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Synthesis Notions

A a regular and semisimple commutative Banach algebra. For a closed
subset E of ∆(A), let

j(E ) = {a ∈ A : â has compact support disjoint from E}.

Then, if I is any ideal in A with h(I ) = E ,

j(E ) ⊆ I ⊆ k(E ).

Definition

E is called a set of synthesis or spectral set if j(E ) = k(E ) (equivalently,
I = k(E ) for any closed ideal I with h(I ) = E ).

We say that spectral synthesis holds for A if every closed subset of ∆(A) is
a set of synthesis.
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Definition

E ⊆ ∆(A) closed is called Ditkin set if a ∈ aj(E ) for every a ∈ k(E ). Thus

• Every Ditkin set is a set of synthesis

• ∅ is a Ditkin set if and only if given a ∈ A and ε > 0, there exists b ∈ A
such that b̂ has compact support and ‖a− ab‖ ≤ ε (in this case we also
say that A satisfies Ditkin’s condition at infinity)

A is called Tauberian if the set of all a ∈ A such that â has compact
support, is dense in A. Thus

• A is Tauberian if and only if ∅ is a set of synthesis.
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When does Spectral Synthesis hold for A?

Spectral synthesis holds for C0(X ), X a locally compact Hausdorff space

Spectral synthesis does not hold for Cn[a, b], n ≥ 1: singletons {t},
t ∈ [a, b], are not sets of synthesis

Remark

Suppose that spectral synthesis holds for A. Then a ∈ aA for each a ∈ A.
Proof:

Let E = {ϕ ∈ ∆(A) : ϕ(a) = 0}. Then E is closed in ∆(A) and
E = h(aA). Thus a ∈ k(E ) = aA since E is of synthesis.

The condition that a ∈ aA for every a ∈ A is satisfied, if A has an
approximate identity.
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Lemma

Let A be a regular and semisimple commutative Banach algebra and E an
open and closed subset of ∆(A).

1 If A is Tauberian and a ∈ aA for every a ∈ k(E ), then E is a set of
synthesis.

2 If A satisfies Ditkin’s condition at infinity, then E is a Ditkin set.

Proof of (2) Have to show that a ∈ aj(E ) for each a ∈ k(E ):

• E open and closed =⇒

h(j(E ) + j(∆(A) \ E )) = E ∩ (∆(A) \ E ) = ∅

and hence j(∅) ⊆ j(E ) + j(∆(A) \ E )

• ∅ Ditkin ⇒ for every a ∈ A, there exist sequences (un)n ⊆ j(E ) and
(vn)n ⊆ j(∆(A) \ E ) such that a(un + vn)→ a

• let a ∈ k(E ): then âvn = âv̂n vanishes on E and on ∆(A) \ E , hence
avn = 0. So a = limn→∞ aun ∈ aj(E ), as required.
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From the first assertion of the lemma and the above remark it follows

Corollary

Suppose that ∆(A) is discrete and A is Tauberian. Then spectral synthesis
holds for A if and only if a ∈ aA for each a ∈ A.

Corollary

Let G be a compact abelian group. Then spectral synthesis holds for
L1(G ).

Proof.

• L1(G ) has an approximate identity

• L1(G ) is Tauberian

• Ĝ = ∆(L1(G )) is discrete since G is compact.
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The Example of L. Schwartz

Theorem

For n ≥ 3, the sphere Sn−1 = {y ∈ Rn : ‖y‖ = 1} ⊆ ∆(L1(Rn)) fails to be
a set of synthesis for L1(Rn).

Remark

(1) L. Schwartz [Sur une propriété de synthèse spectrale dans les groupes
noncompacts, C.R. Acad. Sci. Paris 227 (1948), 424-426] proved this
result for n = 3, but the proof works for all n ≥ 3.

(2) S1 ⊆ R2 is a set of synthesis for L1(R2) [C. Herz, Spectral synthesis
for the circle, Ann. Math. 68 (1958), 709-712]
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Proof of Schwartz’ Theorem

Identify R̂n with Rn through y → γy , where γy (x) = 〈x , y〉 for x ∈ Rn.

• f̂ (y) = 1
(2π)n/2

∫
Rn f (x)e−i〈x ,y〉dx , f ∈ L1(Rn)

• ǧ(x) = 1
(2π)n/2

∫
Rn g(y)e i〈x ,y〉dy , g ∈ L1(R̂n)

• f ∈ L1(R̂n) ∩ L2(R̂n) and f̌ ∈ L1(Rn), then (f̌ )∧ = f in L2(Rn), hence
(f̌ )∧(x) = f (x) for all x ∈ Rn if f is continuous

Lemma

Let D(R3) denote the set of all functions in L1(R3) ∩ C0(R3) with the
property that all partial derivatives exist and are in L1(R3) ∩ C0(R3). Then
f̂ ∈ L1(R3) and (f̌ )∧ = f for every f ∈ D(R3).
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Lemma

Let S = S2 and I = k(S) ⊆ L1(Rn), and

J =

{
f ∈ I : f̂ ∈ D(Rn) and

∂ f̂

∂y1
= 0 on S

}
.

Then J is an ideal in L1(R3) and h(J) = S.

To show that J 6= I , it suffices to construct a bounded linear functional F
on L1(R3) such that F (J) = {0}, but F (I ) 6= {0}. Such an F can be
constructed as follows:

There exists a unique probability measure µ on S , which is invariant under
orthogonal transformations.

Define a function φ on R3 by

φ(x) =

∫
S

e−i〈x ,y〉dµ(y).

Eberhard Kaniuth (University of Paderborn, Germany)Spectral Synthesis and Ideal Theory
Fields Institute, Toronto, March 28, 2014 9

/ 21



Then the function x → x1φ(x) on R3 is continuous and bounded. More
precisely, it can be shown that

|x1φ(x)| ≤ ‖x‖ · |φ(x)| ≤ 4π

3
, x ∈ R3.

The required functional F can now be defined by

F (f ) =

∫
R3

f (x)x1φ(x) dx , f ∈ L1(R3).

Since
∂ f̂

∂y1
(y) = (−ix1f (x))∧(y) =

∫
R3

(−ix1)f (x)e−i〈x ,y〉dx ,

we have

i

∫
S

∂ f̂

∂y1
(y) dµ(y) =

∫
S

(∫
R3

x1f (x)e−i〈x ,y〉dx

)
dµ(y)

=

∫
R3

x1f (x)

(∫
S

e−i〈x ,y〉dµ(y)

)
dx =

∫
R3

f (x)x1φ(x)dx = F (f ).

Thus F (f ) = 0 for every f ∈ J.
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To show that F (I ) 6= {0}, consider the function

f (x) = (
√

2)3e−‖x‖
2 − e1/4e−‖x‖

2/2, x ∈ R3.

Then f ∈ L1(R3), and

f̂ (y) = e−‖y‖
2/4 − e1/4e−‖y‖

2/2.

Hence f̂ (y) = 0 if ‖y‖ = 1, i.e. f ∈ I .

We claim that F (Laf ) 6= 0 for some a ∈ R3 (note that Laf ∈ I since I is a
closed ideal). For arbitrary f , we have

L̂af (y) = e i〈a,y〉f̂ (y) =⇒ ∂L̂af

∂y1
(y) = e i〈a,y〉

[
i a1f̂ (y) +

∂ f̂

∂y1
(y)

]
.

If f ∈ I , then f̂ (y) = 0 for y ∈ S , and hence

F (Laf ) = i

∫
S

∂L̂af

∂y1
(y)dµ(y) = i

∫
S

e i〈a,y〉
∂ f̂

∂y1
(y) dµ(y).
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Now, for our special function f ,

∂ f̂

∂y1
(y) = −1

2
y1e−‖y‖

2/4 + y1e1/4e−‖y‖
2/2

and hence, for y ∈ S ,

∂ f̂

∂y1
(y) =

1

2
y1e−1/4y1.

Finally, take a = (π, 0, 0); then with c = 1
2e−1/4,

F (Laf ) = i c

∫
S

e iπy1y1dµ(y)

= i c

∫
S

y1cos(πy1)µ(y)− c

∫
S

y1sin(πy1)µ(y).

The first integral is zero since (y1, y2, y3)→ (−y1, y2, y3) is an orthogonal
transformation. So

F (Laf ) = c

∫
S

y1sin(πy1)µ(y).

Since y1sin(πy1) > 0 whenever y1 6= 0, 1,−1, it follows that F (Laf ) 6= 0.
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Theorem

Let I = k(Sn−1) ⊆ L1(Rn), and for 1 ≤ k ≤ bn+1
2 c, let I k denote the

closed ideal of L1(Rn) generated by all convolution products
f1 ∗ f2 ∗ . . . ∗ fk , fj ∈ I . Then

I = I 1 ⊇ I 2 ⊇ . . . ⊇ I b
n+1
2
c = j(Sn−1).

• All the inclusions are proper

• The ideals I k are the only rotation invariant closed ideals of L1(Rn) with
hull equal to Sn−1.

N.Th. Varopoulos, Spectral synthesis on spheres, Math. Proc. Camb. Phil.
Soc. 62 (1966), 379-387.
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Injection Theorem for Spectral Sets

A a regular and semisimple commutative Banach algebra, I a closed ideal
of A and i : ∆(A/I )→ ∆(A) the usual embedding.

Theorem

Let E be a closed subset of ∆(A/I ).

If i(E ) is a set of synthesis (Ditkin set) for A, then E is a set of
synthesis for A/I .

Suppose that E is a set of synthesis for A/I and h(I ) is a set of
synthesis for A. Then i(E ) is a set of synthesis for A.

Remark

In the second statement of the theorem, the hypothesis on h(I ) cannot be
dropped, and the analogue for Ditkin sets requires some additional strong
hypothesis on A.
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Unions of sets of synthesis and Ditkin sets

Let A be a regular and semisimple commutative Banach algebra.

Theorem

Let E und F be closed subsets of ∆(A) such that E ∩ F is a Ditkin set.
Then E ∪ F is a set of synthesis if and only if both E and F are sets of
synthesis.

Theorem

Let E1,E2, . . . ⊆ ∆(A) be Ditkin sets. If
⋃∞

i=1 Ei is closed in ∆(A), then⋃∞
i=1 Ei is a Ditkin set.
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Problems

Union Problem: Let E ,F ⊆ ∆(A) be sets of synthesis. Is then E ∪ F also
a set of synthesis?

The C -set/S-set Problem: Is every set of synthesis a Ditkin set?
(Ditkin sets are sometimes called C -sets, C referring to Calderon)

Since finite unions of Ditkin sets are Ditkin sets, an affirmative answer to
the C -set/S-set problem implies an affirmative answer to the union
problem.

In general, the answer to both questions is negative!

Both problems are open for L1(G ), G a noncompact locally compact
abelian group, even for G = Z.
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The Mirkil Algebra

Definition

Identify [−π, π[ with the circle T, and let M be the space of all f ∈ L2(T)
such that f is continuous on the interval [−π/2, π/2]. Endow M with the
norm

‖f ‖ = ‖f ‖2 + ‖f |[−π/2,π/2]‖∞
and convolution.

M is a regular and semisimple commutative Banach algebra, and the
spectrum ∆(M) can be identified with Z via n→ ϕn, where

ϕn(f ) =
1

2π

∫
T

f (t) e−intdt, f ∈ M.
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The algebra M shows that in the general Banach algebra context the
answer to both problems is negative:

• 4Z and 4Z + 2 are both sets of synthesis, but their union 2Z is not of
synthesis

• 4Z and 4Z + 2 fail to be Ditkin sets

• Every finite subset of ∆(M) is a set of synthesis, but not a Ditkin set (in
particular, ∅ is not Ditkin).

H. Mirkil, A counterexample to discrete spectral synthesis, Compos. Math.
14 (1960), 269-273.

A. Atzmon, Spectral synthesis in regular Banach algebras, Israel J. Math.
8 (1970), 197-212.

C.R. Warner, Spectral synthesis in the Mirkil algebra, J. Math. Anal. Appl.
167 (1992), 176-182.
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Examples

(1) Every closed convex set in Rn is set of synthesis for L1(Rn)

(2) Let D = {y ∈ Rn : ‖y‖ < 1}: then Rn \ D is a set of synthesis for
L1(Rn).

(3) D = {y ∈ Rn : ‖y‖ ≤ 1} is of synthesis by (1), but the intersection
Sn−1 = D ∩ Rn \ D is not of synthesis.

(4) E ⊆ Ĝ such that ∂(E ) is a Ditkin set, then E is a Ditkin set for
L1(G ). In particular, if ∂(E ) is countable, then E is a Ditkin set.

(5) Translates of sets of synthesis (Ditkin sets) are sets of synthesis
(Ditkin sets).

(6) Let Γ, Γ1, . . . , Γn be closed subgroups of Ĝ such that Γj ⊆ Γ and Γj is

relatively open in Γ. Then, for any γ1, . . . , γn ∈ Ĝ , the set Γ \
⋃n

j=1 γjΓj is
a Ditkin set.

Eberhard Kaniuth (University of Paderborn, Germany)Spectral Synthesis and Ideal Theory
Fields Institute, Toronto, March 28, 2014 19

/ 21



Malliavin’s Theorem

Let G be a locally compact abelian group. If G is compact (equivalently, if
Ĝ = ∆(L1(G )) is discrete), then spectral synthesis holds for L1(G ), since
∅ is a Ditkin set.

Theorem (Malliavin’s Theorem)

Spectral synthesis holds for L1(G ) (if and) only if G is compact.

P. Malliavin, Impossibilité de la synthèse spectrale sur les groupes abeliens
non compact, Inst. Hautes Et. Sci. Paris. 2 (1959), 61-68.

A more constructive proof than Malliavin’s was given by Varopoulos, using
tensor product methods:

N.Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119
(1967), 57-111.
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Steps of the Proof

(1) Let Γ be a closed subgroup of Ĝ and

H = {x ∈ G : γ(x) = 1 for all γ ∈ Γ}.

Let E be a closed subset of Γ and suppose that E is a set of synthesis for
L1(G/H). Then E is a set of synthesis for L1(G ).

(2) If T = ∆(`1(Z)) contains a set which is not of synthesis for `1(Z),
then R contains a nonspectral set for L1(R).

Eevery locally compact abelian group contains an open subgroup H of the
form H = Rn ×K , where K is compact and n ∈ N0. Therefore (1) and (2)
imply

(3) If spectral synthesis does not hold for every infinite discrete abelian
group, then it does not hold for every noncompact locally compact abelian
group.
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