Spectral Synthesis and Ideal Theory Lecture 2

Eberhard Kaniuth

University of Paderborn, Germany

Fields Institute, Toronto, March 28, 2014

Fields Institute, Toronto, March 28, 2014 / 21

Synthesis Notions

A a regular and semisimple commutative Banach algebra. For a closed subset E of $\Delta(A)$, let

 $j(E) = \{a \in A : \hat{a} \text{ has compact support disjoint from E}\}.$

Then, if I is any ideal in A with h(I) = E,

 $j(E) \subseteq I \subseteq k(E).$

Definition

E is called a *set of synthesis* or *spectral set* if $\overline{j(E)} = k(E)$ (equivalently, I = k(E) for any closed ideal *I* with h(I) = E).

We say that *spectral synthesis holds* for A if every closed subset of $\Delta(A)$ is a set of synthesis.

Definition

 $E \subseteq \Delta(A)$ closed is called *Ditkin set* if $a \in \overline{aj(E)}$ for every $a \in k(E)$. Thus

• Every Ditkin set is a set of synthesis

• \emptyset is a Ditkin set if and only if given $a \in A$ and $\epsilon > 0$, there exists $b \in A$ such that \hat{b} has compact support and $||a - ab|| \le \epsilon$ (in this case we also say that A satisfies Ditkin's condition at infinity)

A is called *Tauberian* if the set of all $a \in A$ such that \hat{a} has compact support, is dense in A. Thus

• A is Tauberian if and only if \emptyset is a set of synthesis.

When does Spectral Synthesis hold for A?

Spectral synthesis holds for $C_0(X)$, X a locally compact Hausdorff space

Spectral synthesis does not hold for $C^n[a, b]$, $n \ge 1$: singletons $\{t\}$, $t \in [a, b]$, are not sets of synthesis

Remark

Suppose that spectral synthesis holds for A. Then $a \in \overline{aA}$ for each $a \in A$. Proof:

Let $E = \{\varphi \in \Delta(A) : \varphi(a) = 0\}$. Then *E* is closed in $\Delta(A)$ and $E = h(\overline{aA})$. Thus $a \in k(E) = \overline{aA}$ since *E* is of synthesis.

The condition that $a \in \overline{aA}$ for every $a \in A$ is satisfied, if A has an approximate identity.

Lemma

Let A be a regular and semisimple commutative Banach algebra and E an open and closed subset of $\Delta(A)$.

- If A is Tauberian and a ∈ aA for every a ∈ k(E), then E is a set of synthesis.
- **2** If A satisfies Ditkin's condition at infinity, then E is a Ditkin set.

Proof of (2) Have to show that $a \in \overline{aj(E)}$ for each $a \in k(E)$:

• *E* open and closed \Longrightarrow

$$h(j(E) + j(\Delta(A) \setminus E)) = E \cap (\Delta(A) \setminus E) = \emptyset$$

and hence $j(\emptyset) \subseteq j(E) + j(\Delta(A) \setminus E)$

- Ø Ditkin \Rightarrow for every $a \in A$, there exist sequences $(u_n)_n \subseteq j(E)$ and $(v_n)_n \subseteq j(\Delta(A) \setminus E)$ such that $a(u_n + v_n) \rightarrow a$
- let $a \in k(E)$: then $\widehat{av_n} = \widehat{av_n}$ vanishes on E and on $\Delta(A) \setminus E$, hence $av_n = 0$. So $a = \lim_{n \to \infty} au_n \in \overline{aj(E)}$, as required.

Institute, Toronto, March 28,

From the first assertion of the lemma and the above remark it follows

Corollary

Suppose that $\Delta(A)$ is discrete and A is Tauberian. Then spectral synthesis holds for A if and only if $a \in \overline{aA}$ for each $a \in A$.

Corollary

Let G be a compact abelian group. Then spectral synthesis holds for $L^1(G)$.

Proof.

- $L^1(G)$ has an approximate identity
- $L^1(G)$ is Tauberian
- $\widehat{G} = \Delta(L^1(G))$ is discrete since G is compact.

The Example of L. Schwartz

Theorem

For $n \ge 3$, the sphere $S^{n-1} = \{y \in \mathbb{R}^n : ||y|| = 1\} \subseteq \Delta(L^1(\mathbb{R}^n))$ fails to be a set of synthesis for $L^1(\mathbb{R}^n)$.

Remark

(1) L. Schwartz [Sur une propriété de synthèse spectrale dans les groupes noncompacts, C.R. Acad. Sci. Paris **227** (1948), 424-426] proved this result for n = 3, but the proof works for all $n \ge 3$.

(2) $S^1 \subseteq \mathbb{R}^2$ is a set of synthesis for $L^1(\mathbb{R}^2)$ [C. Herz, Spectral synthesis for the circle, Ann. Math. **68** (1958), 709-712]

Proof of Schwartz' Theorem

Identify $\widehat{\mathbb{R}^n}$ with \mathbb{R}^n through $y \to \gamma_y$, where $\gamma_y(x) = \langle x, y \rangle$ for $x \in \mathbb{R}^n$.

- $\widehat{f}(y) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i\langle x,y \rangle} dx, \quad f \in L^1(\mathbb{R}^n)$
- $\check{g}(x) = rac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} g(y) e^{i \langle x, y \rangle} dy, \quad g \in L^1(\widehat{\mathbb{R}^n})$
- $f \in L^1(\widehat{\mathbb{R}^n}) \cap L^2(\widehat{\mathbb{R}^n})$ and $\check{f} \in L^1(\mathbb{R}^n)$, then $(\check{f})^{\wedge} = f$ in $L^2(\mathbb{R}^n)$, hence $(\check{f})^{\wedge}(x) = f(x)$ for all $x \in \mathbb{R}^n$ if f is continuous

Lemma

Let $D(\mathbb{R}^3)$ denote the set of all functions in $L^1(\mathbb{R}^3) \cap C_0(\mathbb{R}^3)$ with the property that all partial derivatives exist and are in $L^1(\mathbb{R}^3) \cap C_0(\mathbb{R}^3)$. Then $\hat{f} \in L^1(\mathbb{R}^3)$ and $(\check{f})^{\wedge} = f$ for every $f \in D(\mathbb{R}^3)$.

Lemma

Let $S = S^2$ and $I = k(S) \subseteq L^1(\mathbb{R}^n)$, and

$$J = \left\{ f \in I : \widehat{f} \in D(\mathbb{R}^n) \text{ and } \frac{\partial \widehat{f}}{\partial y_1} = 0 \text{ on } S
ight\}.$$

Then \overline{J} is an ideal in $L^1(\mathbb{R}^3)$ and h(J) = S.

To show that $\overline{J} \neq I$, it suffices to construct a bounded linear functional F on $L^1(\mathbb{R}^3)$ such that $F(J) = \{0\}$, but $F(I) \neq \{0\}$. Such an F can be constructed as follows:

There exists a unique probability measure μ on *S*, which is invariant under orthogonal transformations.

Define a function ϕ on \mathbb{R}^3 by

$$\phi(x) = \int_{S} e^{-i\langle x,y\rangle} d\mu(y).$$

Then the function $x \to x_1 \phi(x)$ on \mathbb{R}^3 is continuous and bounded. More precisely, it can be shown that

$$|x_1\phi(x)|\leq \|x\|\cdot |\phi(x)|\leq rac{4\pi}{3},\quad x\in \mathbb{R}^3.$$

The required functional F can now be defined by

$$F(f) = \int_{\mathbb{R}^3} f(x) x_1 \phi(x) \, dx, \quad f \in L^1(\mathbb{R}^3).$$

Since

$$\frac{\partial \widehat{f}}{\partial y_1}(y) = (-ix_1f(x))^{\wedge}(y) = \int_{\mathbb{R}^3} (-ix_1)f(x)e^{-i\langle x,y\rangle}dx,$$

we have

$$i \int_{S} \frac{\partial f}{\partial y_{1}}(y) d\mu(y) = \int_{S} \left(\int_{\mathbb{R}^{3}} x_{1}f(x)e^{-i\langle x,y \rangle} dx \right) d\mu(y)$$
$$= \int_{\mathbb{R}^{3}} x_{1}f(x) \left(\int_{S} e^{-i\langle x,y \rangle} d\mu(y) \right) dx = \int_{\mathbb{R}^{3}} f(x)x_{1}\phi(x)dx = F(f).$$
Thus $F(f) = 0$ for every $f \in J$.

To show that $F(I) \neq \{0\}$, consider the function

$$f(x) = (\sqrt{2})^3 e^{-\|x\|^2} - e^{1/4} e^{-\|x\|^2/2}, \quad x \in \mathbb{R}^3.$$

Then $f \in L^1(\mathbb{R}^3)$, and

$$\widehat{f}(y) = e^{-\|y\|^2/4} - e^{1/4}e^{-\|y\|^2/2}.$$

Hence $\hat{f}(y) = 0$ if ||y|| = 1, i.e. $f \in I$.

We claim that $F(L_a f) \neq 0$ for some $a \in \mathbb{R}^3$ (note that $L_a f \in I$ since I is a closed ideal). For arbitrary f, we have

$$\widehat{\mathcal{L}_{a}f}(y) = e^{i\langle a,y\rangle}\widehat{f}(y) \Longrightarrow \frac{\partial\widehat{\mathcal{L}_{a}f}}{\partial y_{1}}(y) = e^{i\langle a,y\rangle}\left[i\,a_{1}\widehat{f}(y) + \frac{\partial\widehat{f}}{\partial y_{1}}(y)\right].$$

If $f \in I$, then $\widehat{f}(y) = 0$ for $y \in S$, and hence

$$F(L_a f) = i \int_{S} \frac{\partial \widehat{L_a f}}{\partial y_1}(y) d\mu(y) = i \int_{S} e^{i \langle a, y \rangle} \frac{\partial \widehat{f}}{\partial y_1}(y) d\mu(y).$$

Now, for our special function f.

$$\frac{\partial \hat{f}}{\partial y_1}(y) = -\frac{1}{2} y_1 e^{-\|y\|^2/4} + y_1 e^{1/4} e^{-\|y\|^2/2}$$

and hence, for $v \in S$,

$$\frac{\partial \widehat{f}}{\partial y_1}(y) = \frac{1}{2} y_1 e^{-1/4} y_1.$$

Finally, take $a = (\pi, 0, 0)$; then with $c = \frac{1}{2}e^{-1/4}$,

$$F(L_a f) = i c \int_{S} e^{i\pi y_1} y_1 d\mu(y)$$

= $i c \int_{S} y_1 \cos(\pi y_1) \mu(y) - c \int_{S} y_1 \sin(\pi y_1) \mu(y).$

The first integral is zero since $(y_1, y_2, y_3) \rightarrow (-y_1, y_2, y_3)$ is an orthogonal transformation. So

$$F(L_a f) = c \int_S y_1 \sin(\pi y_1) \mu(y).$$

Since $y_1 \sin(\pi y_1) > 0$ whenever $y_1 \neq 0, 1, -1$, it follows that $F(L_a f) \neq 0$. Fields Institute, Toronto, March 28, 2014

Theorem

Let $I = k(S^{n-1}) \subseteq L^1(\mathbb{R}^n)$, and for $1 \le k \le \lfloor \frac{n+1}{2} \rfloor$, let I^k denote the closed ideal of $L^1(\mathbb{R}^n)$ generated by all convolution products $f_1 * f_2 * \ldots * f_k$, $f_j \in I$. Then

$$I = I^1 \supseteq I^2 \supseteq \ldots \supseteq I^{\lfloor \frac{n+1}{2} \rfloor} = \overline{j(S^{n-1})}.$$

• All the inclusions are proper

• The ideals I^k are the only rotation invariant closed ideals of $L^1(\mathbb{R}^n)$ with hull equal to S^{n-1} .

N.Th. Varopoulos, *Spectral synthesis on spheres*, Math. Proc. Camb. Phil. Soc. **62** (1966), 379-387.

Injection Theorem for Spectral Sets

A a regular and semisimple commutative Banach algebra, I a closed ideal of A and $i : \Delta(A/I) \to \Delta(A)$ the usual embedding.

Theorem

Let E be a closed subset of $\Delta(A/I)$.

- If *i*(*E*) is a set of synthesis (Ditkin set) for *A*, then *E* is a set of synthesis for *A*/*I*.
- Suppose that E is a set of synthesis for A/I and h(I) is a set of synthesis for A. Then i(E) is a set of synthesis for A.

Remark

In the second statement of the theorem, the hypothesis on h(I) cannot be dropped, and the analogue for Ditkin sets requires some additional strong hypothesis on A.

Unions of sets of synthesis and Ditkin sets

Let A be a regular and semisimple commutative Banach algebra.

Theorem

Let E und F be closed subsets of $\Delta(A)$ such that $E \cap F$ is a Ditkin set. Then $E \cup F$ is a set of synthesis if and only if both E and F are sets of synthesis.

Theorem

Let $E_1, E_2, \ldots \subseteq \Delta(A)$ be Ditkin sets. If $\bigcup_{i=1}^{\infty} E_i$ is closed in $\Delta(A)$, then $\bigcup_{i=1}^{\infty} E_i$ is a Ditkin set.

Fields Institute, Toronto, March 28,

21

Problems

Union Problem: Let $E, F \subseteq \Delta(A)$ be sets of synthesis. Is then $E \cup F$ also a set of synthesis?

The *C***-set**/*S***-set Problem:** Is every set of synthesis a Ditkin set? (Ditkin sets are sometimes called *C*-sets, *C* referring to Calderon)

Since finite unions of Ditkin sets are Ditkin sets, an affirmative answer to the C-set/S-set problem implies an affirmative answer to the union problem.

In general, the answer to both questions is negative!

Both problems are open for $L^1(G)$, G a noncompact locally compact abelian group, even for $G = \mathbb{Z}$.

The Mirkil Algebra

Definition

Identify $[-\pi, \pi[$ with the circle \mathbb{T} , and let M be the space of all $f \in L^2(\mathbb{T})$ such that f is continuous on the interval $[-\pi/2, \pi/2]$. Endow M with the norm

$$\|f\| = \|f\|_2 + \|f|_{[-\pi/2,\pi/2]}\|_{\infty}$$

and convolution.

M is a regular and semisimple commutative Banach algebra, and the spectrum $\Delta(M)$ can be identified with \mathbb{Z} via $n \to \varphi_n$, where

$$\varphi_n(f) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t) e^{-int} dt, \quad f \in M.$$

The algebra M shows that in the general Banach algebra context the answer to both problems is negative:

+ $4\mathbb{Z}$ and $4\mathbb{Z}+2$ are both sets of synthesis, but their union $2\mathbb{Z}$ is not of synthesis

 \bullet 4Z and 4Z $+\,2$ fail to be Ditkin sets

• Every finite subset of $\Delta(M)$ is a set of synthesis, but not a Ditkin set (in particular, \emptyset is not Ditkin).

H. Mirkil, *A counterexample to discrete spectral synthesis*, Compos. Math. **14** (1960), 269-273.

A. Atzmon, *Spectral synthesis in regular Banach algebras*, Israel J. Math. **8** (1970), 197-212.

C.R. Warner, *Spectral synthesis in the Mirkil algebra*, J. Math. Anal. Appl. **167** (1992), 176-182.

Examples

(1) Every closed convex set in \mathbb{R}^n is set of synthesis for $L^1(\mathbb{R}^n)$

(2) Let $D = \{y \in \mathbb{R}^n : ||y|| < 1\}$: then $\mathbb{R}^n \setminus D$ is a set of synthesis for $L^1(\mathbb{R}^n)$.

(3) $\overline{D} = \{y \in \mathbb{R}^n : ||y|| \le 1\}$ is of synthesis by (1), but the intersection $S^{n-1} = \overline{D} \cap \mathbb{R}^n \setminus D$ is not of synthesis.

(4) $E \subseteq \widehat{G}$ such that $\partial(E)$ is a Ditkin set, then E is a Ditkin set for $L^1(G)$. In particular, if $\partial(E)$ is countable, then E is a Ditkin set.

(5) Translates of sets of synthesis (Ditkin sets) are sets of synthesis (Ditkin sets).

(6) Let $\Gamma, \Gamma_1, \ldots, \Gamma_n$ be closed subgroups of \widehat{G} such that $\Gamma_j \subseteq \Gamma$ and Γ_j is relatively open in Γ . Then, for any $\gamma_1, \ldots, \gamma_n \in \widehat{G}$, the set $\Gamma \setminus \bigcup_{j=1}^n \gamma_j \Gamma_j$ is a Ditkin set.

Malliavin's Theorem

Let G be a locally compact abelian group. If G is compact (equivalently, if $\widehat{G} = \Delta(L^1(G))$ is discrete), then spectral synthesis holds for $L^1(G)$, since \emptyset is a Ditkin set.

Theorem (Malliavin's Theorem)

Spectral synthesis holds for $L^1(G)$ (if and) only if G is compact.

P. Malliavin, *Impossibilité de la synthèse spectrale sur les groupes abeliens non compact*, Inst. Hautes Et. Sci. Paris. **2** (1959), 61-68.

A more constructive proof than Malliavin's was given by Varopoulos, using tensor product methods:

N.Th. Varopoulos, *Tensor algebras and harmonic analysis*, Acta Math. **119** (1967), 57-111.

Steps of the Proof

(1) Let Γ be a closed subgroup of \widehat{G} and

$$H = \{x \in G : \gamma(x) = 1 \text{ for all } \gamma \in \Gamma\}.$$

Let *E* be a closed subset of Γ and suppose that *E* is a set of synthesis for $L^1(G/H)$. Then *E* is a set of synthesis for $L^1(G)$.

(2) If $\mathbb{T} = \Delta(\ell^1(\mathbb{Z}))$ contains a set which is not of synthesis for $\ell^1(\mathbb{Z})$, then \mathbb{R} contains a nonspectral set for $L^1(\mathbb{R})$.

Every locally compact abelian group contains an open subgroup H of the form $H = \mathbb{R}^n \times K$, where K is compact and $n \in \mathbb{N}_0$. Therefore (1) and (2) imply

(3) If spectral synthesis does not hold for every infinite discrete abelian group, then it does not hold for every noncompact locally compact abelian group.