed subset of $\Delta(A)$.

- **1** If A is Tauberian and $a \in aA$ for every $a \in k(E)$, then E is a set of synthesis.
- **2** If A satisfies Ditkin's condition at infinity, then E is a Ditkin set.

Proof of (2) Have to show that $a \in aj(E)$ for each $a \in k(E)$:

• E open and closed \implies

$$
h(j(E) + j(\Delta(A) \setminus E)) = E \cap (\Delta(A) \setminus E) = \emptyset
$$

and hence $j(\emptyset) \subseteq j(E) + j(\Delta(A) \setminus E)$

- Ø Ditkin \Rightarrow for every $a \in A$, there exist sequences $(u_n)_n \subseteq j(E)$ and $(v_n)_n \subseteq j(\Delta(A) \setminus E)$ such that $a(u_n + v_n) \to a$
- let $a \in k(E)$: then $\widehat{av}_n = \widehat{av}_n$ vanishes on E and on $\Delta(A) \setminus E$, hence $av_n = 0$. So $a = \lim_{n \to \infty} au_n \in aj(E)$, as require[d.](#page-3-0) [Fiel](#page-5-0)[ds](#page-3-0) [Inst](#page-4-0)[it](#page-5-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014 5

From the first assertion of the lemma and the above remark it follows

Corollary

Suppose that $\Delta(A)$ is discrete and A is Tauberian. Then spectral synthesis holds for A if and only if $a \in \overline{aA}$ for each $a \in A$.

 $\overline{}$ [Fiel](#page-6-0)[ds](#page-4-0) [Inst](#page-5-0)[it](#page-6-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) 28,

 21

Corollary

Let G be a compact abelian group. Then spectral synthesis holds for $L^1(G)$.

Proof.

- \bullet $L^1(G)$ has an approximate identity
- $L^1(G)$ is Tauberian
- $\widehat{G} = \Delta(L^1(G))$ is discrete since G is compact.

The Example of L. Schwartz

Theorem

For n \geq 3, the sphere $S^{n-1}=\{y\in \mathbb{R}^n:\|y\|=1\}\subseteq \Delta(L^1(\mathbb{R}^n))$ fails to be a set of synthesis for $L^1(\mathbb{R}^n)$.

Remark

(1) L. Schwartz [Sur une propriété de synthèse spectrale dans les groupes noncompacts, C.R. Acad. Sci. Paris 227 (1948), 424-426] proved this result for $n = 3$, but the proof works for all $n > 3$.

(2) $S^1 \subseteq \mathbb{R}^2$ is a set of synthesis for $L^1(\mathbb{R}^2)$ [C. Herz, *Spectral synthesis* for the circle, Ann. Math. 68 (1958), 709-712]

[Fiel](#page-7-0)[ds](#page-5-0) [Inst](#page-6-0)[it](#page-7-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014 7

Proof of Schwartz' Theorem

Identify $\widehat{\mathbb{R}^n}$ with \mathbb{R}^n through $y \to \gamma_y$, where $\gamma_y(x) = \langle x, y \rangle$ for $x \in \mathbb{R}^n$.

- $\widehat{f}(y) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i\langle x, y \rangle} dx$, $f \in L^1(\mathbb{R}^n)$
- $\bullet \; \check{g}(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} g(y) e^{i \langle x, y \rangle} dy, \quad g \in L^1(\widehat{\mathbb{R}^n})$
- \bullet $f \in L^1(\widehat{\mathbb{R}^n}) \cap L^2(\widehat{\mathbb{R}^n})$ and $\check{f} \in L^1(\mathbb{R}^n)$, then $(\check{f})^{\wedge} = f$ in $L^2(\mathbb{R}^n)$, hence $(\check{f})^{\wedge}(x) = f(x)$ for all $x \in \mathbb{R}^n$ if f is continuous

Lemma

Let $D(\mathbb{R}^3)$ denote the set of all functions in $L^1(\mathbb{R}^3)\cap C_0(\mathbb{R}^3)$ with the property that all partial derivatives exist and are in $L^1(\mathbb{R}^3)\cap \mathcal{C}_0(\mathbb{R}^3).$ Then $\widehat{f} \in L^1(\mathbb{R}^3)$ and $(\check{f})^{\wedge} = f$ for every $f \in D(\mathbb{R}^3)$.

 $\overline{}$ [Fiel](#page-8-0)[ds](#page-6-0) [Inst](#page-7-0)[it](#page-8-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014

Lemma

Let $S=S^2$ and $I=k(S)\subseteq L^1(\mathbb{R}^n)$, and

$$
J=\left\{f\in I:\widehat{f}\in D(\mathbb{R}^n) \text{ and } \frac{\partial \widehat{f}}{\partial y_1}=0 \text{ on } S\right\}.
$$

Then \overline{J} is an ideal in $L^1(\mathbb{R}^3)$ and $h(J) = S$.

To show that $\overline{J} \neq I$, it suffices to construct a bounded linear functional F on $L^1(\mathbb{R}^3)$ such that $\mathcal{F}(J)=\{0\}$, but $\mathcal{F}(I)\neq \{0\}.$ Such an $\mathcal F$ can be constructed as follows:

There exists a unique probability measure μ on S, which is invariant under orthogonal transformations.

Define a function ϕ on \mathbb{R}^3 by

$$
\phi(x) = \int_{S} e^{-i\langle x,y\rangle} d\mu(y).
$$

 \overline{P} [Fiel](#page-9-0)[ds](#page-7-0) [Inst](#page-8-0)[it](#page-9-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) 28,

Then the function $\textsf{x}\rightarrow \textsf{x}_1\phi(\textsf{x})$ on \mathbb{R}^3 is continuous and bounded. More precisely, it can be shown that

$$
|x_1\phi(x)| \leq ||x|| \cdot |\phi(x)| \leq \frac{4\pi}{3}, \quad x \in \mathbb{R}^3.
$$

The required functional F can now be defined by

$$
F(f)=\int_{\mathbb{R}^3}f(x)x_1\phi(x)\,dx,\quad f\in L^1(\mathbb{R}^3).
$$

Since

$$
\frac{\partial \widehat{f}}{\partial y_1}(y) = (-ix_1 f(x))^{\wedge}(y) = \int_{\mathbb{R}^3} (-ix_1) f(x) e^{-i\langle x, y \rangle} dx,
$$

we have

$$
i\int_{S}\frac{\partial f}{\partial y_{1}}(y) d\mu(y) = \int_{S}\left(\int_{\mathbb{R}^{3}}x_{1}f(x)e^{-i\langle x,y\rangle}dx\right)d\mu(y)
$$

$$
= \int_{\mathbb{R}^{3}}x_{1}f(x)\left(\int_{S}e^{-i\langle x,y\rangle}d\mu(y)\right)dx = \int_{\mathbb{R}^{3}}f(x)x_{1}\phi(x)dx = F(f).
$$
Thus $F(f) = 0$ for every $f \in J$.

Eberhard Kaniuth (University of Paderborn, C [Spectral Synthesis and Ideal Theory](#page-0-0)

To show that $F(I) \neq \{0\}$, consider the function

$$
f(x) = (\sqrt{2})^3 e^{-\|x\|^2} - e^{1/4} e^{-\|x\|^2/2}, \quad x \in \mathbb{R}^3.
$$

Then $f\in L^1(\mathbb{R}^3)$, and

$$
\widehat{f}(y) = e^{-\|y\|^2/4} - e^{1/4} e^{-\|y\|^2/2}.
$$

Hence $\hat{f}(y) = 0$ if $||y|| = 1$, i.e. $f \in I$.

We claim that $F({L}_{a}f)\neq 0$ for some $a\in \mathbb{R}^{3}$ (note that ${L}_{a}f\in I$ since I is a closed ideal). For arbitrary f , we have

$$
\widehat{L_{a}f}(y) = e^{i\langle a,y\rangle}\widehat{f}(y) \Longrightarrow \frac{\partial \widehat{L_{a}f}}{\partial y_{1}}(y) = e^{i\langle a,y\rangle}\left[i a_{1}\widehat{f}(y) + \frac{\partial \widehat{f}}{\partial y_{1}}(y)\right].
$$

If $f \in I$, then $\widehat{f}(y) = 0$ for $y \in S$, and hence

$$
F(L_{\mathsf{a}}f) = i \int_{S} \frac{\partial \widehat{L_{\mathsf{a}}f}}{\partial y_{1}}(y) d\mu(y) = i \int_{S} e^{i\langle a, y \rangle} \frac{\partial \widehat{f}}{\partial y_{1}}(y) d\mu(y).
$$

Now, for our special function f ,

$$
\frac{\partial \widehat{f}}{\partial y_1}(y) = -\frac{1}{2} y_1 e^{-\|y\|^2/4} + y_1 e^{1/4} e^{-\|y\|^2/2}
$$

and hence, for $y \in S$,

$$
\frac{\partial \widehat{f}}{\partial y_1}(y) = \frac{1}{2} y_1 e^{-1/4} y_1.
$$

Finally, take $a=(\pi,0,0)$; then with $c=\frac{1}{2}$ $\frac{1}{2}e^{-1/4}$,

$$
F(L_a f) = i c \int_S e^{i\pi y_1} y_1 d\mu(y)
$$

= $i c \int_S y_1 \cos(\pi y_1) \mu(y) - c \int_S y_1 \sin(\pi y_1) \mu(y).$

The first integral is zero since $(y_1, y_2, y_3) \rightarrow (-y_1, y_2, y_3)$ is an orthogonal transformation. So

$$
F(L_{a}f)=c\int_{S}y_{1}\sin(\pi y_{1})\mu(y).
$$

Since y_1 sin $(\pi y_1)>0$ [w](#page-10-0)[h](#page-12-0)enever $y_1\neq 0, 1, -1$, it [fo](#page-10-0)ll[o](#page-12-0)w[s t](#page-11-0)h[at](#page-0-0) $\mathsf{F}(L_a f)\neq 0.$ $\mathsf{F}(L_a f)\neq 0.$ Fields Institute, Toronto, [Ma](#page-20-0)rch 28, 2014
21 / 21

Theorem

Let $I = k(S^{n-1}) \subseteq L^1(\mathbb{R}^n)$, and for $1 \leq k \leq \lfloor \frac{n+1}{2} \rfloor$, let I^k denote the closed ideal of $L^1(\mathbb{R}^n)$ generated by all convolution products $f_1 * f_2 * \ldots * f_k$, $f_i \in I$. Then

$$
I = I^1 \supseteq I^2 \supseteq \ldots \supseteq I^{\lfloor \frac{n+1}{2} \rfloor} = \overline{J(S^{n-1})}.
$$

• All the inclusions are proper

 \bullet The ideals I k are the only rotation invariant closed ideals of $\mathsf{L}^1(\mathbb{R}^n)$ with hull equal to S^{n-1} .

N.Th. Varopoulos, Spectral synthesis on spheres, Math. Proc. Camb. Phil. Soc. 62 (1966), 379-387.

 \overline{P} $\overline{$

/ 21

Injection Theorem for Spectral Sets

A a regular and semisimple commutative Banach algebra, I a closed ideal of A and $i : \Delta(A/I) \rightarrow \Delta(A)$ the usual embedding.

Theorem

Let E be a closed subset of $\Delta(A/I)$.

- \bullet If i(E) is a set of synthesis (Ditkin set) for A, then E is a set of synthesis for A/I.
- Suppose that E is a set of synthesis for A/I and $h(I)$ is a set of synthesis for A. Then $i(E)$ is a set of synthesis for A.

Remark

In the second statement of the theorem, the hypothesis on $h(I)$ cannot be dropped, and the analogue for Ditkin sets requires some additional strong hypothesis on A.

 F iel[ds](#page-12-0) [Inst](#page-13-0)[it](#page-14-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014

Unions of sets of synthesis and Ditkin sets

Let A be a regular and semisimple commutative Banach algebra.

Theorem

Let E und F be closed subsets of $\Delta(A)$ such that $E \cap F$ is a Ditkin set. Then $E \cup F$ is a set of synthesis if and only if both E and F are sets of synthesis.

Theorem

Let $E_1, E_2, \ldots \subseteq \Delta(A)$ be Ditkin sets. If $\bigcup_{i=1}^{\infty} E_i$ is closed in $\Delta(A)$, then $\bigcup_{i=1}^{\infty} E_i$ is a Ditkin set.

 \overline{P} [Fiel](#page-15-0)[ds](#page-13-0) [Inst](#page-14-0)[it](#page-15-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) 28,

Problems

Union Problem: Let $E, F \subseteq \Delta(A)$ be sets of synthesis. Is then $E \cup F$ also a set of synthesis?

The C-set/S-set Problem: Is every set of synthesis a Ditkin set? (Ditkin sets are sometimes called C-sets, C referring to Calderon)

Since finite unions of Ditkin sets are Ditkin sets, an affirmative answer to the C -set/ S -set problem implies an affirmative answer to the union problem.

In general, the answer to both questions is negative!

Both problems are open for $L^1(G)$, G a noncompact locally compact abelian group, even for $G = \mathbb{Z}$.

[Fiel](#page-16-0)[ds](#page-14-0) [Inst](#page-15-0)[it](#page-16-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014 16

The Mirkil Algebra

Definition

Identify $[-\pi,\pi[$ with the circle $\mathbb T$, and let M be the space of all $f\in L^2(\mathbb T)$ such that f is continuous on the interval $[-\pi/2, \pi/2]$. Endow M with the norm

$$
||f|| = ||f||_2 + ||f||_{[-\pi/2, \pi/2]}||_{\infty}
$$

and convolution.

 M is a regular and semisimple commutative Banach algebra, and the spectrum $\Delta(M)$ can be identified with $\mathbb Z$ via $n \to \varphi_n$, where

$$
\varphi_n(f)=\frac{1}{2\pi}\int_{\mathbb{T}}f(t)\,\mathrm{e}^{-int}dt,\quad f\in M.
$$

[Fiel](#page-17-0)[ds](#page-15-0) [Inst](#page-16-0)[it](#page-17-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014 17

The algebra M shows that in the general Banach algebra context the answer to both problems is negative:

• 4 $\mathbb Z$ and 4 $\mathbb Z$ + 2 are both sets of synthesis, but their union 2 $\mathbb Z$ is not of synthesis

• 4 $\mathbb Z$ and 4 $\mathbb Z$ + 2 fail to be Ditkin sets

• Every finite subset of $\Delta(M)$ is a set of synthesis, but not a Ditkin set (in particular, \emptyset is not Ditkin).

H. Mirkil, A counterexample to discrete spectral synthesis, Compos. Math. 14 (1960), 269-273.

A. Atzmon, Spectral synthesis in regular Banach algebras, Israel J. Math. 8 (1970), 197-212.

C.R. Warner, Spectral synthesis in the Mirkil algebra, J. Math. Anal. Appl. 167 (1992), 176-182.

 \overrightarrow{F} [Fiel](#page-18-0)[ds](#page-16-0) [Inst](#page-17-0)[it](#page-18-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014

Examples

(1) Every closed convex set in \mathbb{R}^n is set of synthesis for $L^1(\mathbb{R}^n)$

(2) Let $D = \{y \in \mathbb{R}^n : ||y|| < 1\}$: then $\mathbb{R}^n \setminus D$ is a set of synthesis for $L^1(\mathbb{R}^n)$.

(3) $\overline{D} = \{y \in \mathbb{R}^n : \|y\| \le 1\}$ is of synthesis by (1), but the intersection $\mathcal{S}^{n-1} = \overline{D} \cap \mathbb{R}^n \setminus D$ is not of synthesis.

(4) $E \subset \widehat{G}$ such that $\partial(E)$ is a Ditkin set, then E is a Ditkin set for $L^1(G)$. In particular, if $\partial(E)$ is countable, then E is a Ditkin set.

(5) Translates of sets of synthesis (Ditkin sets) are sets of synthesis (Ditkin sets).

(6) Let $\Gamma, \Gamma_1, \ldots, \Gamma_n$ be closed subgroups of G such that $\Gamma_j \subseteq \Gamma$ and Γ_j is relatively open in Γ. Then, for any $\gamma_1,\ldots,\gamma_n\in \widehat{G}$, the set Γ $\setminus \bigcup_{j=1}^n \gamma_j\Gamma_j$ is a Ditkin set.

 \overrightarrow{F} [Fiel](#page-19-0)[ds](#page-17-0) [Inst](#page-18-0)[it](#page-19-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014

Malliavin's Theorem

Let G be a locally compact abelian group. If G is compact (equivalently, if $\widehat{G} = \Delta(L^1(G))$ is discrete), then spectral synthesis holds for $L^1(G)$, since ∅ is a Ditkin set.

Theorem (Malliavin's Theorem)

Spectral synthesis holds for $L^1(G)$ (if and) only if G is compact.

P. Malliavin, *Impossibilité de la synthèse spectrale sur les groupes abeliens* non compact, Inst. Hautes Et. Sci. Paris. 2 (1959), 61-68.

A more constructive proof than Malliavin's was given by Varopoulos, using tensor product methods:

N.Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 57-111.

[Fiel](#page-20-0)[ds](#page-18-0) [Inst](#page-19-0)[it](#page-20-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014 20

Steps of the Proof

(1) Let Γ be a closed subgroup of \widehat{G} and

$$
H = \{x \in G : \gamma(x) = 1 \text{ for all } \gamma \in \Gamma\}.
$$

Let E be a closed subset of Γ and suppose that E is a set of synthesis for $L^1(G/H)$. Then E is a set of synthesis for $L^1(G)$.

(2) If $\mathbb{T} = \Delta(\ell^{1}(\mathbb{Z}))$ contains a set which is not of synthesis for $\ell^{1}(\mathbb{Z}),$ then \R contains a nonspectral set for $L^1(\R).$

Eevery locally compact abelian group contains an open subgroup H of the form $H = \mathbb{R}^n \times K$, where K is compact and $n \in \mathbb{N}_0$. Therefore (1) and (2) imply

(3) If spectral synthesis does not hold for every infinite discrete abelian group, then it does not hold for every noncompact locally compact abelian group.

 $\overline{}$ [Fiel](#page-20-0)[ds](#page-19-0) [Instit](#page-20-0)[ute,](#page-0-0) [Toro](#page-20-0)[nto,](#page-0-0) [Ma](#page-20-0)[rch](#page-0-0) [28, 2](#page-20-0)014