COMPLEMENTED SUBSPACES OF

THE GROUP VON NEUMANN ALGEBRAS

Anthony To-Ming Lau University of Alberta

Fields Institute, Toronto

April 10, 2014

Outline of Talk

- 1. Locally compact group
- 2. Fourier algebra of ^a group
- 3. Invariant complementation property of the group von Neumann algebra
- 4. Fixed point sets of power bounded elements in $VN(G)$
- 5. Natural projections

1. Locally compact groups

A topological group (G, \mathcal{T}) is a group G with a Hausdorff topology \mathcal{T} such that

(i)
$$
G \times G \to G
$$

\n $(x, y) \to x \cdot y$
\n(ii) $G \to G$
\n $x \to x^{-1}$

are continuous. *G* is locally compact if the topology $\mathcal T$ is locally compact i.e. there is ^a basis for the neighbourhood of the identity consisting of compact sets.

Ex: G_d , \mathbb{R}^n , $(E, +)$, \mathbb{T} , \mathbb{Q} , $GL(2, \mathbb{R})$, $E =$ Banach space, $\mathbb{T} = {\lambda \in \mathbb{C}$; $|\lambda| = 1}$ $CB(G) =$ bounded complex-valued continuous functions $f: G \to \mathbb{C}$ $||f||_u = \sup \{|f(x)| : x \in G\}$ $f \in CB(G)$, let $(\ell_a f)(x) = f(ax), \ a, x \in G.$

 $LUC(G) =$ bounded left uniformly continuous functions on *G*

= ${f} \in CB(G); a \rightarrow \ell_a f \text{ from } G \text{ to } (CB(G), \|\cdot\|) \text{ is continuous}$

G is **amenable** if ∃ *m* ∈ $LUC(G)^*$ such that $m \geq 0$, $||m|| = 1$ and $m(\ell_a f) = m(f)$ for all $a \in G$, $f \in LUC(G)$.

Theorem (M.M. Day - T. Mitchell)**.** *Let G be ^a topological group. Then G is amenable* \iff *G has the following fixed point property:*

Whenever $\mathcal{G} = \{T_g; g \in G\}$ *is a continuous representation of G as continuous affice maps on ^a compact convex subset K of ^a separated locally convex space, then there exist* $x_0 \in K$ *such that* $T_g(x_0) = x_0$ *for all* $g \in G$.

- **Amenable Groups:** abelian groups
	- •solvable groups
	- •compact groups
	- $U(B(\ell_2))$ group of unitary operators on ℓ_2 with the strong operator topology where

$$
\ell_2 = \{(\alpha_n) : \sum_{n=1}^{\infty} |\alpha_n|^2 < \infty\}
$$

 \mathbb{F}_2 – not amenable

Let *G* be a locally compact group and λ be a fixed left Haar measure on *G*.

 $L^1(G) = \text{ group algebra of } G \text{ i.e. } f: G \mapsto \mathbb{C} \text{ measurable such that }$ $\int |f(x)| d\lambda(x) < \infty$ $(f * g)(x) = \int f(y)g(y^{-1}x)d\lambda(y)$ $||f||_1 = \int |f(x)| d\lambda(x)$ $(L^1(G), *)$ is a Banach algebra i.e. $||f * g|| \le ||f|| \, ||g||$ for all $f, g \in L^1(G)$ $L^{\infty}(G) =$ essentially bounded measurable functions on *G*.

$$
||f||_{\infty} = \text{ess - sup norm.} = \inf \{ M : \{ x \in G; |f(x)| > M \text{ is a locally null set} \} \}
$$

L[∞](*G*) is a commutative *C*[∗]-algebra containing *CB*(*G*)

$$
L^1(G)^* = L^\infty(G) : \langle f, h \rangle = \int f(x)h(x)d\lambda(x)
$$

 $G =$ locally compact **abelian** group then $L^1(G)$ is a **commutative** Banach algebra.

A complex function γ on *G* is called a **character** if γ is a homomorphism of *G* into (\mathbb{T}, \cdot) *.*

> \widehat{G} $G =$ all continuous characters on G $\subseteq L^{\infty}(G) = L^{1}(G)^{*}.$

If $\gamma \in \Gamma$, $f \in L^1(G)$, $\langle \gamma, f \rangle = \widehat{f}$ i $(\gamma) = \int_G f(x)(-x, \gamma) dx.$

Then $\langle \gamma, f * g \rangle = \langle \gamma, f \rangle$ $\langle \gamma, g \rangle$ for all $f, g \in L^1(G)$ *.* Hence γ defines a non-zero multiplicative linear functional on $L^1(G)$. Conversely every non-zero multiplicative linear functional on $L^1(G)$ is of this form:

$$
\sigma\big(L^1(G)\big) \cong \widehat{G}.
$$

Example

$$
G = \mathbb{R} \qquad \hat{G} = \mathbb{R}
$$

$$
G = \mathbb{T} \qquad \hat{G} = \mathbb{Z}
$$

$$
G = \mathbb{Z} \qquad \hat{G} = \mathbb{T}.
$$

 \rm{Equip} \widehat{G} with the weak^{*}-topology from $L^1(G)^*$ (or the topology of uniform convergence on compact sets). Then

$$
\widehat{G} \text{ with } \mathbf{product}: \quad (\gamma_1 + \gamma_2)(x) = \gamma_1(x)\gamma_2(x)
$$

is ^a locally compact **abelian** group.

• **Pontryagin Duality Theorem:** b \widehat{G} $G \cong G$

For
$$
f \in L^1(G)
$$
, $\widehat{f}: \widehat{G} \to \mathbb{C}$

$$
\widehat{f}(\gamma) = \int_G f(x)(-x, \gamma) dx = \langle f, \gamma \rangle
$$

- \bullet *A*(\widehat{G} $) = \{\widehat{f}$ $\{f : f \in L^1(G)\} \subseteq C_0(\widehat{G}) = \text{ functions in } CB(\widehat{G}) \text{ vanishing at infinity.}$
- $\bullet\quad \theta\ :\ f\ \rightarrow\ \widehat{f}$ is an algebra homomorphism from $L^1(G)$ into a subalgebra of $C_0(\widehat{G}% _{t}(\widehat{G}_{t}))=\frac{C_0(\widehat{G}_{t}(\widehat{G}_{t}(\widehat{G}% _{t}))}{\det(\widehat{G}_{t}(\widehat{G}_{t}(\widehat{G}% _{t}(\widehat{G}% _{$)*.*
- $(A(\widehat{G}), \|\cdot\|)$ $\|\widehat{f}\| = \|f\|_1$ is a commutative Banach algebra with spectrum \widehat{G} . $A(\widehat{G}% ,\widehat{G}_{h}^{r},\widehat{G}_{h}^{r})=\sum_{i=1}^{n}\sum_{j=1}^{n}\widehat{G}_{i,k}^{r}\widehat{G}_{h}^{r}$ $) =$ Fourier algebra of \hat{G} .

2. Fourier algebra of ^a group

 $G =$ locally compact group

A continuous unitary representation of *G* is a pair: $\{\pi, H\}$, where *H* = Hilbert space and π is a continuous homomorphism from G into the group of unitary operators on *H* such that for each ξ , $n \in H$,

$$
x \to \langle \pi(x)\xi, n \rangle
$$

is continuous.

$$
L^{2}(G) = \text{ all measurable } f : G \to \mathbb{C}
$$

$$
\int |f(x)|^{2} d\lambda(x) < \infty
$$

$$
\langle f, g \rangle = \int f(x) \overline{g(x)} d\lambda(x)
$$

$$
L^{2}(G) \text{ is a Hilbert space.}
$$

Left regular representation:

$$
\{\rho, L^2(G)\},
$$

\n
$$
\rho: G \mapsto B(L^2(G)),
$$

\n
$$
\rho(x)h(y) = h(x^{-1}y), \ x \in G, \ h \in L^2(G).
$$

G ⁼ locally compact group $A(G) =$ subalgebra of $C_0(G)$ consisting of all functions ϕ : $\phi(x) = \langle \rho(x)h, k \rangle, \quad h, k \in L^2(G)$ $\rho(x)h(y) = h(x^{-1}y)$ $\|\phi\| = \sup \, \Big\{ \, \Big\vert \sum^{n} \Big\}$ i $\!=$ $\!1$ $\lambda_i \phi(x_i) \Big\| : \Big\| \sum^n$ i =1 $\lambda_i \rho(x_i)$ $\bigg|\bigg| \leq 1$ \geq $\|\phi\|_{\infty}$ *.*

P. Eymard (1964):

 $A(G)^* = VN(G)$ = $=$ von Neumann algebra in $\mathcal{B}(L^2(G))$ generated by $\{\rho(x): x \in G\}$ $= \langle \rho(x) : x \in G \rangle^{\text{WOT}} = \{ \rho(x); x \in G \}$ (second commutant)

If *G* is abelian, then

$$
A(G) \cong L^1(\widehat{G}), \qquad VN(G) \cong L^\infty(\widehat{G}).
$$

- \bullet *A*(*G*) is called the Fourier algebra of *G.*
- \bullet $VN(G)$ is called the group von Neumann algebra of G .
- •• $VN(G)$ can be viewed as non-commutative function space on \widehat{G} when *G* is non-abelian.

Theorem (P. Eymard 1964)**.** *For any G, A*(*G*) *is ^a commutative Banach algebra with spectrum G.*

Theorem (H. Leptin 1968)**.** *For any G, A*(*G*) *has ^a bounded approximate identity if and only if G is amenable.*

Theorem (M. Walters 1970). Let G_1, G_2 be locally compact groups. If $A(G_1)$ and $A(G_2)$ are *isometrically isomorphic, then* G_1 *and* G_2 *are either isomorphic or antiisomorphic.*

3. Invariant complementation property of the group von Neumann algebra

Theorem (H. Rosenthal 1966)**.** *Let G be ^a locally compact* **abelian** *group, and ^X be a* weak^{*}-closed *translation invariant subspace* of $L^\infty(G)$ *.* If *X is complemented in* $L^{\infty}(G)$, then *X* is invariantly complemented *i.e. X* admits a translation invariant *closed complement (or equivalently ^X is the range of ^a continuous projection on* $L^{\infty}(G)$ *commuting with translations).*

Theorem (Lau, 1983)**.** *A locally compact group G is amenable if and only if every weak*∗*-closed left translation invariant subalgebra M which is closed under conjugation* in $L^{\infty}(G)$ *is invariantly complemented.*

For $T \in VN(G)$, $\phi \in A(G)$, define

$$
\phi \cdot T \in VN(G) \quad \text{by}
$$

$$
\langle \phi \cdot T, \psi \rangle = \langle T, \psi \phi \rangle, \quad \psi \in A(G).
$$

 $X \subseteq VN(G)$ is **invariant** if $\phi \cdot T \in X$ for all $\phi \in A(G)$, $T \in X$. If *G* is abelian and $X \subseteq L^{\infty}(\widehat{G})$) is weak∗-closed subspace of $L^{\infty}(\widehat{G}%)=\cup_{\alpha\in S_{n}}L^{\infty}(\widehat{G})$), then *X* is translation invariant \iff

$$
L^1(\widehat{G}) \ast X \subseteq X.
$$

Hence: weak^{*}-closed *A*(*G*)-invariant subspaces of $VN(G)$ ↔ weak∗-closed translation invariant subspaces of *^L*∞(*G* b)*.*

Question: Let *G* be ^a locally compact group, and *M* be an invariant *W*[∗]-subalgebra (i.e. weak^{*}-closed $*$ -subalgebra) of $VN(G)$. Is M invariantly complemented? **Equivalently:** Is there ^a continuous projection

 $P: VN(G) \longrightarrow M$ such that $P(\phi \cdot T) = \phi \cdot P(T)$

for all $\phi \in A(G)$.

Yes: *G*-abelian (Lau, 83)

Losert-L(86): **Yes:** *G* compact, discrete.

Theorem (Losert-Lau. 1986)**.** *Let ^M be an invariant*

 W^* -subalgebra of $VN(G)$ and

 $\sum (M) = \{x \in G; \rho(x) \in M\}.$

If $\sum(M)$ *is* a normal subgroup of *G*, then *M is* invariantly complemented.

Let *H* be ^a closed subgroup of *G,* and

$$
VN_H(G) = \overline{\langle \rho(h) : h \in H \rangle} WOT \subseteq VN(G).
$$

Then $VN_H(G)$ is an invariant *W*^{*}-subalgebra of $VN(G)$.

Takesaki-Tatsuma (1971): If *M* is an invariant *W*^{*}-subalgebra of *VN*(*G*), then

$$
M = \overline{\langle \rho(x) : x \in H \rangle}^{W^*} = VN_H(G)
$$

where $H = \Sigma(M)$. Hence there is a 1 − 1 correspondence between closed subgroups *H* of *G* and invariant *W*[∗]-subalgebras of $VN(G)$.

 $G \in \text{SIN}$ if there is a neighbourhood basis of the identity consisting of compact sets *V*, $x^{-1}Vx = V$ for all $x \in G$.

[SIN]-groups include: compact, discrete, abelian groups.

A locally compact group *G* is said to have the **complementation property** if every weak^{*}-closed invariant W^* -subalgebra of $VN(G)$ is **invariantly complemented.**

Theorem (Kaniuth-Lau 2000)**.** *Every [SIN]-group has the complementation property.*

Converse is false: The Heisenberg group has the complementation property but it is not ^a SIN group.

For a closed subgroup $H < G$, let

 $P_1(G) = \{ \phi \in P(G); \ \phi(e) = 1 \}$ $P_H(G) = \{ \phi \in P(G); \ \phi(h) = 1 \ \forall \ h \in H \} \subseteq P_1(G)$ $P_H(G)$ is a commutative semigroup.

We call *H* a separating subgroup if for any $x \in G\backslash H$, there exists $\phi \in P_H(G)$ such that $\phi(x) \neq 1$.

G is said to have the separation property if each closed subgroup of *G* is separating. (**Lau-Losert**, 1986) The following subgroups *^H* are always separating:

- •*H* is open
- •*H* is compact
- \bullet *H* is normal

(Forrest, 1992): Every SIN-group has the separation property.

Example 1: $G =$ affine group of the real line $= 2 \times 2$

matrices of form

$$
\left\{ \begin{pmatrix} a & s \\ 0 & 1 \end{pmatrix} : a > 0, s \in \mathbb{R} \right\} \longleftrightarrow \left\{ (a, s); a > 0, s \in \mathbb{R} \right\}
$$

$$
(a, s)(b, t) = (ab, s + at).
$$

Let $H = \{(a, 0); a > 0\}$. Then *H* is not separating.

Note: If $\phi \in P_H(G)$, $x, y \in G$

$$
|\phi(xy) - \phi(x)\phi(y)|^2 \le (1 - |\phi(x)|^2)(1 - |\phi(y)|^2).
$$

Hence $\phi(h_1 x h_2) = \phi(x)$ (+)

$$
\forall x \in G, \quad h_1, h_2 \in H.
$$

$$
For t > 0, x_t = (1, t)
$$

$$
H(1,t)H = G^{+} = \{(a,s); a > 0, s > 0\}.
$$

Hence:

$$
\phi(h_1x_th_2) = \phi(x_t) \quad \forall \ h_1, h_2 \in H
$$

so by continuity, $t \rightarrow 0^+$

 $\phi(g) = 1$ for all $g \in G^+$.

Similarly, by considering $t < 0$,

 $\phi(g) = 1$ for all $g \in G^-$.

Consequently $\phi = 1$.

Example 2: $G =$ Heisenberg group

$$
G = \text{ all } 3 \times 3 \text{ matrices}
$$
\n
$$
\begin{bmatrix}\n1 & x & z \\
0 & 1 & y \\
0 & 0 & 1\n\end{bmatrix} \longleftrightarrow (x, y, z)
$$
\n
$$
(x_1, y_1, z_1)(x_2, y_2, z_2)
$$
\n
$$
= (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2)
$$
\nCentre of $G = Z(G)$ \n
$$
= \{(0, 0, t); t \in \mathbb{R}\}
$$

Let $H = \{(x, 0, 0); x \in \mathbb{R}\} < G$. Then *H* is not separating.

Let
$$
\phi \in P_H(G)
$$
. For $y \neq 0$, let $g_y = (0, y, 0)$. Then

$$
\{hg_yh^{-1}g_y^{-1}; h \in H\} = \{(0,0,t) : t \in \mathbb{R}\}
$$

$$
= Z(G).
$$

Since

$$
\phi(g_y) = \phi(hg_yh^{-1})
$$

$$
= \phi\left(\underbrace{(hg_yh^{-1}g_y^{-1})} \cdot g_y\right)
$$

$$
\in Z(G)
$$

we obtain that

$$
\phi(g_y) = \phi(g_y \cdot g) \quad \forall \, g \in Z(G)
$$

 $y \neq 0, \quad y \in \mathbb{R}$.

With $y \rightarrow 0$, we conclude that

$$
\phi(g) = 1 \quad \forall \ g \in Z(G).
$$

Theorem ⁷ (Kaniuth-Lau 2000)**.** (a) *For any locally compact group G, separation property implies invariant complementation property.*

(b) *Let G be ^a connected locally compact group. Then G has the separation property* $\Longleftrightarrow G \in [SIN]$ *.*

Losert (2008):

There is an example of ^a locally compact group *G* such that *G* has ^a compact open normal subgroup and every proper closed subgroup of *G* is compact (in particular, *G* is an IN-group) with the separation property and hence the invariant complementation property but *G* is not ^a SIN-group.

Theorem ¹ (Forrest, Kaniuth, Spronk and Lau, 2003)**.** *Let G be an amenable locally compact group. Then G has the invariant complementation property.*

Open Problem 1: Does every locally compact group have the invariant complementation property?

4. Fixed point sets of power bounded elements in *V ^N*(*G*)

G–locally compact group

 $P(G) =$ continuous positive definite

functions on *G*

i.e. all continuous $\phi: G \to \mathbb{C}$ such that $\sum \lambda_i \overline{\lambda}_j \phi(x_i x_j^{-1}) \geq 0,$ $\begin{array}{c} x_1, \dots, x_n \in G, \\ \lambda_i, \dots, \lambda_n \in \mathbb{C} \end{array}$ i.e. the $n \times n$ matrix $(\phi(x_i x_i^{-1}))$ is positive $\phi \in P(G) \iff \text{ there exists a continuous}$ unitary representation $\{\pi, \mathcal{H}\}\$ of *G*, $\eta \in \mathcal{H}$, such that

 $\phi(x) = \langle \pi(x)\eta, \eta \rangle, \quad x \in G.$

Let $B(G) = \langle P(G) \rangle \subseteq CB(G)$ (Fourier Stieltjes algebra of *G*)

Equip $B(G)$ with norm $||u|| = \sup \{ | \int f(t)u(t)dt |; f \in L^1(G) \text{ and } |||f|| | \leq 1 \}$ where

 $|||f||| = \sup{||\pi(f)||; {\pi, H} \}$ continuous unitary representation of *G*}

- When *G* is amenable, then $\|f\| = \|\rho(f)\|$, where ρ is the left regular representation of *G.*
- When *G* is abelian, $B(G) \cong M(\widehat{G})$) (measure algebra of \widehat{G})*.*

For ^a discrete group *D,* let *R*(*D*) denote the Boolean ring of subsets of *^D* generated by all left cosets of subgroups of *D.*

Let
$$
R_c(G) = \{E \in R(G_d) : E \text{ is closed in } G\}
$$

 $G_d =$ denote *G* with the discrete topology.

Theorem (J. Gilbert, B. Schreiber, B. Forrest). $E \in R_c(G) \Longleftrightarrow$

 $E = \bigcup^{n}$ i =1 $\bigl(a_i H_i \!\setminus\! \overset{m}{\bigcup}$ $\bigcup^{\prime\prime\,\iota}$ $j=1$ $b_{i,j}K_{ij}$, where $a_i, b_{i,j} \in G$, H_i is a closed subgroup of G and K_{ij} *is an open subgroup of* H_i .

Let *G* and *H* be groups. A map $\alpha : C \subseteq G \to H$ is called *affine* if *C* is a coset and for any $r, s, t \in C$,

$$
\alpha(rs^{-1}t) = \alpha(r)\alpha(s)^{-1}\alpha(t).
$$

A map $\alpha: Y \subseteq G \to H$ is called *piecewise affine* if

- (i) there exist pairwise disjoint sets $Y_i \in \mathcal{R}(G)$, $i = 1, \ldots, n$, such that $Y = \bigcup_{i=1}^n Y_i$,
- (ii) each Y_i is contained in a coset C_i on which there is an affine map $\alpha_i : C_i \to H$ such that $\alpha_i|_{Y_i} = \alpha|_{Y_i}$.

Theorem (Illie and Spronk 2005)**.** *Let G and ^H be locally compact groups with G* amenable, and let $\Phi: A(G) \to B(H)$ be a completely bounded homomorphism. *Then there is a continuous piecewise affine map* $\alpha: Y \subset H \to G$ *such that for each h in H*

$$
\Phi_u(h) = \begin{cases} u(\alpha(h)) & \text{if } h \in Y, \\ 0 & \text{otherwise.} \end{cases}
$$

Lemma A. *Let G be ^a locally compact group and ^u ^a power bounded element of B*(*G*) *such that* E_u *is open in G. Then* $u|_{E_u}$ *is a piecewise affine map from* E_u *into* T*.*

Proof. For $f \in B(\mathbb{T})$, define a function $\phi(f)$ on *G* by $\phi(f)(x) = f(u(x))$ for $x \in E_u$ and $\phi(f)(x) = 0$ otherwise. Then $\phi(f)(u)$ is continuous since E_u is open and closed in *G*. Because $B(\mathbb{T}) = \widehat{\ell^1(\mathbb{Z})}$ $\mathbb{C}^1(\mathbb{Z}),\;$ we have

$$
\sum_{n\in\mathbb{Z}}\check{f}(n)\overline{u}^{\,n}\in B(G),
$$

where \check{f} *f* denotes the inverse Fourier transform of *f,* and

$$
\phi(f)(x) = \sum_{n \in \mathbb{Z}} \check{f}(n) \, \overline{n(x)}^{\,n}
$$

for all $x \in E_u$. Since $E_u \in \mathcal{R}_c(G)$, $1_{E_u} \in B(G)$, and therefore

$$
\phi(f) = 1_{E_u} \cdot \sum_{n \in \mathbb{Z}} \check{f}(n) \overline{u}^n \in B(G).
$$

Since fg is the inverse Fourier transform of \check{f} $f * \check{g}$, it is straightforward to check that *φ* is a homomorphism from $B(\mathbb{T})$ into $B(G)$ *.* Since *φ* is bounded and $B(\mathbb{T}) = \ell^1(\mathbb{Z})$ carries the MAX operator space structure, ϕ is actually completely bounded. It now follows from that there exists an affine map $\alpha: Y \subseteq G \to \mathbb{T}$ such that, for each $f \in B(\mathbb{T})$ and $x \in G$, $\phi(f)(x) = f(\alpha(x))$ whenever $x \in Y$ and $\phi(f)(x) = 0$ otherwise. Here

 $Y = \{x \in G : \phi(f)(x) \neq 0 \text{ for some } f \in B(\mathbb{T})\}.$

It is then obvious that $Y = E_u$ and $\alpha = u|_{E_u}$ is piecewise affine.

For $\sigma \in B(G)$, $T \in VN(G)$, define $\sigma \cdot T \in VN(G)$

$$
\langle \sigma \cdot T, \psi \rangle = \langle T, \sigma \psi \rangle, \quad \psi \in A(G).
$$

Let
$$
I_{\sigma} = {\sigma \phi - \phi : \phi \in A(G)}^{\text{||\cdot||}}
$$

 $\subseteq A(G)$.

Then

- (i) I_{σ} is a closed ideal in $A(G)$
- (ii) $I_{\sigma}^{\perp} = \{T \in VN(G) : \sigma \cdot T = T\}$ (*σ*-harmonic functionals on $A(G)$: Chu-Lau (2002)) is a weak^{*}-closed invariant subspace of $VN(G)$.

If $u \in B(G)$, let

$$
E_u = \{x \in G; |u(x)| = 1\}
$$
 and

$$
F_u = \{x \in G; u(x) = 1\}.
$$

Theorem (Kaniuth-Lau-Ülger 2010, JLMS)**.** *Let G be any locally compact group and* $u \in B(G)$ *be power bounded* (*i.e.* sup{ $||x^n||$; $n = 1, 2, \ldots$ } < ∞)*. Then* (a) The sets E_u and F_u are in $R_c(G)$.

(b) The fixed point set of u in $VN(G) = \{T \in VN(G); u \cdot T = T\}$ is the range of *a projection* $P: VN(G) \to VN(G)$ *such that* $u \cdot P(T) = P(u \cdot T)$ *for all* $T \in$ *V N*(*G*)*. If G is* amenable, then $\{T \in VN(G); u \cdot T = T\} = \overline{\langle \rho(x); x \in F_u \rangle}^{W^*}$.

Note: When *G* is abelian, (a) is due to B. Schrieber.

Theorem (Kaniuth, Lau and Ulger, JFA 2011)**.** *Let G be ^a locally compact group and let ^u be ^a power bounded element of ^B*(*G*)*. Then there exist closed subsets* F_1, \ldots, F_n *of G with the following properties:*

 $(F_j \in \mathcal{R}_c(G), \quad 1 \leq j \leq n, \text{ and } E_u = \bigcup_{i=1}^n$ ∪ $j=1$ F_j .

(2) For each $j = 1, ..., n$, there exist a closed subgroup H_j of G , $a_j \in G$, $\alpha_j \in \mathbb{T}$ *and a continuous character* γ_j *of* H_j *such that* $F_j \subseteq a_j H_j$ *and*

$$
u(x) = \alpha_j \gamma_j (a_j^{-1} x)
$$

for all $x \in F_j$.

Proof. Consider the group *G* equipped with the discrete topology. Let $i: G_d \to G$ denote the identity map. Then $u \circ i \in B(G_d)$ and $||u \circ i||_{B(G_d)} = ||u||_{B(G)}$ and hence $u \circ i$ is power bounded. Therefore, by Lemma A there exist subsets S_i of G , subgroups L_i of G , $c_i \in G$ and affine maps $\beta_i : c_i L_i \to \mathbb{T}$, $i = 1, \ldots, r$, with the following properties:

\n- (1)
$$
S_i \in \mathcal{R}(G_d)
$$
 and $E_u = \bigcup_{i=1}^n S_i$;
\n- (2) For each $i = 1, \ldots, n$, $S_i \subseteq c_i L_i$ and $\beta_i |_{S_i} = u |_{S_i}$.
\n

Now each S_i is of the form

$$
\bigcup_{\ell=1}^q d_\ell \Big(M_\ell \setminus \bigcup_{k=1}^{q_\ell} e_{\ell k} N_{\ell k}\Big),
$$

where $d_{\ell}, e_{\ell k} \in G$, the M_{ℓ} are subgroups of *G* and the $N_{\ell k}$ are subgroups of M_{ℓ} , $1 \leq \ell \leq q$, $1 \leq k \leq q_{\ell}$. Thus, by a further reduction step, we can assume that we only have to consider ^a set *S* of the form

$$
S=a\Big(H\backslash \bigcup_{j=1}^m b_jK_j\Big)\subseteq bT,
$$

where $b_j \subset H$ and the K_j are subgroups of *H*, and that there exists an affine map $\beta : bT \to \mathbb{T}$ such that $\beta|_S = u|_S$. Furthermore, we can assume that each K_j has infinite index in *H* because otherwise, for some *j*, *H* is a finite union of K_j -cosets, and therefore can be assumed to be simply ^a coset.

Now

$$
H = (H \cap a^{-1}bT) \cup \bigcup_{j=1}^{n} b_j K_j \quad \text{and} \quad H \cap a^{-1}bT \neq \emptyset,
$$

because otherwise at least one of the K_j has finite index in *H*. It follows that $H \cap a^{-1}b$ = $h(H \cap T)$ for some $h \in H$ and $H \cap T$ has finite index in *H*. So *S* is contained in a finite union of cosets of $T \cap H$ and consequently we can assume that $S \subseteq c(T \cap H)$ for some $c \in G$. Since also $S \subseteq bT$, we have $bT = cT$. Hence $\delta = \beta|_{c(T \cap H)}$ is an affine map satisfying $\delta|_S = u|_S$. Now $S \subseteq c(T \cap H)$ implies that $a = ch$ for some $h \in H$ and therefore

$$
S = c\left(H \setminus \bigcup_{j=1}^{m} hb_j K_j\right) = c\left((T \cap H) \setminus \bigcup_{j=1}^{m} hb_j K_j\right).
$$

If $hb_jK_j \cap (T \cap H) \neq \emptyset$, then $hb_j = tk$ for some $t \in (T \cap H)$ and $k \in K_j$ and hence

$$
hb_jK_j \cap (T \cap H) = tK_j \cap (T \cap H) = t(K_j \cap T \cap H).
$$

Thus, setting $A = T \cap H$ and $B_j = hb_j K_j \cap (T \cap H)$, we have

$$
S = c\left(A \setminus \bigcup_{j=1}^{m} B_j\right),
$$

where B_i is either empty or a coset in *A*. In addition, since K_i has infinite index in *H* and *A* has finite index in *H*, the subgroup corresponding to B_j has infinite index in *A.*

Since $u \in B(G)$ is uniformly continuous, the affine map $\delta : cA \to \mathbb{T}$ is uniformly continuous as well and hence extends to a continuous affine map $\overline{\delta}: c\overline{A} \to \mathbb{T}$.

Then $\overline{\delta}$ agrees with *u* on \overline{S} since *u* is continuous. Let γ denote the continuous character of *A* associated with $\overline{\delta}$. Then $u(x) = \alpha \gamma(c^{-1}x)$ for all $x \in \overline{S}$.

Finally, since E_u is closed in G , E_u is a finite union of such sets \overline{S} and on each such set \overline{S} , *u* is of the form stated in (2). This completes the proof of the theorem.

Theorem ⁹ above is due to Bert Schreiber for *G* abelian (TAMS 1970).

Corollary. Let *u* be a power bounded element of $A(G)$. Then in the description of *Eu* and $u|_{E_u}$ *in* Theorem each F_j can be chosen to be a compact coset in G.

Proof. We only have to note that E_u is compact and that every compact set in $\mathcal{R}(G)$ is a finite union of cosets of compact subgroups of G .

Theorem 4 (Kaniuth, Lau and Ulger, JFA 2011)**.** *Let G be an arbitrary locally compact group* and let $u \in B(G)$ *be such* that E_u *is open in G*. Then *u is power bounded if and only if there exist*

- (i) pairwise disjoint open sets F_1, \ldots, F_n in $\mathcal{R}(G)$ such that $E_u = \bigcup_{i=1}^n$ ∪ $j=1$ *^F*^j *and open subgroups* H_j *of G and* $a_j \in G$ *such that* $F_j \subseteq a_j H_j$, $j = 1, ..., n$, *and*
- (ii) *characters* γ_j *of* H_j *and* $\alpha_j \in \mathbb{T}$, $j = 1, \ldots, n$, *such* that

$$
u(x) = \alpha_j \gamma_j (a_j^{-1} x)
$$

for all $x \in F_j$.

Let *G* be a discrete group and, for any subset *E* of *G*, let $C^*_\delta(E) = \langle \rho(x) : x \in E \rangle$, the norm closure in $C^*_{\rho}(G)$ of the linear span of all operators $\rho(x)$, $x \in E$.

For any locally compact group *G*, let $C^*_\delta(G)$ denote the norm-closure in $\mathcal{B}(L^2(G))$ of the linear span of all operators $\rho(x)$, $x \in G$.

Remark (Bekka, Kaniuth, Lau and Schlichting, Proc. A.M.S. 1996):

 $C^*_\delta(G) \cong C^*_\rho(G_d) \Longleftrightarrow G$ contains an open subgroup *H* which is amenable as discrete.

Theorem ⁵ (Kaniuth-Lau-Ulger, 2013)**.** *Let G be ^a locally compact group which contains* an open *subgroup H such that* H_d *is* amenable and let $u \in B_\rho(G)$. Then *^u is power bounded if and only if* (i) *and* (ii) *hold.*

(i) $||u||_{\infty} \leq 1$ *and there exist pairwise disjoint sets* $F_1, \ldots, F_n \in \mathcal{R}_c(G)$ *such that* $E_u = \bigcup_{j=1}^n F_j$, *closed subgroups* H_j *of G and* $a_j \in G$ *such that* $F_j \subseteq a_j H_j$, *and characters* γ_j *of* H_j *and* $\alpha_n \in \mathbb{T}$ *such that* $u(x) = \alpha_j \gamma_j (a_j^{-1}x)$ *for all* $x \in F_j$, $1 \leq j \leq n$.

(ii) *For each* $T \in C^*_\delta(G \backslash E_u)$, $\langle u^n, T \rangle \to 0$ *as* $n \to \infty$ *.*

Geometric Form of Hahn-Banach Separation Theorem.

Every closed vector subspace of ^a locally convex space is the intersection of the closed hyperplanes containing it.

Lemma. Let H be a closed subgroup of G , and U be a neighbourhood basis U *of the identity of G. If G has the H-separation property, then*

$$
H = \bigcap_{U \in \mathcal{U}} \overline{H U H}.
$$

Theorem (Kaniuth-Lau, 2003)**.** *If G is connected, then G has ^H-separation prop* $erty \iff$ (*) *holds.*

Open Problem 2: If *G* has property (∗) for each closed subgroup of *G,* does *G* have the invariant complementation property?

For **general** *G*

 $G - [\text{SIN}] \underset{\Leftarrow}{\Rightarrow} G$ has separation $\Longrightarrow G$ has geometric separtion property property \Downarrow 1 Complementation property

For **connected** *G* :

$$
G - [SIN] \iff G \text{ has separation} \iff G \text{ has geometricproperty} \text{separation property}
$$

5. Natural projections

Let *A* be ^a commutative Banach algebra with ^a BAI.

For $f \in A^*$ and $a \in A$, by $a \cdot f$ we denote the functional on A defined by $\langle a \cdot f, b \rangle = \langle f, ab \rangle$.

A projection $P: A^* \to A^*$ is said to be "*invariant*" (or *A*-invariant) if, for an *a* ∈ *A* and *f* ∈ *A*^{*}, the equality *P*(*a*·*f*) = *a*·*P*(*f*) holds. Similarly, a closed subspace *X* of A^* is said to be "invariant" if, for each $a \in A$ and $f \in X$, the functional $a \cdot f$ is in *X* (i.e. *X* is an *A*-module for the natural action $(a, f) \mapsto a \cdot f$). If there is an invariant projection from *A*[∗] onto ^a closed invariant subspace *X* of *A*[∗] then *X* is said to be "invariantly complemented in *A*∗"*.*

We say that a projection $P: A^* \mapsto A^*$ is "*natural*" if, for each $\gamma \in \Delta(A)$, either $P(\gamma) = \gamma$ or $P(\gamma) = 0$ *.*

If *X* is ^a closed invariant subspace of *A*[∗] and if there is natural projection *P* from A^* onto X we shall say that X is "naturally complemented" in A^* .

Lemma B. Let $P: A^* \to A^*$ be a projection. Then

- a) *P* is natural iff, for each $\gamma \in \Delta(A)$ and $a \in A$, $P(a \cdot \gamma) = a \cdot P(\gamma)$.
- b) *Every invariant projection* $P: A^* \to A^*$ *is natural.*

Theorem (Lau and Ulger, Trans. A.M.S. to appear)**.** *Let G be an amenable locally compact group*, and *I* be a *closed* ideal in $A(G)$. Then $X = I^{\perp}$ is invariantly *complemented* \iff *X is naturally complemented.*

REFERENCES

- 1. M. Bekka, E. Kaniuth, A.T. Lau and G. Schlichting, *On C*[∗]*-algebras associated with locally compact groups*, Proc. Amer. Math. Soc. **¹²⁴** no. ¹⁰ (1996), 3151-3158.
- 2. C.-H. Chu and A.T.-M. Lau, *Jordan structures in harmonic functions and Fourier algebras on homogeneous spaces*, Math. Ann. **³³⁶** no.4 (2006), 803-840.
- 3. C.-H. Chu and A.T.-M. Lau, *Harmonic functions on groups and Fourier*, Lecture Notes in Mathematics 1782, Springer-Verlag, Berlin, 2002, pp. viii+100.
- 4. B.E. Forrest, *Amenability and ideals in A*(*G*) , Austral. J. Math. Ser. A **⁵³** (1992), 143-155.
- 5. B.E. Forrest, E. Kaniuth, A.T.-M. Lau and N. Spronk, *Ideals with bounded approximate identities in Fourier algebras*, J. Funct. Anal. **²⁰³** (2003), 286-304.
- 6. J.E. Gilbert, *On projections of* $L^{\infty}(G)$ *and translation invariant subspaces*, Proc. London Math. Soc. **¹⁹** (1969), 69-88.
- 7. E. Kaniuth and A.T. Lau, *A separation property of positive definite functions on locally compact groups and applications to Fourier algebras*, J. Funct. Anal. **¹⁷⁵** no.1 (2000), 89-110.
- 8. E. Kaniuth and A.T. Lau, *On ^a separation property of positive definite functions on locally compact groups*, Math. Z. **²⁴³** no. ¹ (2003), 161-177.
- 9. E. Kaniuth and A.T. Lau, *Extensions and separation of positive definite functions on locally compact groups*, Trans. Amer. Math. Soc. **³⁵⁹** no. ¹ (2007), 447-463.
- 10. E. Kaniuth, A.T.-M. Lau and A. Ülger, *Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras*, J. London Math. Soc. **⁸¹** (2) (2010), 255-275.
- 11. E. Kaniuth, A.T.-M. Lau and A. Ülger, *Power boundedness in Fourier and Fourier Stieltjes algebras and other commutative Banach algebras*, J. of Functional Analysis **²⁶⁰** (2011), 2191- 2496.
- 12. K. Kaniuth, A.T. Lau and A. Ülger, *Power boundedness in Banach algebras associated to locally compact groups* (to appear).
- 13. A.T. Lau and A. $\ddot{\text{U}}$ lger, *Characterizations of closed ideals with bounded approximate identities in commutative Banach algebras, complemented subspaces of the group von Neumann algebras and applications*, Transaction A.M.S. (preprint).
- 14. B. Schreiber, *Measures with bounded convolution powers*, Trans. Amer. Math. Soc. **¹⁵¹** (1970), 405-431.
- 15. B. Schreiber, *On the coset ring and strong Ditkin sets*, Pacific J. Math. **³³** (1970), 805-812.