COMPLEMENTED SUBSPACES OF

THE GROUP VON NEUMANN ALGEBRAS

Anthony To-Ming Lau University of Alberta

Fields Institute, Toronto

April 10, 2014

Outline of Talk

- 1. Locally compact group
- 2. Fourier algebra of a group
- 3. Invariant complementation property of the group von Neumann algebra
- 4. Fixed point sets of power bounded elements in VN(G)
- 5. Natural projections

1. Locally compact groups

A topological group (G, \mathcal{T}) is a group G with a Hausdorff topology \mathcal{T} such that

(i)
$$G \times G \to G$$

 $(x, y) \to x \cdot y$
(ii) $G \to G$
 $x \to x^{-1}$

are continuous. G is locally compact if the topology \mathcal{T} is locally compact i.e. there is a basis for the neighbourhood of the identity consisting of compact sets.

Ex: G_d , \mathbb{R}^n , (E, +), \mathbb{T} , \mathbb{Q} , $GL(2, \mathbb{R})$, E = Banach space, $\mathbb{T} = \{\lambda \in \mathbb{C}; |\lambda| = 1\}$ CB(G) = bounded complex-valued continuous functions $f: G \to \mathbb{C}$ $\|f\|_u = \sup \{|f(x)|: x \in G\}$ $f \in CB(G)$, let $(\ell_a f)(x) = f(ax), a, x \in G$.

LUC(G) = bounded left uniformly continuous functions on G

 $= \{ f \in CB(G); a \to \ell_a f \text{ from } G \text{ to } (CB(G), \|\cdot\|) \text{ is continuous} \}$

G is **amenable** if
$$\exists m \in LUC(G)^*$$
 such that
 $m \ge 0$, $||m|| = 1$ and
 $m(\ell_a f) = m(f)$ for all $a \in G$, $f \in LUC(G)$.

Theorem (M.M. Day - T. Mitchell). Let G be a topological group. Then G is amenable \iff G has the following fixed point property:

Whenever $\mathcal{G} = \{T_g; g \in G\}$ is a continuous representation of G as continuous affice maps on a compact convex subset K of a separated locally convex space, then there exist $x_0 \in K$ such that $T_g(x_0) = x_0$ for all $g \in G$.

- **Amenable Groups:** abelian groups
 - solvable groups
 - compact groups
 - $U(B(\ell_2)) =$ group of unitary operators on ℓ_2 with the strong operator topology where

$$\ell_2 = \{(\alpha_n) : \sum_{n=1}^{\infty} |\alpha_n|^2 < \infty\}$$

 $\mathbb{I}\!\mathbb{F}_2$ – not amenable

Let G be a locally compact group and λ be a fixed left Haar measure on G.

$$\begin{split} L^1(G) &= \text{ group algebra of } G \quad \text{i.e.} \quad f: G \mapsto \mathbb{C} \quad \text{measurable such that} \\ &\int |f(x)| d\lambda(x) < \infty \\ (f*g)(x) &= \int f(y) g(y^{-1}x) d\lambda(y) \\ &\|f\|_1 = \int |f(x)| d\lambda(x) \\ (L^1(G), *) \text{ is a Banach algebra i.e. } \|f*g\| \leq \|f\| \|g\| \text{ for all } f, g \in L^1(G) \\ L^\infty(G) &= \text{ essentially bounded measurable functions on } G. \end{split}$$

 $||f||_{\infty} = \text{ ess - sup norm.} = \inf \left\{ M : \{x \in G; |f(x)| > M \text{ is a locally null set} \} \right\}$

 $L^{\infty}(G)$ is a commutative C^* -algebra containing CB(G)

$$L^{1}(G)^{*} = L^{\infty}(G) : \langle f, h \rangle = \int f(x)h(x)d\lambda(x)$$

G = locally compact **abelian** group then $L^1(G)$ is a **commutative** Banach algebra.

A complex function γ on G is called a **character** if γ is a homomorphism of G into (\mathbb{T}, \cdot) .

 \widehat{G} = all continuous characters on G $\subseteq L^{\infty}(G) = L^1(G)^*.$

If $\gamma \in \Gamma$, $f \in L^1(G)$, $\langle \gamma, f \rangle = \widehat{f}(\gamma) = \int_G f(x)(-x, \gamma) dx.$

Then $\langle \gamma, f * g \rangle = \langle \gamma, f \rangle \langle \gamma, g \rangle$ for all $f, g \in L^1(G)$. Hence γ defines a non-zero multiplicative linear functional on $L^1(G)$. Conversely every non-zero multiplicative linear functional on $L^1(G)$ is of this form:

$$\sigma\bigl(L^1(G)\bigr) \cong \widehat{G}.$$

Example

$$G = \mathbb{IR} \qquad \widehat{G} = \mathbb{IR}$$
$$G = \mathbb{T} \qquad \widehat{G} = \mathbb{Z}$$
$$G = \mathbb{Z} \qquad \widehat{G} = \mathbb{T}.$$

Equip \widehat{G} with the weak*-topology from $L^1(G)^*$ (or the topology of uniform convergence on compact sets). Then

$$\widehat{G}$$
 with **product**: $(\gamma_1 + \gamma_2)(x) = \gamma_1(x)\gamma_2(x)$

is a locally compact **abelian** group.

• Pontryagin Duality Theorem: $\widehat{\widehat{G}} \cong G$

For
$$f \in L^1(G)$$
, $\widehat{f} : \widehat{G} \to \mathbb{C}$

$$\widehat{f}(\gamma) = \int_G f(x)(-x,\gamma)dx = \langle f,\gamma \rangle$$

- $A(\widehat{G}) = \{\widehat{f}; f \in L^1(G)\} \subseteq C_0(\widehat{G}) =$ functions in $CB(\widehat{G})$ vanishing at infinity.
- $\theta : f \to \hat{f}$ is an algebra homomorphism from $L^1(G)$ into a subalgebra of $C_0(\hat{G})$.
- $(A(\widehat{G}), \|\cdot\|) \|\widehat{f}\| = \|f\|_1$ is a commutative Banach algebra with spectrum \widehat{G} . $A(\widehat{G}) =$ Fourier algebra of \widehat{G} .

2. Fourier algebra of a group

G = locally compact group

A continuous unitary representation of G is a pair: $\{\pi, H\}$, where H = Hilbert space and π is a continuous homomorphism from G into the group of unitary operators on H such that for each ξ , $n \in H$,

$$x \to \langle \pi(x)\xi, n \rangle$$

is continuous.

$$\begin{split} L^2(G) = & \text{all measurable} \quad f: G \to \mathbb{C} \\ & \int |f(x)|^2 d\lambda(x) < \infty \\ & \langle f,g \rangle = \int f(x) \, \overline{g(x)} \, d\lambda(x) \\ & L^2(G) \quad \text{is a Hilbert space.} \end{split}$$

Left regular representation:

$$\{\rho, L^2(G)\},\$$

$$\rho: G \mapsto B(L^2(G)),\$$

$$\rho(x)h(y) = h(x^{-1}y), \ x \in G, \ h \in L^2(G).$$

G = locally compact group $A(G) = \text{ subalgebra of } C_0(G)$ $\text{ consisting of all functions } \phi :$ $\phi(x) = \langle \rho(x)h, k \rangle, \quad h, k \in L^2(G)$ $\rho(x)h(y) = h(x^{-1}y)$ $\|\phi\| = \sup \left\{ \left| \sum_{i=1}^n \lambda_i \phi(x_i) \right| : \left\| \sum_{i=1}^n \lambda_i \rho(x_i) \right\| \le 1 \right\}$ $\ge \|\phi\|_{\infty}.$

P. Eymard (1964):

 $A(G)^* = VN(G)$ = von Neumann algebra in $\mathcal{B}(L^2(G))$ generated by $\{\rho(x) : x \in G\}$ = $\overline{\langle \rho(x) : x \in G \rangle}^{WOT} = \{\rho(x); x \in G\}$ (second commutant)

If G is abelian, then

$$A(G) \cong L^1(\widehat{G}), \qquad VN(G) \cong L^\infty(\widehat{G}).$$

- A(G) is called the Fourier algebra of G.
- VN(G) is called the group von Neumann algebra of G.
- VN(G) can be viewed as non-commutative function space on \widehat{G} when G is non-abelian.

Theorem (P. Eymard 1964). For any G, A(G) is a commutative Banach algebra with spectrum G.

Theorem (H. Leptin 1968). For any G, A(G) has a bounded approximate identity if and only if G is amenable.

Theorem (M. Walters 1970). Let G_1, G_2 be locally compact groups. If $A(G_1)$ and $A(G_2)$ are isometrically isomorphic, then G_1 and G_2 are either isomorphic or antiisomorphic.

3. Invariant complementation property of the group von Neumann algebra

Theorem (H. Rosenthal 1966). Let G be a locally compact **abelian** group, and X be a weak^{*}-closed translation invariant subspace of $L^{\infty}(G)$. If X is complemented in $L^{\infty}(G)$, then X is invariantly complemented i.e. X admits a translation invariant closed complement (or equivalently X is the range of a continuous projection on $L^{\infty}(G)$ commuting with translations).

Theorem (Lau, 1983). A locally compact group G is amenable if and only if every weak^{*}-closed left translation invariant subalgebra M which is closed under conjugation in $L^{\infty}(G)$ is invariantly complemented. For $T \in VN(G)$, $\phi \in A(G)$, define

$$\phi \cdot T \in VN(G) \quad \text{by}$$

$$\langle \phi \cdot T, \psi \rangle = \langle T, \psi \phi \rangle, \quad \psi \in A(G).$$

 $X \subseteq VN(G)$ is **invariant** if $\phi \cdot T \in X$ for all $\phi \in A(G)$, $T \in X$. If G is abelian and $X \subseteq L^{\infty}(\widehat{G})$ is weak*-closed subspace of $L^{\infty}(\widehat{G})$, then X is translation invariant \iff

$$L^1(\widehat{G}) * X \subseteq X$$

Hence: weak*-closed A(G)-invariant subspaces of VN(G) \leftrightarrow weak*-closed translation invariant subspaces of $L^{\infty}(\widehat{G})$. **Question:** Let G be a locally compact group, and M be an invariant W^* -subalgebra (i.e. weak*-closed *-subalgebra) of VN(G). Is M invariantly complemented? **Equivalently:** Is there a continuous projection

 $P: VN(G) \xrightarrow{}_{\text{onto}} M$ such that $P(\phi \cdot T) = \phi \cdot P(T)$

for all $\phi \in A(G)$.

Yes: G-abelian (Lau, 83)

Losert-L(86): Yes: G compact, discrete.

Theorem (Losert-Lau. 1986). Let M be an invariant

 W^* -subalgebra of VN(G) and

 $\sum(M) = \{ x \in G; \, \rho(x) \in M \}.$

If $\sum(M)$ is a normal subgroup of G, then M is invariantly complemented.

Let H be a closed subgroup of G, and

$$VN_H(G) = \overline{\langle \rho(h) : h \in H \rangle}^{WOT} \subseteq VN(G).$$

Then $VN_H(G)$ is an invariant W^* -subalgebra of VN(G).

Takesaki-Tatsuma (1971): If M is an invariant W^* -subalgebra of VN(G), then

$$M = \overline{\langle \rho(x) : x \in H \rangle}^{W^*} = V N_H(G)$$

where $H = \Sigma(M)$. Hence there is a 1-1 correspondence between closed subgroups H of G and invariant W^* -subalgebras of VN(G).

 $G \in [SIN]$ if there is a neighbourhood basis of the identity consisting of compact sets V, $x^{-1}Vx = V$ for all $x \in G$.

[SIN]-groups include: compact, discrete, abelian groups.

A locally compact group G is said to have the **complementation property** if every weak*-closed invariant W^* -subalgebra of VN(G) is **invariantly complemented**.

Theorem (Kaniuth-Lau 2000). Every [SIN]-group has the complementation property.

Converse is false: The Heisenberg group has the complementation property but it is not a SIN group.

For a closed subgroup H < G, let

 $P_1(G) = \{ \phi \in P(G); \ \phi(e) = 1 \}$ $P_H(G) = \{ \phi \in P(G); \ \phi(h) = 1 \ \forall \ h \in H \} \subseteq P_1(G)$ $P_H(G) \text{ is a commutative semigroup.}$

We call H a separating subgroup if for any $x \in G \setminus H$, there exists $\phi \in P_H(G)$ such that $\phi(x) \neq 1$.

G is said to have the *separation property* if each closed subgroup of G is separating. (Lau-Losert, 1986) The following subgroups H are always separating:

- H is open
- H is compact
- H is normal

(Forrest, 1992): Every SIN-group has the separation property.

Example 1: G = affine group of the real line $= 2 \times 2$

matrices of form

$$\left\{ \begin{pmatrix} a & s \\ 0 & 1 \end{pmatrix} : a > 0, s \in \mathbb{R} \right\} \longleftrightarrow \{(a, s); a > 0, s \in \mathbb{R} \}$$
$$(a, s)(b, t) = (ab, s + at).$$

Let $H = \{(a, 0); a > 0\}$. Then H is not separating.

Note: If $\phi \in P_H(G)$, $x, y \in G$

$$|\phi(xy) - \phi(x)\phi(y)|^2 \le (1 - |\phi(x)|^2)(1 - |\phi(y)|^2).$$

Hence $\phi(h_1 x h_2) = \phi(x)$ (+)

$$\forall x \in G, \quad h_1, h_2 \in H.$$

For
$$t > 0$$
, $x_t = (1, t)$

$$H(1,t)H = G^+ = \{(a,s); \ a > 0, \ s > 0\}.$$

Hence:

$$\phi(h_1 x_t h_2) = \phi(x_t) \quad \forall \ h_1, h_2 \in H$$

so by continuity, $t \to 0^+$

 $\phi(g) = 1$ for all $g \in G^+$.

Similarly, by considering t < 0,

 $\phi(g) = 1$ for all $g \in G^-$.

Consequently $\phi = 1$.

Example 2: G = Heisenberg group

$$G = \text{ all } 3 \times 3 \text{ matrices}$$

$$\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \longleftrightarrow (x, y, z)$$

$$(x_1, y_1, z_1)(x_2, y_2, z_2)$$

$$= (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1 y_2)$$
Centre of $G = Z(G)$

$$= \{(0, 0, t); t \in \mathbb{R}\}$$

Let $H = \{(x, 0, 0); x \in \mathbb{R}\} < G$. Then H is not separating.

Let
$$\phi \in P_H(G)$$
. For $y \neq 0$, let $g_y = (0, y, 0)$. Then
 $\{hg_y h^{-1}g_y^{-1}; h \in H\} = \{(0, 0, t) : t \in \mathbb{R}\}$
 $= Z(G).$
Since
 $\phi(g_y) = \phi(hg_y h^{-1})$
 $= \phi((\underbrace{hg_y h^{-1}g_y^{-1}}_{\in Z(G)}) \cdot g_y)$

we obtain that

$$\phi(g_y) = \phi(g_y \cdot g) \quad \forall \, g \in Z(G)$$

 $y \neq 0, y \in \mathbb{R}.$

With $y \to 0$, we conclude that

$$\phi(g) = 1 \quad \forall \ g \in Z(G).$$

Theorem 7 (Kaniuth-Lau 2000). (a) For any locally compact group G, separation property implies invariant complementation property.

(b) Let G be a connected locally compact group. Then G has the separation property $\iff G \in [SIN]$.

Losert (2008):

There is an example of a locally compact group G such that G has a compact open normal subgroup and every proper closed subgroup of G is compact (in particular, G is an IN-group) with the separation property and hence the invariant complementation property but G is not a SIN-group. **Theorem 1** (Forrest, Kaniuth, Spronk and Lau, 2003). Let G be an amenable locally compact group. Then G has the invariant complementation property.

Open Problem 1: Does every locally compact group have the invariant complementation property?

4. Fixed point sets of power bounded elements in VN(G)

G-locally compact group

P(G) = continuous positive definite

functions on G

i.e. all continuous $\phi: G \to \mathbb{C}$ such that $\sum \lambda_i \overline{\lambda}_j \phi(x_i x_j^{-1}) \ge 0, \quad \substack{x_1, \dots, x_n \in G, \\ \lambda_i, \dots, \lambda_n \in \mathbb{C}}$ i.e. the $n \times n$ matrix $(\phi(x_i x_j^{-1}))$ is positive $\phi \in P(G) \iff$ there exists a continuous unitary representation $\{\pi, \mathcal{H}\}$ of $G, \eta \in \mathcal{H}$, such that $\phi(x) = \langle \pi(x)\eta, \eta \rangle, \quad x \in G.$ Let $B(G) = \langle P(G) \rangle \subseteq CB(G)$ (Fourier Stieltjes algebra of G)

Equip B(G) with norm $||u|| = \sup \{ |\int f(t)u(t)dt|; f \in L^1(G) \text{ and } |||f||| \le 1 \}$ where

 $|||f||| = \sup\{||\pi(f)||; \{\pi, H\} \text{ continuous unitary representation of } G\}$

- When G is amenable, then $|||f||| = ||\rho(f)||$, where ρ is the left regular representation of G.
- When G is abelian, $B(G) \cong M(\widehat{G})$ (measure algebra of \widehat{G}).

For a discrete group D, let R(D) denote the Boolean ring of subsets of D generated by all left cosets of subgroups of D.

Let
$$R_c(G) = \{E \in R(G_d) : E \text{ is closed in } G\}$$

 G_d = denote G with the discrete topology.

Theorem (J. Gilbert, B. Schreiber, B. Forrest). $E \in R_c(G) \iff$

 $E = \bigcup_{i=1}^{n} \left(a_i H_i \setminus \bigcup_{j=1}^{m_i} b_{i,j} K_{ij} \right), \text{ where } a_i, b_{i,j} \in G, H_i \text{ is a closed subgroup of } G \text{ and } K_{ij} \text{ is an open subgroup of } H_i.$

Let G and H be groups. A map $\alpha: C \subseteq G \to H$ is called *affine* if C is a coset and for any $r, s, t \in C$,

$$\alpha(rs^{-1}t) = \alpha(r)\alpha(s)^{-1}\alpha(t).$$

A map $\alpha: Y \subseteq G \to H$ is called *piecewise affine* if

(i) there exist pairwise disjoint sets Y_i ∈ R(G), i = 1,...,n, such that Y = ∪ V_i,
(ii) each Y_i is contained in a coset C_i on which there is an affine map α_i : C_i → H such that α_i|_{Y_i} = α|_{Y_i}.

Theorem (Illie and Spronk 2005). Let G and H be locally compact groups with G amenable, and let $\Phi : A(G) \to B(H)$ be a completely bounded homomorphism. Then there is a continuous piecewise affine map $\alpha : Y \subset H \to G$ such that for each h in H

$$\Phi_u(h) = \begin{cases} u(\alpha(h)) & \text{if } h \in Y, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma A. Let G be a locally compact group and u a power bounded element of B(G) such that E_u is open in G. Then $u|_{E_u}$ is a piecewise affine map from E_u into \mathbb{T} .

Proof. For $f \in B(\mathbb{T})$, define a function $\phi(f)$ on G by $\phi(f)(x) = f(u(x))$ for $x \in E_u$ and $\phi(f)(x) = 0$ otherwise. Then $\phi(f)(u)$ is continuous since E_u is open and closed in G. Because $B(\mathbb{T}) = \widehat{\ell^1(\mathbb{Z})}$, we have

$$\sum_{n\in\mathbb{Z}}\check{f}(n)\overline{u}^{n}\in B(G),$$

where \check{f} denotes the inverse Fourier transform of f, and

$$\phi(f)(x) = \sum_{n \in \mathbb{Z}} \check{f}(n) \,\overline{n(x)}^{\,n}$$

for all $x \in E_u$. Since $E_u \in \mathcal{R}_c(G)$, $1_{E_u} \in B(G)$, and therefore

$$\phi(f) = 1_{E_u} \cdot \sum_{n \in \mathbb{Z}} \check{f}(n) \,\overline{u}^n \in B(G).$$

Since fg is the inverse Fourier transform of $\check{f} * \check{g}$, it is straightforward to check that ϕ is a homomorphism from $B(\mathbb{T})$ into B(G). Since ϕ is bounded and $B(\mathbb{T}) = \ell^1(\mathbb{Z})$ carries the MAX operator space structure, ϕ is actually completely bounded. It now follows from that there exists an affine map $\alpha : Y \subseteq G \to \mathbb{T}$ such that, for each $f \in B(\mathbb{T})$ and $x \in G$, $\phi(f)(x) = f(\alpha(x))$ whenever $x \in Y$ and $\phi(f)(x) = 0$ otherwise. Here

 $Y = \{ x \in G : \phi(f)(x) \neq 0 \text{ for some } f \in B(\mathbb{T}) \}.$

It is then obvious that $Y = E_u$ and $\alpha = u|_{E_u}$ is piecewise affine.

For $\sigma \in B(G)$, $T \in VN(G)$, define $\sigma \cdot T \in VN(G)$

$$\langle \sigma \cdot T, \psi \rangle = \langle T, \sigma \psi \rangle, \quad \psi \in A(G).$$

Let
$$I_{\sigma} = \{\sigma\phi - \phi : \phi \in A(G)\}^{\|\cdot\|}$$

 $\subseteq A(G).$

Then

- (i) I_{σ} is a closed ideal in A(G)
- (ii) $I_{\sigma}^{\perp} = \{T \in VN(G) : \sigma \cdot T = T\}$ (σ -harmonic functionals on A(G):

Chu-Lau (2002)) is a weak^{*}-closed invariant subspace of VN(G).

If $u \in B(G)$, let

$$E_u = \{x \in G; |u(x)| = 1\}$$
 and
 $F_u = \{x \in G; u(x) = 1\}.$

Theorem (Kaniuth-Lau-Ülger 2010, JLMS). Let G be any locally compact group and $u \in B(G)$ be power bounded (i.e. $\sup\{||x^n||; n = 1, 2, ...\} < \infty$). Then (a) The sets E_u and F_u are in $R_c(G)$.

(b) The fixed point set of u in $VN(G) = \{T \in VN(G); u \cdot T = T\}$ is the range of a projection $P: VN(G) \to VN(G)$ such that $u \cdot P(T) = P(u \cdot T)$ for all $T \in VN(G)$. If G is amenable, then $\{T \in VN(G); u \cdot T = T\} = \overline{\langle \rho(x); x \in F_u \rangle}^{W^*}$.

Note: When G is abelian, (a) is due to B. Schrieber.

Theorem (Kaniuth, Lau and Ülger, JFA 2011). Let G be a locally compact group and let u be a power bounded element of B(G). Then there exist closed subsets F_1, \ldots, F_n of G with the following properties:

(1) $F_j \in \mathcal{R}_c(G), \quad 1 \le j \le n, \text{ and } E_u = \bigcup_{j=1}^n F_j.$

(2) For each j = 1, ..., n, there exist a closed subgroup H_j of G, $a_j \in G$, $\alpha_j \in \mathbb{T}$ and a continuous character γ_j of H_j such that $F_j \subseteq a_j H_j$ and

$$u(x) = \alpha_j \gamma_j(a_j^{-1}x)$$

for all $x \in F_j$.

Proof. Consider the group G equipped with the discrete topology. Let $i: G_d \to G$ denote the identity map. Then $u \circ i \in B(G_d)$ and $||u \circ i||_{B(G_d)} = ||u||_{B(G)}$ and hence $u \circ i$ is power bounded. Therefore, by Lemma A there exist subsets S_i of G, subgroups L_i of G, $c_i \in G$ and affine maps $\beta_i : c_i L_i \to \mathbb{T}$, $i = 1, \ldots, r$, with the following properties:

(1)
$$S_i \in \mathcal{R}(G_d)$$
 and $E_u = \bigcup_{i=1}^n S_i$;
(2) For each $i = 1, \dots, n$, $S_i \subseteq c_i L_i$ and $\beta_i|_{S_i} = u|_{S_i}$.

Now each S_i is of the form

$$\bigcup_{\ell=1}^{q} d_{\ell} \Big(M_{\ell} \setminus \bigcup_{k=1}^{q_{\ell}} e_{\ell k} N_{\ell k} \Big),$$

where $d_{\ell}, e_{\ell k} \in G$, the M_{ℓ} are subgroups of G and the $N_{\ell k}$ are subgroups of M_{ℓ} , $1 \leq \ell \leq q, 1 \leq k \leq q_{\ell}$. Thus, by a further reduction step, we can assume that we only have to consider a set S of the form

$$S = a\left(H \setminus \bigcup_{j=1}^{m} b_j K_j\right) \subseteq bT,$$

where $b_j \subset H$ and the K_j are subgroups of H, and that there exists an affine map $\beta : bT \to \mathbb{T}$ such that $\beta|_S = u|_S$. Furthermore, we can assume that each K_j has infinite index in H because otherwise, for some j, H is a finite union of K_j -cosets, and therefore can be assumed to be simply a coset.

Now

$$H = (H \cap a^{-1}bT) \cup \bigcup_{j=1}^{n} b_j K_j \quad \text{and} \quad H \cap a^{-1}bT \neq \emptyset,$$

because otherwise at least one of the K_j has finite index in H. It follows that $H \cap a^{-1}bT = h(H \cap T)$ for some $h \in H$ and $H \cap T$ has finite index in H. So S is contained in a finite union of cosets of $T \cap H$ and consequently we can assume that $S \subseteq c(T \cap H)$ for some $c \in G$. Since also $S \subseteq bT$, we have bT = cT. Hence $\delta = \beta|_{c(T \cap H)}$ is an affine map satisfying $\delta|_S = u|_S$. Now $S \subseteq c(T \cap H)$ implies that a = ch for some $h \in H$ and therefore

$$S = c \Big(H \setminus \bigcup_{j=1}^m h b_j K_j \Big) = c \Big((T \cap H) \setminus \bigcup_{j=1}^m h b_j K_j \Big).$$

If $hb_jK_j \cap (T \cap H) \neq \emptyset$, then $hb_j = tk$ for some $t \in (T \cap H)$ and $k \in K_j$ and hence

$$hb_jK_j \cap (T \cap H) = tK_j \cap (T \cap H) = t(K_j \cap T \cap H).$$

Thus, setting $A = T \cap H$ and $B_j = hb_j K_j \cap (T \cap H)$, we have

$$S = c \Big(A \setminus \bigcup_{j=1}^{m} B_j \Big),$$

where B_j is either empty or a coset in A. In addition, since K_j has infinite index in H and A has finite index in H, the subgroup corresponding to B_j has infinite index in A.

Since $u \in B(G)$ is uniformly continuous, the affine map $\delta : cA \to \mathbb{T}$ is uniformly continuous as well and hence extends to a continuous affine map $\overline{\delta} : c\overline{A} \to \mathbb{T}$.

Then $\overline{\delta}$ agrees with u on \overline{S} since u is continuous. Let γ denote the continuous character of A associated with $\overline{\delta}$. Then $u(x) = \alpha \gamma(c^{-1}x)$ for all $x \in \overline{S}$.

Finally, since E_u is closed in G, E_u is a finite union of such sets \overline{S} and on each such set \overline{S} , u is of the form stated in (2). This completes the proof of the theorem.

Theorem 9 above is due to Bert Schreiber for G abelian (TAMS 1970).

Corollary. Let u be a power bounded element of A(G). Then in the description of E_u and $u|_{E_u}$ in Theorem each F_j can be chosen to be a compact coset in G.

Proof. We only have to note that E_u is compact and that every compact set in $\mathcal{R}(G)$ is a finite union of cosets of compact subgroups of G.

Theorem 4 (Kaniuth, Lau and Ülger, JFA 2011). Let G be an arbitrary locally compact group and let $u \in B(G)$ be such that E_u is open in G. Then u is power bounded if and only if there exist

- (i) pairwise disjoint open sets F_1, \ldots, F_n in $\mathcal{R}(G)$ such that $E_u = \bigcup_{j=1}^n F_j$ and open subgroups H_j of G and $a_j \in G$ such that $F_j \subseteq a_j H_j$, $j = 1, \ldots, n$, and
- (ii) characters γ_j of H_j and $\alpha_j \in \mathbb{T}$, $j = 1, \ldots, n$, such that

$$u(x) = \alpha_j \gamma_j(a_j^{-1}x)$$

for all $x \in F_j$.

Let G be a discrete group and, for any subset E of G, let $C^*_{\delta}(E) = \overline{\langle \rho(x) : x \in E \rangle}$, the norm closure in $C^*_{\rho}(G)$ of the linear span of all operators $\rho(x), x \in E$.

For any locally compact group G, let $C^*_{\delta}(G)$ denote the norm-closure in $\mathcal{B}(L^2(G))$ of the linear span of all operators $\rho(x), x \in G$.

Remark (Bekka, Kaniuth, Lau and Schlichting, Proc. A.M.S. 1996):

 $C^*_{\delta}(G) \cong C^*_{\rho}(G_d) \iff G$ contains an open subgroup H which is amenable as discrete.

Theorem 5 (Kaniuth-Lau-Ulger, 2013). Let G be a locally compact group which contains an open subgroup H such that H_d is amenable and let $u \in B_{\rho}(G)$. Then u is power bounded if and only if (i) and (ii) hold.

(i) $||u||_{\infty} \leq 1$ and there exist pairwise disjoint sets $F_1, \ldots, F_n \in \mathcal{R}_c(G)$ such that $E_u = \bigcup_{j=1}^n F_j$, closed subgroups H_j of G and $a_j \in G$ such that $F_j \subseteq a_j H_j$, and characters γ_j of H_j and $\alpha_n \in \mathbb{T}$ such that $u(x) = \alpha_j \gamma_j (a_j^{-1}x)$ for all $x \in F_j$, $1 \leq j \leq n$.

(ii) For each $T \in C^*_{\delta}(G \setminus E_u)$, $\langle u^n, T \rangle \to 0$ as $n \to \infty$.

Geometric Form of Hahn-Banach Separation Theorem.

Every closed vector subspace of a locally convex space is the intersection of the closed hyperplanes containing it.

Lemma. Let H be a closed subgroup of G, and U be a neighbourhood basis \mathcal{U} of the identity of G. If G has the H-separation property, then

$$(*) H = \bigcap_{U \in \mathcal{U}} \overline{HUH}.$$

Theorem (Kaniuth-Lau, 2003). If G is connected, then G has H-separation property \iff (*) holds.

Open Problem 2: If G has property (*) for each closed subgroup of G, does G have the invariant complementation property?

For general G

 $\begin{array}{ll} G- \ [\mathrm{SIN}] \stackrel{\Rightarrow}{\underset{\not\Leftarrow}{\Rightarrow}} G & \text{has separation} \Longrightarrow G \text{ has geometric separtion property} \\ & \text{property} \\ & \downarrow & \swarrow \\ & \text{Complementation} \\ & \text{property} \end{array}$

For **connected** G:

$$G - [SIN] \iff G$$
 has separation $\iff G$ has geometric
property separtion property

5. Natural projections

Let A be a commutative Banach algebra with a BAI.

For $f \in A^*$ and $a \in A$, by $a \cdot f$ we denote the functional on A defined by $\langle a \cdot f, b \rangle = \langle f, ab \rangle$.

A projection $P: A^* \to A^*$ is said to be "invariant" (or A-invariant) if, for an $a \in A$ and $f \in A^*$, the equality $P(a \cdot f) = a \cdot P(f)$ holds. Similarly, a closed subspace X of A^* is said to be "invariant" if, for each $a \in A$ and $f \in X$, the functional $a \cdot f$ is in X (i.e. X is an A-module for the natural action $(a, f) \mapsto a \cdot f$). If there is an invariant projection from A^* onto a closed invariant subspace X of A^* then X is said to be "invariantly complemented in A^{**} ".

We say that a projection $P: A^* \mapsto A^*$ is "natural" if, for each $\gamma \in \Delta(A)$, either $P(\gamma) = \gamma$ or $P(\gamma) = 0$.

If X is a closed invariant subspace of A^* and if there is natural projection P from A^* onto X we shall say that X is "naturally complemented" in A^* .

Lemma B. Let $P: A^* \to A^*$ be a projection. Then

- a) P is natural iff, for each $\gamma \in \Delta(A)$ and $a \in A$, $P(a \cdot \gamma) = a \cdot P(\gamma)$.
- b) Every invariant projection $P: A^* \to A^*$ is natural.

Theorem (Lau and Ulger, Trans. A.M.S. to appear). Let G be an amenable locally compact group, and I be a closed ideal in A(G). Then $X = I^{\perp}$ is invariantly complemented $\iff X$ is naturally complemented.

REFERENCES

- M. Bekka, E. Kaniuth, A.T. Lau and G. Schlichting, On C*-algebras associated with locally compact groups, Proc. Amer. Math. Soc. 124 no. 10 (1996), 3151-3158.
- C.-H. Chu and A.T.-M. Lau, Jordan structures in harmonic functions and Fourier algebras on homogeneous spaces, Math. Ann. 336 no.4 (2006), 803-840.
- 3. C.-H. Chu and A.T.-M. Lau, *Harmonic functions on groups and Fourier*, Lecture Notes in Mathematics 1782, Springer-Verlag, Berlin, 2002, pp. viii+100.
- 4. B.E. Forrest, Amenability and ideals in A(G), Austral. J. Math. Ser. A 53 (1992), 143-155.
- B.E. Forrest, E. Kaniuth, A.T.-M. Lau and N. Spronk, *Ideals with bounded approximate identities* in Fourier algebras, J. Funct. Anal. 203 (2003), 286-304.
- 6. J.E. Gilbert, On projections of L[∞](G) and translation invariant subspaces, Proc. London Math.
 Soc. 19 (1969), 69-88.

- 7. E. Kaniuth and A.T. Lau, A separation property of positive definite functions on locally compact groups and applications to Fourier algebras, J. Funct. Anal. **175** no.1 (2000), 89-110.
- 8. E. Kaniuth and A.T. Lau, On a separation property of positive definite functions on locally compact groups, Math. Z. 243 no. 1 (2003), 161-177.
- E. Kaniuth and A.T. Lau, Extensions and separation of positive definite functions on locally compact groups, Trans. Amer. Math. Soc. 359 no. 1 (2007), 447-463.
- E. Kaniuth, A.T.-M. Lau and A. Ülger, Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. London Math. Soc. 81 (2) (2010), 255-275.
- E. Kaniuth, A.T.-M. Lau and A. Ülger, Power boundedness in Fourier and Fourier Stieltjes algebras and other commutative Banach algebras, J. of Functional Analysis 260 (2011), 2191-2496.

- 12. K. Kaniuth, A.T. Lau and A. Ülger, Power boundedness in Banach algebras associated to locally compact groups (to appear).
- 13. A.T. Lau and A. Ülger, Characterizations of closed ideals with bounded approximate identities in commutative Banach algebras, complemented subspaces of the group von Neumann algebras and applications, Transaction A.M.S. (preprint).
- 14. B. Schreiber, Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970), 405-431.
- 15. B. Schreiber, On the coset ring and strong Ditkin sets, Pacific J. Math. 33 (1970), 805-812.