Recent advances on Arens (ir)regularity

Matthias Neufang

Carleton University (Ottawa) and Université Lille 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Topological centre problems

2 Topological centre problems

3 Topological centres as a tool

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Arens products: Algebraic description

Arens products: Algebraic description

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A} \hookrightarrow {\mathcal A}^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

Arens products: Algebraic description

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A} \hookrightarrow {\mathcal A}^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

 $X,Y\in \mathcal{A}^{**}$, $f\in \mathcal{A}^{*}$, $a,b\in \mathcal{A}$

Arens products: Algebraic description

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A} \hookrightarrow {\mathcal A}^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

 $X,Y\in\mathcal{A}^{**}$, $f\in\mathcal{A}^{*}$, $a,b\in\mathcal{A}$

 $\langle \mathbf{X} \Box \mathbf{Y}, f \rangle = \langle X, Y \Box f \rangle$

Arens products: Algebraic description

 $\mathcal A$ Banach algebra; as Banach space: $\mathcal A \hookrightarrow \mathcal A^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

 $X, Y \in \mathcal{A}^{**}, f \in \mathcal{A}^{*}, a, b \in \mathcal{A}$ $\langle X \Box Y, f \rangle = \langle X, Y \Box f \rangle$ $\langle Y \Box f, a \rangle = \langle Y, f \Box a \rangle$

Arens products: Algebraic description

 $\mathcal A$ Banach algebra; as Banach space: $\mathcal A \hookrightarrow \mathcal A^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

 $X, Y \in \mathcal{A}^{**}, f \in \mathcal{A}^{*}, a, b \in \mathcal{A}$ $\langle X \Box Y, f \rangle = \langle X, Y \Box f \rangle$ $\langle Y \Box f, a \rangle = \langle Y, f \Box a \rangle$ $\langle f \Box a, b \rangle = \langle f, a \cdot b \rangle$

Arens products: Algebraic description

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A} \hookrightarrow {\mathcal A}^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

$$X, Y \in \mathcal{A}^{**}, f \in \mathcal{A}^{*}, a, b \in \mathcal{A}$$
$$\langle X \Box Y, f \rangle = \langle X, Y \Box f \rangle$$
$$\langle Y \Box f, a \rangle = \langle Y, f \Box a \rangle$$
$$\langle f \Box a, b \rangle = \langle f, a \cdot b \rangle$$

... and the other way around:

Arens products: Algebraic description

 ${\mathcal A}$ Banach algebra; as Banach space: ${\mathcal A} \hookrightarrow {\mathcal A}^{**}$

 \exists 2 canonical extensions of product to \mathcal{A}^{**} (Arens '51)

$$X, Y \in \mathcal{A}^{**}, f \in \mathcal{A}^{*}, a, b \in \mathcal{A}$$
$$\langle X \Box Y, f \rangle = \langle X, Y \Box f \rangle$$
$$\langle Y \Box f, a \rangle = \langle Y, f \Box a \rangle$$
$$\langle f \Box a, b \rangle = \langle f, a \cdot b \rangle$$

... and the other way around:

 $\mathcal{A} \text{ comm.e} \Leftrightarrow X \Box Y = Y \bigtriangleup X \quad \forall \quad X, Y \in \mathcal{A}^{**}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Arens products: Topological description

Arens products: Topological description

$$\begin{array}{rcl} \mathcal{A} \ni x_i & \longrightarrow & X \in \mathcal{A}^{**} & (w^*) \\ \mathcal{A} \ni y_j & \longrightarrow & Y \in \mathcal{A}^{**} & (w^*) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Arens products: Topological description

$$\mathcal{A} \ni x_i \longrightarrow X \in \mathcal{A}^{**}$$
 (w*)
 $\mathcal{A} \ni y_j \longrightarrow Y \in \mathcal{A}^{**}$ (w*)

 $X \square Y = \lim_{i \to j} \lim_{i \to j} x_i \cdot y_j$ $X \bigtriangleup Y = \lim_{i \to j} \lim_{i \to j} x_i \cdot y_j$

Arens products: Topological description

$$\begin{array}{ccc} \mathcal{A} \ni x_i & \longrightarrow & X \in \mathcal{A}^{**} & (w^*) \\ \mathcal{A} \ni y_j & \longrightarrow & Y \in \mathcal{A}^{**} & (w^*) \end{array}$$

 $X \square Y = \lim_{i} \lim_{j} x_i \cdot y_j$ $X \triangle Y = \lim_{j} \lim_{i} x_i \cdot y_j$

 $\Box = \triangle \Leftrightarrow: \mathcal{A} \text{ Arens regular (e.g., operator algebras)}$

Arens products: Topological description

$$\begin{array}{ccc} \mathcal{A} \ni x_i & \longrightarrow & X \in \mathcal{A}^{**} & (w^*) \\ \mathcal{A} \ni y_j & \longrightarrow & Y \in \mathcal{A}^{**} & (w^*) \end{array}$$

 $X \square Y = \lim_{i \to j} \lim_{i \to j} x_i \cdot y_j$ $X \bigtriangleup Y = \lim_{i \to j} \lim_{i \to j} x_i \cdot y_j$

 $\Box = \triangle \Leftrightarrow: \mathcal{A} \text{ Arens regular (e.g., operator algebras)}$

But for algebras closest to the heart of harmonic analysts:

 $X \Box Y \neq X \bigtriangleup Y$

Arens products: Topological description

$$\begin{array}{ccc} \mathcal{A} \ni x_i & \longrightarrow & X \in \mathcal{A}^{**} & (w^*) \\ \mathcal{A} \ni y_j & \longrightarrow & Y \in \mathcal{A}^{**} & (w^*) \end{array}$$

 $X \square Y = \lim_{i \to j} \lim_{i \to j} x_i \cdot y_j$ $X \bigtriangleup Y = \lim_{i \to j} \lim_{i \to j} x_i \cdot y_j$

 $\Box = \triangle \Leftrightarrow: \mathcal{A} \text{ Arens regular (e.g., operator algebras)}$

But for algebras closest to the heart of harmonic analysts:

 $X \Box Y \neq X \bigtriangleup Y$

 \rightarrow How to measure the degree of non-regularity?

Topological centres

Topological centres

$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \triangle Y \quad \forall Y \}$

Topological centres

$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \triangle Y \quad \forall Y \} \\ = \{ X \mid Y \mapsto X \Box Y \ w^* \text{-cont.} \}$

Topological centres

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \bigtriangleup Y \quad \forall Y \}$$

= $\{ X \mid Y \mapsto X \Box Y \ w^{*}\text{-cont.} \}$
$$Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \Box X = Y \bigtriangleup X \quad \forall Y \}$$

= $\{ X \mid Y \mapsto Y \bigtriangleup X \ w^{*}\text{-cont.} \}$

Topological centres

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \bigtriangleup Y \quad \forall Y \}$$

= $\{ X \mid Y \mapsto X \Box Y \ w^*\text{-cont.} \}$
$$Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \Box X = Y \bigtriangleup X \quad \forall Y \}$$

= $\{ X \mid Y \mapsto Y \bigtriangleup X \ w^*\text{-cont.} \}$

 ${\mathcal A}$ Arens regular $:\Leftrightarrow Z_\ell = Z_r = {\mathcal A}^{**}$

Topological centres

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \triangle Y \quad \forall Y \}$$
$$= \{ X \mid Y \mapsto X \Box Y \ w^{*} \text{-cont.} \}$$
$$Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \Box X = Y \triangle X \quad \forall Y \}$$
$$= \{ X \mid Y \mapsto Y \triangle X \ w^{*} \text{-cont.} \}$$

 ${\mathcal A}$ Arens regular $:\Leftrightarrow Z_\ell = Z_r = {\mathcal A}^{**}$

Definition (Dales-Lau '05)

 \mathcal{A} Left Strongly Arens Irregular (LSAI) : $\Leftrightarrow Z_{\ell} = \mathcal{A}$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Topological centres

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \triangle Y \quad \forall Y \}$$
$$= \{ X \mid Y \mapsto X \Box Y \ w^{*} \text{-cont.} \}$$
$$Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \Box X = Y \triangle X \quad \forall Y \}$$
$$= \{ X \mid Y \mapsto Y \triangle X \ w^{*} \text{-cont.} \}$$

 $\mathcal{A} \text{ Arens regular } :\Leftrightarrow \ Z_\ell = Z_r = \mathcal{A}^{**}$

Definition (Dales-Lau '05)

 $\mathcal{A} \text{ Left Strongly Arens Irregular (LSAI) } :\Leftrightarrow Z_{\ell} = \mathcal{A}$ $\mathcal{A} \text{ Right Strongly Arens Irregular (RSAI) } :\Leftrightarrow Z_r = \mathcal{A}$

・ロト・西ト・山田・山田・山市・山口・

Topological centres

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \triangle Y \quad \forall Y \} \\ = \{ X \mid Y \mapsto X \Box Y \ w^{*}\text{-cont.} \} \\ Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \Box X = Y \triangle X \quad \forall Y \} \\ = \{ X \mid Y \mapsto Y \triangle X \ w^{*}\text{-cont.} \}$$

 $\mathcal{A} \text{ Arens regular } :\Leftrightarrow \ Z_\ell = Z_r = \mathcal{A}^{**}$

Definition (Dales-Lau '05)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Topological centres

$$Z_{\ell}(\mathcal{A}^{**}) := \{ X \mid X \Box Y = X \triangle Y \quad \forall Y \}$$
$$= \{ X \mid Y \mapsto X \Box Y \ w^{*} \text{-cont.} \}$$
$$Z_{r}(\mathcal{A}^{**}) := \{ X \mid Y \Box X = Y \triangle X \quad \forall Y \}$$
$$= \{ X \mid Y \mapsto Y \triangle X \ w^{*} \text{-cont.} \}$$

 \mathcal{A} Arens regular $:\Leftrightarrow Z_\ell = Z_r = \mathcal{A}^{**}$

Definition (Dales-Lau '05)

 ${\cal A} \text{ comm.e} \Rightarrow Z_\ell = Z_r = {\sf alg. centre of } {\cal A}^{**}$ (w.r.t. either product)

Fundamental example

Fundamental example

Group algebra

$$L_1(\mathcal{G}) = L_1(\mathcal{G}, \lambda)$$

Fundamental example

Group algebra

$$L_1(\mathcal{G}) = L_1(\mathcal{G}, \lambda)$$

with convolution product:

$$(f * g)(x) = \int_{\mathcal{G}} f(y) g(y^{-1}x) d\lambda(y)$$

Fundamental example

Group algebra

$$L_1(\mathcal{G}) = L_1(\mathcal{G}, \lambda)$$

with convolution product:

$$(f * g)(x) = \int_{\mathcal{G}} f(y) g(y^{-1}x) d\lambda(y)$$

Theorem (Lau–Losert '88)

 $L_1(\mathcal{G})$ is SAI for any locally compact group \mathcal{G} .

Asymmetries

Asymmetries

Obviously: $Z_{\ell} = \mathcal{A}^{**} \Leftrightarrow Z_r = \mathcal{A}^{**}$

Asymmetries

Obviously:
$$Z_{\ell} = \mathcal{A}^{**} \Leftrightarrow Z_r = \mathcal{A}^{**}$$

However: $Z_{\ell} = \mathcal{A} \Rightarrow Z_r = \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Asymmetries

Obviously: $Z_{\ell} = \mathcal{A}^{**} \Leftrightarrow Z_r = \mathcal{A}^{**}$ However: $Z_{\ell} = \mathcal{A} \Rightarrow Z_r = \mathcal{A}$ Consider the space of trace class operators $\mathcal{T}(L_2(\mathcal{G}))$.

Asymmetries

Obviously: $Z_{\ell} = \mathcal{A}^{**} \Leftrightarrow Z_r = \mathcal{A}^{**}$ However: $Z_{\ell} = \mathcal{A} \Rightarrow Z_r = \mathcal{A}$ Consider the space of trace class operators $\mathcal{T}(L_2(\mathcal{G}))$.

Proposition (Dales-Lau '05; N)

 $LSAI \Rightarrow RSAI$

Example convolution algebra $\mathcal{T}(\mathcal{G}) = (\mathcal{T}(L_2(\mathcal{G})), *)$

$$\rho * \tau := \int_{\mathcal{G}} L_x \rho L_{x^{-1}} \pi(\tau)(x) \, dx$$

 ${\mathcal G}$ non-compact, second countable $\Rightarrow {\mathcal T}({\mathcal G})$ LSAI but not RSAI

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Arens products & Kadison–Singer Problem

Arens products & Kadison–Singer Problem

Last summer the famous Kadison–Singer Problem ('59) was solved:

Arens products & Kadison–Singer Problem

Last summer the famous Kadison–Singer Problem ('59) was solved:

Theorem (Marcus-Spielman-Srivastava '13)

Any $m \in \beta \mathbb{Z} \subseteq \ell_{\infty}(\mathbb{Z})^*$ extends uniquely to pure state on $\mathcal{B}(\ell_2(\mathbb{Z}))$

Last summer the famous Kadison-Singer Problem ('59) was solved:

Theorem (Marcus-Spielman-Srivastava '13)

Any $m \in \beta \mathbb{Z} \subseteq \ell_{\infty}(\mathbb{Z})^*$ extends uniquely to pure state on $\mathcal{B}(\ell_2(\mathbb{Z}))$

Theorem (Equivalent statement: Weaver '04)

Last summer the famous Kadison-Singer Problem ('59) was solved:

Theorem (Marcus-Spielman-Srivastava '13)

Any $m \in \beta \mathbb{Z} \subseteq \ell_{\infty}(\mathbb{Z})^*$ extends uniquely to pure state on $\mathcal{B}(\ell_2(\mathbb{Z}))$

Theorem (Equivalent statement: Weaver '04)

 $\exists M \geq 2 \text{ and } \varepsilon > 0 \text{ such that:}$

00

Last summer the famous Kadison-Singer Problem ('59) was solved:

Theorem (Marcus–Spielman–Srivastava '13)

Any $m \in \beta \mathbb{Z} \subseteq \ell_{\infty}(\mathbb{Z})^*$ extends uniquely to pure state on $\mathcal{B}(\ell_2(\mathbb{Z}))$

Theorem (Equivalent statement: Weaver '04)

 $\exists M \ge 2 \text{ and } \varepsilon > 0 \text{ such that:}$ given $x_1, \ldots, x_n \in \mathbb{C}^k$ $(n \ge 2)$ with ℓ_2 -norm ≤ 1

Last summer the famous Kadison–Singer Problem ('59) was solved:

Theorem (Marcus–Spielman–Srivastava '13)

Any $m \in \beta \mathbb{Z} \subseteq \ell_{\infty}(\mathbb{Z})^*$ extends uniquely to pure state on $\mathcal{B}(\ell_2(\mathbb{Z}))$

Theorem (Equivalent statement: Weaver '04)

 $\exists \ M \geq 2 \ \text{and} \ \varepsilon > 0 \ \text{such that:} \\ \text{given } x_1, \dots, x_n \in \mathbb{C}^k \ (n \geq 2) \ \text{with} \ \ell_2\text{-norm} \leq 1 \ \text{and}$

$$\sum_i |\langle x_i, y
angle|^2 \leq M \;\;\; orall \;\;$$
 unit vector $y \in \mathbb{C}^k$

na n

Last summer the famous Kadison–Singer Problem ('59) was solved:

Theorem (Marcus-Spielman-Srivastava '13)

Any $m \in \beta \mathbb{Z} \subseteq \ell_{\infty}(\mathbb{Z})^*$ extends uniquely to pure state on $\mathcal{B}(\ell_2(\mathbb{Z}))$

Theorem (Equivalent statement: Weaver '04)

 $\exists \ M \geq 2 \ \text{and} \ \varepsilon > 0 \ \text{such that:} \\ \text{given } x_1, \dots, x_n \in \mathbb{C}^k \ (n \geq 2) \ \text{with} \ \ell_2\text{-norm} \leq 1 \ \text{and}$

$$\sum_i |\langle x_i,y
angle|^2 \leq M \;\;\; orall \;\;$$
 unit vector $y\in \mathbb{C}^k$

 $\Rightarrow \exists \text{ partition } A_1, \dots, A_\ell \ (\ell \geq 2) \text{ of } \{1, \dots, n\}$

na n

Last summer the famous Kadison-Singer Problem ('59) was solved:

Theorem (Marcus-Spielman-Srivastava '13)

Any $m \in \beta \mathbb{Z} \subseteq \ell_{\infty}(\mathbb{Z})^*$ extends uniquely to pure state on $\mathcal{B}(\ell_2(\mathbb{Z}))$

Theorem (Equivalent statement: Weaver '04)

 $\exists M \ge 2 \text{ and } \varepsilon > 0 \text{ such that:} \\ \text{given } x_1, \dots, x_n \in \mathbb{C}^k \text{ } (n \ge 2) \text{ with } \ell_2\text{-norm} \le 1 \text{ and} \\ \end{cases}$

$$\sum_i |\langle x_i, y
angle|^2 \leq M \;\;\; orall \;\;$$
 unit vector $y \in \mathbb{C}^k$

 \Rightarrow \exists partition A_1,\ldots,A_ℓ ($\ell\geq 2$) of $\{1,\ldots,n\}$ with

$$\sum_{i \in A_j} |\langle x_i, y \rangle|^2 \leq M - \varepsilon \quad \forall \text{ unit vector } y \in \mathbb{C}^k, \ \forall \ j$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Kadison–Singer & $\mathcal{T}(\mathcal{G})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kadison–Singer & $\mathcal{T}(\mathcal{G})$

Proposition (N)

Kadison–Singer for countable discrete ${\mathcal G}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kadison–Singer & $\mathcal{T}(\mathcal{G})$

Proposition (N)

Kadison–Singer for countable discrete $\mathcal G$

 \Rightarrow the map

$$\beta \mathcal{G} \ni m \mapsto \widetilde{m} \in \mathcal{T}(\mathcal{G})^{**}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Kadison–Singer & $\mathcal{T}(\mathcal{G})$

Proposition (N)

Kadison–Singer for countable discrete ${\mathcal G}$

 \Rightarrow the map

$$\beta \mathcal{G} \ni m \mapsto \widetilde{m} \in \mathcal{T}(\mathcal{G})^{**}$$

is multiplicative w.r.t. convolution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Kadison–Singer & $\mathcal{T}(\mathcal{G})$

Proposition (N)

Kadison–Singer for countable discrete ${\mathcal G}$

 \Rightarrow the map

$$\beta \mathcal{G} \ni m \mapsto \widetilde{m} \in \mathcal{T}(\mathcal{G})^{**}$$

is multiplicative w.r.t. convolution

Transfer of topological dynamics!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Topological centre problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Ghahramani–Lau Conjecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The Ghahramani–Lau Conjecture

Recall:

Theorem (Lau–Losert '88)

 $L_1(\mathcal{G})$ is SAI for any LC group \mathcal{G} .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Ghahramani–Lau Conjecture

Recall:

Theorem (Lau–Losert '88)

 $L_1(\mathcal{G})$ is SAI for any LC group \mathcal{G} .

Now consider the measure algebra:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Ghahramani–Lau Conjecture

Recall:

Theorem (Lau–Losert '88)

 $L_1(\mathcal{G})$ is SAI for any LC group \mathcal{G} .

Now consider the measure algebra:

 $M(\mathcal{G}) = \text{complex (finite) Radon measures}$

with convolution product

The Ghahramani–Lau Conjecture

Recall:

Theorem (Lau–Losert '88)

 $L_1(\mathcal{G})$ is SAI for any LC group \mathcal{G} .

Now consider the measure algebra:

 $M(\mathcal{G}) = \text{complex (finite) Radon measures}$

with convolution product

<u>Note:</u> $L_1(\mathcal{G}) =$ absolutely continuous measures in $M(\mathcal{G})$

The Ghahramani–Lau Conjecture

Recall:

Theorem (Lau–Losert '88)

 $L_1(\mathcal{G})$ is SAI for any LC group \mathcal{G} .

Now consider the measure algebra:

 $M(\mathcal{G}) = \text{complex (finite) Radon measures}$

with convolution product

<u>Note</u>: $L_1(\mathcal{G})$ = absolutely continuous measures in $M(\mathcal{G})$

Conjecture (Lau '94 & Ghahramani-Lau '95)

 $M(\mathcal{G})$ is SAI for any LC group \mathcal{G} .

First results

Theorem (N)

The conjecture holds for all non-compact groups \mathcal{G} s.t. \mathcal{G} has non-measurable cardinality $OR \ k(\mathcal{G}) \ge 2^{\chi(\mathcal{G})}$

One cannot prove in ZFC the existence of measurable cardinals (Ulam '30).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

First results

Theorem (N)

The conjecture holds for all non-compact groups \mathcal{G} s.t. \mathcal{G} has non-measurable cardinality $OR \ k(\mathcal{G}) \ge 2^{\chi(\mathcal{G})}$

One cannot prove in ZFC the existence of measurable cardinals (Ulam '30).

Theorem (Losert '09)

The second condition can be weakened to $k(\mathcal{G}) \geq \chi(\mathcal{G})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Key technique: Factorization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Key technique: Factorization

Definition (N)

 \mathcal{A} Banach algebra, $\kappa \geq \aleph_0$.

Key technique: Factorization

Definition (N)

- \mathcal{A} Banach algebra, $\kappa \geq \aleph_0$.
 - **1** A has factorization property of level κ (F_{κ}) if

 $\forall (h_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^*, |I| \leq \kappa$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Key technique: Factorization

Definition (N)

- \mathcal{A} Banach algebra, $\kappa \geq \aleph_0$.
 - \mathcal{A} has factorization property of level κ (F_{κ}) if
 - $\forall (h_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^*, |I| \leq \kappa$
 - $\exists (X_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^{**} \ \exists h \in \mathcal{A}^*$

 $h_i = X_i \Box h \quad (i \in I)$

Key technique: Factorization

Definition (N)

- \mathcal{A} Banach algebra, $\kappa \geq \aleph_0$.
 - **1** A has factorization property of level κ (F_{κ}) if

$$\forall (h_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^*, |I| \leq \kappa$$

 $\exists (X_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^{**} \ \exists h \in \mathcal{A}^*$

 $h_i = X_i \Box h \quad (i \in I)$

 A has Mazur's property of level κ (M_κ) if any X ∈ A^{**} which is w^{*}-κ-continuous on A^{*}, lies in A.

Key technique: Factorization

Definition (N)

- \mathcal{A} Banach algebra, $\kappa \geq \aleph_0$.
 - A has factorization property of level κ (F_{κ}) if
 - $\forall (h_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^*, |I| \leq \kappa$
 - $\exists (X_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^{**} \ \exists h \in \mathcal{A}^*$

 $h_i = X_i \Box h \quad (i \in I)$

 A has Mazur's property of level κ (M_κ) if any X ∈ A^{**} which is w^{*}-κ-continuous on A^{*}, lies in A.

Theorem (N)

 \mathcal{A} has F_{κ} and M_{κ} for some $\kappa \geq \aleph_0 \Rightarrow \mathcal{A}$ is SAI

Key technique: Factorization

Definition (N)

- \mathcal{A} Banach algebra, $\kappa \geq \aleph_0$.
 - **1** A has factorization property of level κ (F_{κ}) if

$$orall \left(egin{array}{c} egin{array}{c} eta_i \end{array}
ight)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^*, \ |I| \leq \kappa$$

 $\exists (X_i)_{i \in I} \subseteq \mathsf{B}_1 \mathcal{A}^{**} \ \exists h \in \mathcal{A}^*$

$$h_i = X_i \Box h \quad (i \in I)$$

 A has Mazur's property of level κ (M_κ) if any X ∈ A^{**} which is w^{*}-κ-continuous on A^{*}, lies in A.

Theorem (N)

 \mathcal{A} has F_{κ} and M_{κ} for some $\kappa \geq \aleph_0 \Rightarrow \mathcal{A}$ is SAI

Theorem (N; Hu–N)

 $M(\mathcal{G})$ has $F_{k(\mathcal{G})}$ (for non-compact \mathcal{G}) and $M_{|\mathcal{G}|}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Ghahramani-Lau Conjecture is always true

The Ghahramani-Lau Conjecture is always true

Theorem (Losert–N–Pachl–Steprāns)

 $M(\mathcal{G})$ is SAI for any LC group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The Ghahramani–Lau Conjecture is always true

Theorem (Losert–N–Pachl–Steprāns)

 $M(\mathcal{G})$ is SAI for any LC group.

Idea of proof: Factorization in the dual of singular measures!

The Ghahramani–Lau Conjecture is always true

Theorem (Losert–N–Pachl–Steprāns)

 $M(\mathcal{G})$ is SAI for any LC group.

Idea of proof: Factorization in the dual of singular measures!

 \rightsquigarrow Distinction between cases $|\mathcal{G}| \leq \mathfrak{c}$ and $|\mathcal{G}| > \mathfrak{c}$

The Ghahramani–Lau Conjecture is always true

Theorem (Losert–N–Pachl–Steprāns)

 $M(\mathcal{G})$ is SAI for any LC group.

Idea of proof: Factorization in the dual of singular measures!

 \rightsquigarrow Distinction between cases $|\mathcal{G}| \leq \mathfrak{c}$ and $|\mathcal{G}| > \mathfrak{c}$

We only sketch the <u>first</u> case below (with \mathcal{G} non-discrete).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thinness: separation of singular measures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thinness: separation of singular measures

Definition (L–N–P–S)

Let κ be a cardinal. Then $\mu \in M(\mathcal{G})$ is κ -thin if $\exists P \subseteq \mathcal{G}$ s.t. $|P| = \kappa$ and $\mu * p \perp \mu * p' \forall p \neq p'$ in P.

Thinness: separation of singular measures

Definition (L–N–P–S)

Let κ be a cardinal. Then $\mu \in M(\mathcal{G})$ is κ -thin if $\exists P \subseteq \mathcal{G}$ s.t. $|P| = \kappa$ and $\mu * p \perp \mu * p' \forall p \neq p'$ in P.

The following generalizes a result by Prokaj ('03) for $\mathcal{G} = \mathbb{R}$.

Theorem (L–N–P–S)

Every $\mu \in M_s(\mathcal{G})$ is c-thin.

Thinness: separation of singular measures

Definition (L–N–P–S)

Let κ be a cardinal. Then $\mu \in M(\mathcal{G})$ is κ -thin if $\exists P \subseteq \mathcal{G}$ s.t. $|P| = \kappa$ and $\mu * p \perp \mu * p' \forall p \neq p'$ in P.

The following generalizes a result by Prokaj ('03) for $\mathcal{G} = \mathbb{R}$.

Theorem (L–N–P–S)

Every $\mu \in M_s(\mathcal{G})$ is c-thin.

Corollary (Separation)

 $(F_{\alpha})_{\alpha \in I}$ family of finite subsets of $M_{s}(\mathcal{G})$ with $|I| \leq \mathfrak{c}$ $\Rightarrow \exists (x_{\alpha}) \subseteq \mathcal{G} \text{ s.t. } (F_{\alpha} * x_{\alpha}) \perp (F_{\beta} * x_{\beta}) \text{ if } \alpha \neq \beta \text{ in } I$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Factorization in the dual of singular measures

Factorization in the dual of singular measures

Factorization theorem (L–N–P–S)

 $\exists h \in \mathsf{B}_1 M_s(\mathcal{G})^* \text{ s.t. } \overline{\delta_{\mathcal{G}}}^{w^*} \Box h = \mathsf{B}_1 M_s(\mathcal{G})^*$

Factorization in the dual of singular measures

Factorization theorem (L–N–P–S)

 $\exists h \in \mathsf{B}_1 M_{\mathsf{s}}(\mathcal{G})^* \text{ s.t. } \overline{\delta_{\mathcal{G}}}^{\mathsf{w}^*} \Box h = \mathsf{B}_1 M_{\mathsf{s}}(\mathcal{G})^*$

The key to construct h is the Separation Lemma.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The conclusion

Theorem (L-N-P-S)

 $M(\mathcal{G})$ is SAI.

 $M(\mathcal{G})$ is SAI.

Proof.

Let $m \in Z_{\ell}(M(\mathcal{G})^{**})$

 $M(\mathcal{G})$ is SAI.

Proof.

Let $m \in Z_{\ell}(M(\mathcal{G})^{**})$

 \Rightarrow $m_s := m \mid_{M_s(\mathcal{G})^*}$ is w^* -cont. on any set of the form

 $\overline{\delta_{\mathcal{G}}}^{w^*} \Box h \subseteq M_{s}(\mathcal{G})^* \quad ext{where } h \in M_{s}(\mathcal{G})^*$

 $M(\mathcal{G})$ is SAI.

Proof.

Let $m \in Z_{\ell}(M(\mathcal{G})^{**})$

 \Rightarrow $m_s := m \mid_{M_s(\mathcal{G})^*}$ is w^* -cont. on any set of the form

$$\overline{\delta_{\mathcal{G}}}^{w^*} \Box h \subseteq M_{s}(\mathcal{G})^*$$
 where $h \in M_{s}(\mathcal{G})^*$

Factorization theorem $\Rightarrow m_s$ is w^* -cont. on $B_1 M_s(\mathcal{G})^*$

 $M(\mathcal{G})$ is SAI.

Proof.

Let $m \in Z_{\ell}(M(\mathcal{G})^{**})$

 \Rightarrow $m_s := m \mid_{M_s(\mathcal{G})^*}$ is w^* -cont. on any set of the form

$$\overline{\delta_{\mathcal{G}}}^{w^*} \Box h \subseteq \mathit{M_s}(\mathcal{G})^* \quad ext{where } h \in \mathit{M_s}(\mathcal{G})^*$$

Factorization theorem $\Rightarrow m_s$ is w*-cont. on $B_1 M_s(\mathcal{G})^*$ $\Rightarrow m_s \in M(\mathcal{G})$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ○ のへで

 $M(\mathcal{G})$ is SAI.

Proof.

Let $m \in Z_{\ell}(M(\mathcal{G})^{**})$

 \Rightarrow $m_s := m \mid_{M_s(\mathcal{G})^*}$ is w^* -cont. on any set of the form

$$\overline{\delta_{\mathcal{G}}}^{w^*} \Box h \subseteq \mathit{M_s}(\mathcal{G})^*$$
 where $h \in \mathit{M_s}(\mathcal{G})^*$

Factorization theorem $\Rightarrow m_s$ is w^* -cont. on $B_1 M_s(\mathcal{G})^*$

$$\Rightarrow m_s \in \mathcal{M}(\mathcal{G})$$
$$m_a := m \mid_{L_1(\mathcal{G})^*} \in L_1(\mathcal{G})^{**} \text{ satisfies } m_a = m - m_s \in Z_\ell(\mathcal{M}(\mathcal{G})^{**})$$

 $M(\mathcal{G})$ is SAI.

Proof.

Let $m \in Z_{\ell}(M(\mathcal{G})^{**})$

 \Rightarrow $m_s := m \mid_{M_s(\mathcal{G})^*}$ is w^* -cont. on any set of the form

$$\overline{\delta_{\mathcal{G}}}^{w^*} \Box h \subseteq \mathit{M_s}(\mathcal{G})^*$$
 where $h \in \mathit{M_s}(\mathcal{G})^*$

Factorization theorem $\Rightarrow m_s$ is w^* -cont. on $B_1 M_s(\mathcal{G})^*$

$$\Rightarrow m_s \in \mathcal{M}(\mathcal{G})$$

$$m_a := m \mid_{L_1(\mathcal{G})^*} \in L_1(\mathcal{G})^{**} \text{ satisfies } m_a = m - m_s \in Z_\ell(\mathcal{M}(\mathcal{G})^{**})$$

$$\Rightarrow m_a \in Z_\ell(L_1(\mathcal{G})^{**}) = L_1(\mathcal{G}), \text{ and } m = m_a + m_s \in \mathcal{M}(\mathcal{G}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ghahramani-Lau beyond local compactness

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ghahramani-Lau beyond local compactness

Theorem (L-N-P-S)

Let \mathcal{G} be any Polish group. Then $M(\mathcal{G})$ is SAI.

Ghahramani–Lau beyond local compactness

Theorem (L-N-P-S)

Let \mathcal{G} be any Polish group. Then $M(\mathcal{G})$ is SAI.

Ingredients of proof:

Theorem (Mycielski '64)

Let G be a Polish group and $\emptyset \neq Z \subseteq G$ a meagre subset. Then there is a perfect set $P \subseteq G$ s.t. $xy^{-1} \notin Z$ for all $x \neq y$ in P.

Ghahramani–Lau beyond local compactness

Theorem (L-N-P-S)

Let \mathcal{G} be any Polish group. Then $M(\mathcal{G})$ is SAI.

Ingredients of proof:

Theorem (Mycielski '64)

Let G be a Polish group and $\emptyset \neq Z \subseteq G$ a meagre subset. Then there is a perfect set $P \subseteq G$ s.t. $xy^{-1} \notin Z$ for all $x \neq y$ in P.

Lemma (Well-known)

If a Polish group G contains a non-meagre, σ -compact Borel set, then G is LC.

Ghahramani–Lau beyond local compactness

Theorem (L-N-P-S)

Let \mathcal{G} be any Polish group. Then $M(\mathcal{G})$ is SAI.

Ingredients of proof:

Theorem (Mycielski '64)

Let G be a Polish group and $\emptyset \neq Z \subseteq G$ a meagre subset. Then there is a perfect set $P \subseteq G$ s.t. $xy^{-1} \notin Z$ for all $x \neq y$ in P.

Lemma (Well-known)

If a Polish group G contains a non-meagre, σ -compact Borel set, then G is LC.

Theorem (L–N–P–S)

If G is a Polish, non-LC group, every measure in M(G) is c-thin.

Commercial Break 1

For further structural results on $M(\mathcal{G})^{**}$:

H.G. Dales, A.T.-M. Lau & D. Strauss Second duals of measure algebras Dissertationes Mathematicae (2011)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

More on life beyond local compactness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

More on life beyond local compactness

 ${\mathcal G}$ any topological group

More on life beyond local compactness

 ${\mathcal G}$ any topological group

 $LUC(\mathcal{G}) =$ Left Uniformly Continuous bounded functions on \mathcal{G}

More on life beyond local compactness

 ${\cal G}$ any topological group

 $LUC(\mathcal{G}) =$ Left Uniformly Continuous bounded functions on \mathcal{G}

 $LUC(\mathcal{G})^*$ has convolution algebra structure:

More on life beyond local compactness

 ${\mathcal G}$ any topological group

 $LUC(\mathcal{G}) =$ Left Uniformly Continuous bounded functions on \mathcal{G}

 $LUC(\mathcal{G})^*$ has convolution algebra structure:

for $X, Y \in LUC(\mathcal{G})^*$ and $f \in LUC(\mathcal{G})$

 $\langle X \Box Y, f \rangle := \langle X, Y \Box f \rangle$

where $(Y \Box f)(x) := \langle Y, L_x f \rangle$ $(x \in \mathcal{G})$

More on life beyond local compactness

 ${\mathcal G}$ any topological group

 $\mathsf{LUC}(\mathcal{G}) = \mathsf{Left}$ Uniformly Continuous bounded functions on \mathcal{G}

 $LUC(\mathcal{G})^*$ has convolution algebra structure:

for $X, Y \in \mathsf{LUC}(\mathcal{G})^*$ and $f \in \mathsf{LUC}(\mathcal{G})$

 $\langle X \Box Y, f \rangle := \langle X, Y \Box f \rangle$

where $(Y \Box f)(x) := \langle Y, L_x f \rangle$ $(x \in \mathcal{G})$

 \rightsquigarrow LUC-Compactification

 $\mathcal{G}^{LUC} =$ spectrum of (commutative C^* -algebra) LUC(\mathcal{G})

is compact right topological semigroup

More on life beyond local compactness

 ${\mathcal G}$ any topological group

 $\mathsf{LUC}(\mathcal{G}) = \mathsf{Left}$ Uniformly Continuous bounded functions on \mathcal{G}

 $LUC(\mathcal{G})^*$ has convolution algebra structure:

for $X, Y \in \mathsf{LUC}(\mathcal{G})^*$ and $f \in \mathsf{LUC}(\mathcal{G})$

 $\langle X \Box Y, f \rangle := \langle X, Y \Box f \rangle$

where $(Y \Box f)(x) := \langle Y, L_x f \rangle$ $(x \in \mathcal{G})$

 \sim LUC-Compactification

 \mathcal{G}^{LUC} = spectrum of (commutative C*-algebra) LUC(\mathcal{G})

is compact right topological semigroup

Topological centres

 $Z_t(\mathsf{LUC}(\mathcal{G})^*) := \{ X \in \mathsf{LUC}(\mathcal{G})^* \mid \mathsf{LUC}(\mathcal{G})^* \ni Y \mapsto X \Box Y \ w^* \text{-cont.} \}$

More on life beyond local compactness

 ${\mathcal G}$ any topological group

 $\mathsf{LUC}(\mathcal{G}) = \mathsf{Left}$ Uniformly Continuous bounded functions on \mathcal{G}

 $LUC(\mathcal{G})^*$ has convolution algebra structure:

for $X, Y \in \mathsf{LUC}(\mathcal{G})^*$ and $f \in \mathsf{LUC}(\mathcal{G})$

 $\langle X \Box Y, f \rangle := \langle X, Y \Box f \rangle$

where $(Y \Box f)(x) := \langle Y, L_x f \rangle$ $(x \in \mathcal{G})$

 \rightsquigarrow LUC-Compactification

 $\mathcal{G}^{\mathsf{LUC}} = \mathsf{spectrum} \text{ of (commutative } C^*\text{-algebra}) \ \mathsf{LUC}(\mathcal{G})$

is compact right topological semigroup

Topological centres

 $Z_t(\mathsf{LUC}(\mathcal{G})^*) := \{ X \in \mathsf{LUC}(\mathcal{G})^* \mid \mathsf{LUC}(\mathcal{G})^* \ni Y \mapsto X \Box Y \text{ } w^*\text{-cont.} \}$ $Z_t(\mathcal{G}^{\mathsf{LUC}}) := \{ X \in \mathcal{G}^{\mathsf{LUC}} \mid \mathcal{G}^{\mathsf{LUC}} \ni Y \mapsto X \Box Y \text{ cont.} \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Csiszár's Conjecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Csiszár's Conjecture

Conjecture (Csiszár '71)

$Z_t(\mathsf{LUC}(\mathcal{G})^*) \stackrel{?}{=} \mathsf{algebra} \text{ of uniform measures } \mathsf{M}_{\mathsf{u}}(\mathcal{G}) \subseteq \mathsf{LUC}(\mathcal{G})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Csiszár's Conjecture

Conjecture (Csiszár '71)

 $Z_t(LUC(\mathcal{G})^*) \stackrel{?}{=} algebra of uniform measures M_u(\mathcal{G}) \subseteq LUC(\mathcal{G})$

$X \in M_u(\mathcal{G}) \iff \text{if } (f_i) \subseteq B_1 LUC(\mathcal{G}) \text{ equi-LUC net s.t. } f_i \to 0 \text{ ptw.}$ then $\langle X, f_i \rangle \to 0$

Csiszár's Conjecture

Conjecture (Csiszár '71)

 $Z_t(\mathsf{LUC}(\mathcal{G})^*) \stackrel{?}{=} \mathsf{algebra} \text{ of uniform measures } \mathsf{M}_{\mathsf{u}}(\mathcal{G}) \subseteq \mathsf{LUC}(\mathcal{G})$

$X \in \mathsf{M}_{\mathsf{u}}(\mathcal{G}) \iff \mathsf{if}(f_i) \subseteq \mathsf{B}_1\mathsf{LUC}(\mathcal{G}) \mathsf{ equi-LUC} \mathsf{ net s.t. } f_i \to 0 \mathsf{ ptw.}$ $\mathsf{then}\langle X, f_i angle \to 0$

• $M_u(\mathcal{G}) = M(\mathcal{G})$ if \mathcal{G} LC, or complete metric

Csiszár's Conjecture

Conjecture (Csiszár '71)

 $Z_t(LUC(\mathcal{G})^*) \stackrel{?}{=} algebra of uniform measures M_u(\mathcal{G}) \subseteq LUC(\mathcal{G})$

$X \in M_u(\mathcal{G}) \iff \text{if } (f_i) \subseteq B_1 LUC(\mathcal{G}) \text{ equi-LUC net s.t. } f_i \to 0 \text{ ptw.}$ then $\langle X, f_i \rangle \to 0$

- $M_u(\mathcal{G}) = M(\mathcal{G})$ if \mathcal{G} LC, or complete metric
- $M_u(\mathcal{G}) = M(\overline{\mathcal{G}})$ if \mathcal{G} second countable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Csiszár's Conjecture

Conjecture (Csiszár '71)

 $Z_t(\mathsf{LUC}(\mathcal{G})^*) \stackrel{?}{=} \mathsf{algebra} \text{ of uniform measures } \mathsf{M}_{\mathsf{u}}(\mathcal{G}) \subseteq \mathsf{LUC}(\mathcal{G})$

$$egin{aligned} X \in \mathsf{M}_{\mathsf{u}}(\mathcal{G}) & \Leftrightarrow & ext{if } (f_i) \subseteq \mathsf{B}_1\mathsf{LUC}(\mathcal{G}) ext{ equi-LUC net s.t. } f_i o 0 ext{ ptw.} \ & ext{then}\langle X, f_i
angle o 0 \end{aligned}$$

- $M_u(\mathcal{G}) = M(\mathcal{G})$ if \mathcal{G} LC, or complete metric
- $M_u(\mathcal{G}) = M(\overline{\mathcal{G}})$ if \mathcal{G} second countable

Theorem (Lau '86)

YES to Csiszár if \mathcal{G} is LC

Csiszár's Conjecture

Conjecture (Csiszár '71)

 $Z_t(\mathsf{LUC}(\mathcal{G})^*) \stackrel{?}{=} \mathsf{algebra} \text{ of uniform measures } \mathsf{M}_{\mathsf{u}}(\mathcal{G}) \subseteq \mathsf{LUC}(\mathcal{G})$

$$X \in \mathsf{M}_{\mathsf{u}}(\mathcal{G}) \iff \mathsf{if}(f_i) \subseteq \mathsf{B}_1\mathsf{LUC}(\mathcal{G}) \mathsf{ equi-LUC} \mathsf{ net s.t. } f_i \to 0 \mathsf{ ptw.}$$

 $\mathsf{then}\langle X, f_i
angle \to 0$

- $M_u(\mathcal{G}) = M(\mathcal{G})$ if \mathcal{G} LC, or complete metric
- $M_u(\mathcal{G}) = M(\overline{\mathcal{G}})$ if \mathcal{G} second countable

Theorem (Lau '86)

YES to Csiszár if G is LC

Theorem (Ferri–N)

YES to Csiszár if \mathcal{G} is separable

Pachl has generalized this to all ambitable groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

DTC sets beyond local compactness

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

DTC sets beyond local compactness

Definition

A set $D \subseteq LUC(\mathcal{G})^*$ is Determining for the Topological Centre if we have: $m \in LUC(\mathcal{G})^*$ lies in $Z_t(LUC(\mathcal{G})^*)$

whenever left mult. by m is w^* -cont. at all points of D.

DTC sets beyond local compactness

Definition

A set $D \subseteq LUC(\mathcal{G})^*$ is Determining for the Topological Centre if we have: $m \in LUC(\mathcal{G})^*$ lies in $Z_t(LUC(\mathcal{G})^*)$ whenever left mult. by m is w^* -cont. at all points of D.

<u>Recall</u>: $\kappa \geq \aleph_0$ cardinal; \mathcal{G} is κ -bounded if for every open nhd. U of $e_{\mathcal{G}}$ there is a set $A \subseteq \mathcal{G}$ with $|A| \leq \kappa$ such that $\mathcal{G} = UA$.

DTC sets beyond local compactness

Definition

A set $D \subseteq LUC(\mathcal{G})^*$ is Determining for the Topological Centre if we have: $m \in LUC(\mathcal{G})^*$ lies in $Z_t(LUC(\mathcal{G})^*)$ whenever left mult. by m is w^* -cont. at all points of D.

<u>Recall</u>: $\kappa \geq \aleph_0$ cardinal; \mathcal{G} is κ -bounded if for every open nhd. U of $e_{\mathcal{G}}$ there is a set $A \subseteq \mathcal{G}$ with $|A| \leq \kappa$ such that $\mathcal{G} = UA$.

Denote by $\mathfrak{B}_{\mathcal{G}}$ the least such cardinal.

DTC sets beyond local compactness

Definition

A set $D \subseteq LUC(\mathcal{G})^*$ is Determining for the Topological Centre if we have: $m \in LUC(\mathcal{G})^*$ lies in $Z_t(LUC(\mathcal{G})^*)$ whenever left mult. by m is w^* -cont. at all points of D.

<u>Recall</u>: $\kappa \geq \aleph_0$ cardinal; \mathcal{G} is κ -bounded if for every open nhd. U of $e_{\mathcal{G}}$ there is a set $A \subseteq \mathcal{G}$ with $|A| \leq \kappa$ such that $\mathcal{G} = UA$.

Denote by $\mathfrak{B}_{\mathcal{G}}$ the least such cardinal.

The following answers partially a question of Dales ('07), and generalizes a result by Budak–lşik–Pym ('11) in the LC case:

DTC sets beyond local compactness

Definition

A set $D \subseteq LUC(\mathcal{G})^*$ is Determining for the Topological Centre if we have: $m \in LUC(\mathcal{G})^*$ lies in $Z_t(LUC(\mathcal{G})^*)$ whenever left mult. by m is w^* -cont. at all points of D.

<u>Recall</u>: $\kappa \geq \aleph_0$ cardinal; \mathcal{G} is κ -bounded if for every open nhd. U of $e_{\mathcal{G}}$ there is a set $A \subseteq \mathcal{G}$ with $|A| \leq \kappa$ such that $\mathcal{G} = UA$.

Denote by $\mathfrak{B}_{\mathcal{G}}$ the least such cardinal.

The following answers partially a question of Dales ('07), and generalizes a result by Budak–Işik–Pym ('11) in the LC case:

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal. Then Csiszár's conjecture holds – with a 1 point DTC set!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Applications to \mathcal{G}^{LUC}

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Applications to \mathcal{G}^{LUC}

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Applications to \mathcal{G}^{LUC}

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Applications to \mathcal{G}^{LUC}

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal. Let $S \subseteq LUC(\mathcal{G})^*$ be a subsemigroup containing $\mathcal{G}^{LUC} \setminus \mathcal{G}$.

Applications to \mathcal{G}^{LUC}

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal. Let $S \subseteq LUC(\mathcal{G})^*$ be a subsemigroup containing $\mathcal{G}^{LUC} \setminus \mathcal{G}$. Then $Z_t(S) = M_u(\mathcal{G}) \cap S$ – with a 1 point DTC set!

Applications to $\mathcal{G}^{\mathsf{LUC}}$

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal. Let $S \subseteq LUC(\mathcal{G})^*$ be a subsemigroup containing $\mathcal{G}^{LUC} \setminus \mathcal{G}$. Then $Z_t(S) = M_u(\mathcal{G}) \cap S$ – with a 1 point DTC set!

Idea of proof: Factorization in LUC(G) via G^{LUC} -action

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Applications to \mathcal{G}^{LUC}

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal. Let $S \subseteq LUC(\mathcal{G})^*$ be a subsemigroup containing $\mathcal{G}^{LUC} \setminus \mathcal{G}$. Then $Z_t(S) = M_u(\mathcal{G}) \cap S$ – with a 1 point DTC set!

Idea of proof: Factorization in LUC(G) via G^{LUC} -action

Corollary

G separable. TFAE:

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Applications to \mathcal{G}^{LUC}

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal. Let $S \subseteq LUC(\mathcal{G})^*$ be a subsemigroup containing $\mathcal{G}^{LUC} \setminus \mathcal{G}$. Then $Z_t(S) = M_u(\mathcal{G}) \cap S$ – with a 1 point DTC set!

Idea of proof: Factorization in LUC(G) via G^{LUC} -action

Corollary

G separable. TFAE:

G is precompact

Applications to \mathcal{G}^{LUC}

Theorem (Lau–Pym '95)

$$\mathcal{G} \ LC \Rightarrow Z_t(\mathcal{G}^{\mathsf{LUC}}) = \mathcal{G}$$

Theorem (Ferri–N–Pachl)

Assume that \mathcal{G} is LC, or $\mathfrak{B}_{\mathcal{G}}$ is \aleph_0 , or a successor cardinal. Let $S \subseteq LUC(\mathcal{G})^*$ be a subsemigroup containing $\mathcal{G}^{LUC} \setminus \mathcal{G}$. Then $Z_t(S) = M_u(\mathcal{G}) \cap S$ – with a 1 point DTC set!

Idea of proof: Factorization in LUC(G) via G^{LUC} -action

Corollary

G separable. TFAE:

- *G* is precompact
- \exists mean on LUC(\mathcal{G}) invariant under \mathcal{G}^{LUC} -action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Commercial Break 2

J. Pachl

Uniform Spaces and Measures

Fields Institute Monographs (2013)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The dual setting

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The dual setting

Problem (Cechini–Zappa '81)

Consider the Fourier algebra $A(\mathcal{G}) = \{ \langle L_{(\cdot)}\xi, \eta \rangle \mid \xi, \eta \in L_2(\mathcal{G}) \}.$ Is $A(\mathcal{G})$ SAI?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The dual setting

Problem (Cechini–Zappa '81)

Consider the Fourier algebra $A(\mathcal{G}) = \{ \langle L_{(\cdot)}\xi, \eta \rangle \mid \xi, \eta \in L_2(\mathcal{G}) \}.$ Is $A(\mathcal{G})$ SAI?

Theorem (Lau–Losert '93)

Yes for large classes of amenable groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The dual setting

Problem (Cechini–Zappa '81)

Consider the Fourier algebra $A(\mathcal{G}) = \{ \langle L_{(\cdot)}\xi, \eta \rangle \mid \xi, \eta \in L_2(\mathcal{G}) \}.$ Is $A(\mathcal{G})$ SAI?

Theorem (Lau–Losert '93)

Yes for large classes of amenable groups.

Theorem (Losert '02 & '04)

No for $\mathcal{G} = \mathbb{F}_2$ and also for $\mathcal{G} = SU(3)$!

The dual setting

Problem (Cechini–Zappa '81)

Consider the Fourier algebra $A(\mathcal{G}) = \{ \langle L_{(\cdot)}\xi, \eta \rangle \mid \xi, \eta \in L_2(\mathcal{G}) \}.$ Is $A(\mathcal{G})$ SAI?

Theorem (Lau–Losert '93)

Yes for large classes of amenable groups.

Theorem (Losert '02 & '04)

No for $\mathcal{G} = \mathbb{F}_2$ and also for $\mathcal{G} = SU(3)$!

Theorem (Filali–Monfared–N)

Yes for any compact group that is sufficiently non-metrizable $(\chi(\mathcal{G}) \text{ has uncountable cofinality}); e.g., SU(3)^{\aleph_1} and SU(3)^{\mathfrak{c}}$

・ロト・日本・日本・日本・日本

The dual setting

Problem (Cechini–Zappa '81)

Consider the Fourier algebra $A(\mathcal{G}) = \{ \langle L_{(\cdot)}\xi, \eta \rangle \mid \xi, \eta \in L_2(\mathcal{G}) \}.$ Is $A(\mathcal{G})$ SAI?

Theorem (Lau–Losert '93)

Yes for large classes of amenable groups.

Theorem (Losert '02 & '04)

No for $\mathcal{G} = \mathbb{F}_2$ and also for $\mathcal{G} = SU(3)$!

Theorem (Filali–Monfared–N)

Yes for any compact group that is sufficiently non-metrizable $(\chi(\mathcal{G}) \text{ has uncountable cofinality}); e.g., SU(3)^{\aleph_1} and SU(3)^{\mathfrak{c}}$

Theorem (Lau–Losert '05)

Yes for $SU(3)^{\aleph_0}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Method of proof: Factorization & Mazur's property for A(G)

Method of proof: Factorization & Mazur's property for A(G)

Theorem (Filali–Monfared–N)

 ${\mathcal G}$ compact s.t. $\chi({\mathcal G})$ has uncountable cofinality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Method of proof: Factorization & Mazur's property for A(G)

Theorem (Filali–Monfared–N)

 \mathcal{G} compact s.t. $\chi(\mathcal{G})$ has uncountable cofinality. Then:

 $\forall (T_{\alpha})_{\alpha \in I} \subseteq \mathsf{B}_{1}\mathcal{L}(\mathcal{G}) \text{ with } |I| \leq \chi(\mathcal{G})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Method of proof: Factorization & Mazur's property for A(G)

Theorem (Filali–Monfared–N)

 ${\mathcal G}$ compact s.t. $\chi({\mathcal G})$ has uncountable cofinality. Then:

 $\forall (T_{\alpha})_{\alpha \in I} \subseteq \mathsf{B}_1\mathcal{L}(\mathcal{G}) \text{ with } |I| \leq \chi(\mathcal{G})$

$$\exists (X_{\alpha}^{k})_{\alpha \in I} \subseteq \mathsf{B}_{1}\mathcal{L}(\mathcal{G})^{*} (k = 1, \ldots, n)$$

Method of proof: Factorization & Mazur's property for A(G)

Theorem (Filali–Monfared–N)

 \mathcal{G} compact s.t. $\chi(\mathcal{G})$ has uncountable cofinality. Then: $\forall (T_{\alpha})_{\alpha \in I} \subseteq B_{1}\mathcal{L}(\mathcal{G}) \text{ with } |I| \leq \chi(\mathcal{G})$ $\exists (X_{\alpha}^{k})_{\alpha \in I} \subseteq B_{1}\mathcal{L}(\mathcal{G})^{*} \ (k = 1, ..., n)$ $\exists T^{k} \in \mathcal{L}(\mathcal{G}) \ (k = 1, ..., n) \text{ s.t.}$

$$T_{\alpha} = \sum_{k=1}^{n} X_{\alpha}^{k} \Box T^{k}$$

Method of proof: Factorization & Mazur's property for A(G)

Theorem (Filali–Monfared–N)

 $\begin{array}{l} \mathcal{G} \text{ compact s.t. } \chi(\mathcal{G}) \text{ has uncountable cofinality. Then:} \\ \forall (T_{\alpha})_{\alpha \in I} \subseteq B_{1}\mathcal{L}(\mathcal{G}) \text{ with } |I| \leq \chi(\mathcal{G}) \\ \exists (X_{\alpha}^{k})_{\alpha \in I} \subseteq B_{1}\mathcal{L}(\mathcal{G})^{*} \ (k = 1, \ldots, n) \\ \exists T^{k} \in \mathcal{L}(\mathcal{G}) \ (k = 1, \ldots, n) \text{ s.t.} \\ T_{\alpha} = \sum_{k=1}^{n} X_{\alpha}^{k} \Box T^{k} \end{array}$

So $A(\mathcal{G})$ has (a slightly weakened form of) $F_{\chi(\mathcal{G})}$.

Method of proof: Factorization & Mazur's property for A(G)

Theorem (Filali–Monfared–N)

 \mathcal{G} compact s.t. $\chi(\mathcal{G})$ has uncountable cofinality. Then: $\forall (T_{\alpha})_{\alpha \in I} \subseteq B_{1}\mathcal{L}(\mathcal{G}) \text{ with } |I| \leq \chi(\mathcal{G})$ $\exists (X_{\alpha}^{k})_{\alpha \in I} \subseteq B_{1}\mathcal{L}(\mathcal{G})^{*} \ (k = 1, ..., n)$ $\exists T^{k} \in \mathcal{L}(\mathcal{G}) \ (k = 1, ..., n) \text{ s.t.}$

$$T_{\alpha} = \sum_{k=1} X_{\alpha}^{k} \Box T^{k}$$

So $A(\mathcal{G})$ has (a slightly weakened form of) $F_{\chi(\mathcal{G})}$.

Theorem (Hu–N)

 $A(\mathcal{G})$ has $M_{\chi(\mathcal{G})\cdot\aleph_0}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lau-Wong's Conjecture, I

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lau-Wong's Conjecture, I

<u>Recall</u>: $L_1(\mathcal{G})$ Arens regular $\Rightarrow \mathcal{G}$ finite

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lau-Wong's Conjecture, I

<u>Recall</u>: $L_1(\mathcal{G})$ Arens regular $\Rightarrow \mathcal{G}$ finite

Conjecture (Lau–Wong '89)

 $A(\mathcal{G})$ Arens regular $\Rightarrow \mathcal{G}$ finite

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lau-Wong's Conjecture, I

<u>Recall</u>: $L_1(\mathcal{G})$ Arens regular $\Rightarrow \mathcal{G}$ finite

Conjecture (Lau-Wong '89)

 $A(\mathcal{G})$ Arens regular $\Rightarrow \mathcal{G}$ finite

Theorem (Forrest '91)

 $A(\mathcal{G})$ Arens regular $\Rightarrow \mathcal{G}$ discrete

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lau-Wong's Conjecture, II

Lau-Wong's Conjecture, II

Theorem (Lau–Wong '89)

Conjecture true if G is amenable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Lau-Wong's Conjecture, II

Theorem (Lau–Wong '89)

Conjecture true if \mathcal{G} is amenable

Theorem (Forrest '93)

Conjecture true if \mathcal{G} has infinite abelian subgroup

Lau–Wong's Conjecture, II

Theorem (Lau–Wong '89)

Conjecture true if G is amenable

Theorem (Forrest '93)

Conjecture true if \mathcal{G} has infinite abelian subgroup

Generalizing both results, we have:

Theorem (N–Poulin)

Conjecture true if G has infinite weakly amenable subgroup

Lau–Wong's Conjecture, II

Theorem (Lau–Wong '89)

Conjecture true if G is amenable

Theorem (Forrest '93)

Conjecture true if \mathcal{G} has infinite abelian subgroup

Generalizing both results, we have:

Theorem (N–Poulin)

Conjecture true if G has infinite weakly amenable subgroup

We know of no group outside of our class – is Olshanskii's group weakly amenable?

Topological centres and multipliers

Topological centres and multipliers

Problem (Lau-Ülger '96)

 \mathcal{A} Banach algebra with BAI s.t. \mathcal{A}^* vN algebra. Let $X \in Z_r(\mathcal{A}^{**})$. Consider $X_{\Box} : \mathcal{A}^* \ni h \mapsto X \Box h \in \mathcal{A}^*$.

Topological centres and multipliers

Problem (Lau-Ülger '96)

 \mathcal{A} Banach algebra with BAI s.t. \mathcal{A}^* vN algebra. Let $X \in Z_r(\mathcal{A}^{**})$. Consider $X_{\Box} : \mathcal{A}^* \ni h \mapsto X \Box h \in \mathcal{A}^*$. Are $Ker(X_{\Box})$ and $X_{\Box}(B_1\mathcal{A}^*)$ w*-closed?

Topological centres and multipliers

Problem (Lau-Ülger '96)

 \mathcal{A} Banach algebra with BAI s.t. \mathcal{A}^* vN algebra. Let $X \in Z_r(\mathcal{A}^{**})$. Consider $X_{\Box} : \mathcal{A}^* \ni h \mapsto X \Box h \in \mathcal{A}^*$. Are $Ker(X_{\Box})$ and $X_{\Box}(B_1\mathcal{A}^*)$ w*-closed?

Theorem (Hu–N–Ruan)

No for $\mathcal{A} = \mathcal{A}(SU(3))$

Topological centres and multipliers

Problem (Lau-Ülger '96)

 \mathcal{A} Banach algebra with BAI s.t. \mathcal{A}^* vN algebra. Let $X \in Z_r(\mathcal{A}^{**})$. Consider $X_{\Box} : \mathcal{A}^* \ni h \mapsto X \Box h \in \mathcal{A}^*$. Are $Ker(X_{\Box})$ and $X_{\Box}(B_1\mathcal{A}^*)$ w*-closed?

Theorem (Hu–N–Ruan)

No for $\mathcal{A} = \mathcal{A}(SU(3))$

Proof: Combine Losert's result $Z(\mathcal{A}^{**}) \neq \mathcal{A}$ with the following

Theorem (Hu–N–Ruan)

Assume A separable. Then, for $X \in Z_r(A^{**})$:

 $X \in \mathcal{A} \iff Ker(X_{\Box})$ and $X_{\Box}(\mathsf{B}_{1}\mathcal{A}^{*})$ are w^{*} -closed

This uses work by Godefroy-Talagrand '89 and N

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A natural new notion: metric Arens irregularity

A natural new notion: metric Arens irregularity

Definition (Hu–N–Ruan)

For any Banach algebra \mathcal{A} , consider

$$g(\mathcal{A}) := \sup_{m,n \in \mathsf{B}_1\mathcal{A}^{**}} \|m \Box n - m \bigtriangleup n\|$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A natural new notion: metric Arens irregularity

Definition (Hu–N–Ruan)

For any Banach algebra \mathcal{A} , consider

$$g(\mathcal{A}) := \sup_{m,n\in\mathsf{B}_1\mathcal{A}^{**}} \|m\Box n - m\bigtriangleup n\|$$

Obviously:

• g is an isometric invariant

A natural new notion: metric Arens irregularity

Definition (Hu–N–Ruan)

For any Banach algebra \mathcal{A} , consider

$$g(\mathcal{A}) := \sup_{m,n\in\mathsf{B}_1\mathcal{A}^{**}} \|m\Box n - m\bigtriangleup n\|$$

Obviously:

- g is an isometric invariant
- $g(\mathcal{A}) \in [0,2]$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A natural new notion: metric Arens irregularity

Definition (Hu–N–Ruan)

For any Banach algebra \mathcal{A} , consider

$$g(\mathcal{A}) := \sup_{m,n\in\mathsf{B}_1\mathcal{A}^{**}} \|m\Box n - m\bigtriangleup n\|$$

Obviously:

• g is an isometric invariant

•
$$g(\mathcal{A}) \in [0,2]$$

•
$$g(\mathcal{A}) = 0 \Leftrightarrow \mathcal{A}$$
 is Arens regular

A natural new notion: metric Arens irregularity

Definition (Hu–N–Ruan)

For any Banach algebra \mathcal{A} , consider

$$g(\mathcal{A}) := \sup_{m,n\in\mathsf{B}_1\mathcal{A}^{**}} \|m\Box n - m\bigtriangleup n\|$$

Obviously:

• g is an isometric invariant

•
$$g(\mathcal{A}) \in [0,2]$$

- $g(\mathcal{A}) = 0 \Leftrightarrow \mathcal{A}$ is Arens regular
- g decreases when passing to sub- or quotient algebras

・ロト ・四ト ・ヨト ・ヨ

A natural new notion: metric Arens irregularity

Definition (Hu–N–Ruan)

For any Banach algebra \mathcal{A} , consider

$$g(\mathcal{A}) := \sup_{m,n\in\mathsf{B}_1\mathcal{A}^{**}} \|m\Box n - m\bigtriangleup n\|$$

Obviously:

• g is an isometric invariant

•
$$g(\mathcal{A}) \in [0,2]$$

- $g(\mathcal{A}) = 0 \Leftrightarrow \mathcal{A}$ is Arens regular
- g decreases when passing to sub- or quotient algebras

Definition (Hu–N–Ruan)

We call a Banach algebra \mathcal{A} with $g(\mathcal{A}) = 2$ metrically SAI.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Examples, I

Theorem (Hu–N–Ruan)

Let \mathcal{G} be amenable, and either

- non-compact σ-compact, or
- uncountable discrete.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Examples, I

Theorem (Hu–N–Ruan)

Let \mathcal{G} be amenable, and either

- non-compact σ-compact, or
- uncountable discrete.

Then $L_1(\mathcal{G})$ is metrically SAI.

Examples, I

Theorem (Hu–N–Ruan)

Let \mathcal{G} be amenable, and either

- non-compact σ-compact, or
- uncountable discrete.

Then $L_1(\mathcal{G})$ is metrically SAI.

Corollary

If there is infinite discrete \mathcal{G} with $g(\ell_1(\mathcal{G})) \neq 2$, then \mathcal{G} is a counter-example to von Neumann's problem, such as Olshanskii's group (in fact, \mathcal{G} admits no infinite amenable subgroups).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples, II

Examples, II

Theorem (Hu–N–Ruan)

Let \mathcal{G} be (infinite LC) amenable. Then $M(\mathcal{G})$ is metrically SAI.

Examples, II

Theorem (Hu–N–Ruan)

Let \mathcal{G} be (infinite LC) amenable. Then $M(\mathcal{G})$ is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G contains a closed infinite abelian subgroup, and our L_1 result.

Examples, II

Theorem (Hu–N–Ruan)

Let \mathcal{G} be (infinite LC) amenable. Then $M(\mathcal{G})$ is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G contains a closed infinite abelian subgroup, and our L_1 result.

Theorem (Hu–N–Ruan)

Let \mathcal{G} be any non-discrete (LC) group. Then $A(\mathcal{G})$ and $B(\mathcal{G})$ are both metrically SAI.

Examples, II

Theorem (Hu–N–Ruan)

Let \mathcal{G} be (infinite LC) amenable. Then $M(\mathcal{G})$ is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G contains a closed infinite abelian subgroup, and our L_1 result.

Theorem (Hu–N–Ruan)

Let \mathcal{G} be any non-discrete (LC) group. Then $A(\mathcal{G})$ and $B(\mathcal{G})$ are both metrically SAI.

Corollary

A(SU(3)) is not SAI (Losert), but metrically SAI!

Examples, II

Theorem (Hu–N–Ruan)

Let \mathcal{G} be (infinite LC) amenable. Then $M(\mathcal{G})$ is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G contains a closed infinite abelian subgroup, and our L_1 result.

Theorem (Hu–N–Ruan)

Let \mathcal{G} be any non-discrete (LC) group. Then $A(\mathcal{G})$ and $B(\mathcal{G})$ are both metrically SAI.

Corollary

A(SU(3)) is not SAI (Losert), but metrically SAI!

Question: Which values can g(A) take?

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Examples, II

Theorem (Hu–N–Ruan)

Let \mathcal{G} be (infinite LC) amenable. Then $M(\mathcal{G})$ is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G contains a closed infinite abelian subgroup, and our L_1 result.

Theorem (Hu–N–Ruan)

Let \mathcal{G} be any non-discrete (LC) group. Then $A(\mathcal{G})$ and $B(\mathcal{G})$ are both metrically SAI.

Corollary

A(SU(3)) is not SAI (Losert), but metrically SAI!

Question: Which values can $g(\mathcal{A})$ take? \rightsquigarrow calculate $g(\mathcal{A})$ for Beurling algebras, $\mathcal{T}(\mathcal{G})$, ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Topological centre problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Group actions and invariant means

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

What about the discrete situation?

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

What about the discrete situation?

Of course, for $\mathcal{G} \cap \mathcal{G}$: \exists ! inv. mean on $\ell_{\infty}(\mathcal{G}) \Leftrightarrow \mathcal{G}$ finite

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

What about the discrete situation?

Of course, for $\mathcal{G} \cap \mathcal{G}$: \exists ! inv. mean on $\ell_{\infty}(\mathcal{G}) \Leftrightarrow \mathcal{G}$ finite

Quick proof using topological centres (Lau '86):

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

What about the discrete situation?

Of course, for $\mathcal{G} \curvearrowright \mathcal{G}$: \exists ! inv. mean on $\ell_{\infty}(\mathcal{G}) \Leftrightarrow \mathcal{G}$ finite

Quick proof using topological centres (Lau '86):

unique inv. mean M

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

What about the discrete situation?

Of course, for $\mathcal{G} \cap \mathcal{G}$: \exists ! inv. mean on $\ell_{\infty}(\mathcal{G}) \Leftrightarrow \mathcal{G}$ finite

Quick proof using topological centres (Lau '86):

unique inv. mean M

$$\Rightarrow M \in Z_{\ell}(\ell_{\infty}(\mathcal{G})^*) = \ell_1(\mathcal{G})$$

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

What about the discrete situation?

Of course, for $\mathcal{G} \curvearrowright \mathcal{G}$: \exists ! inv. mean on $\ell_{\infty}(\mathcal{G}) \Leftrightarrow \mathcal{G}$ finite

Quick proof using topological centres (Lau '86):

unique inv. mean M

$$\Rightarrow M \in Z_{\ell}(\ell_{\infty}(\mathcal{G})^*) = \ell_1(\mathcal{G})$$

 \Rightarrow *M* finite Haar measure, so *G* finite!

Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach '23; Margulis/Sullivan '80/'81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on $L_{\infty}(S^n)$ for the O(n + 1)-action.

What about the discrete situation?

Of course, for $\mathcal{G} \cap \mathcal{G}$: \exists ! inv. mean on $\ell_{\infty}(\mathcal{G}) \Leftrightarrow \mathcal{G}$ finite

Quick proof using topological centres (Lau '86):

unique inv. mean M

$$\Rightarrow M \in Z_{\ell}(\ell_{\infty}(\mathcal{G})^*) = \ell_1(\mathcal{G})$$

 \Rightarrow *M* finite Haar measure, so \mathcal{G} finite!

What about general actions $\mathcal{G} \curvearrowright X$?

An independence result for general actions

An independence result for general actions

Theorem (Foreman '94)

The statement " \exists locally finite group \mathcal{G} of permutations of \mathbb{N} with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$ " is independent of ZFC!

An independence result for general actions

Theorem (Foreman '94)

The statement ' \exists locally finite group \mathcal{G} of permutations of \mathbb{N} with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$ " is independent of ZFC!

Theorem (Foreman '94)

 $CH \Rightarrow \exists$ locally finite group of permutations of \mathbb{N} , of size \mathfrak{c} , with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$

An independence result for general actions

Theorem (Foreman '94)

The statement ' \exists locally finite group \mathcal{G} of permutations of \mathbb{N} with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$ " is independent of ZFC!

Theorem (Foreman '94)

 $CH \Rightarrow \exists$ locally finite group of permutations of \mathbb{N} , of size \mathfrak{c} , with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$

Theorem (Rosenblatt–Talagrand '81)

Infinite countable groups never admit a unique invariant mean.

An independence result for general actions

Theorem (Foreman '94)

The statement ' \exists locally finite group \mathcal{G} of permutations of \mathbb{N} with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$ " is independent of ZFC!

Theorem (Foreman '94)

 $CH \Rightarrow \exists$ locally finite group of permutations of \mathbb{N} , of size \mathfrak{c} , with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$

Theorem (Rosenblatt–Talagrand '81)

Infinite countable groups never admit a unique invariant mean.

How many?

An independence result for general actions

Theorem (Foreman '94)

The statement " \exists locally finite group \mathcal{G} of permutations of \mathbb{N} with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$ " is independent of ZFC!

Theorem (Foreman '94)

 $CH \Rightarrow \exists$ locally finite group of permutations of \mathbb{N} , of size \mathfrak{c} , with a unique invariant mean on $\ell_{\infty}(\mathbb{N})$

Theorem (Rosenblatt–Talagrand '81)

Infinite countable groups never admit a unique invariant mean.

How many?

Theorem (N–Pachl–Steprāns)

 $\mathcal{G} \cap X$ with \mathcal{G}, X infinite countable. \mathcal{G} amenable $\Rightarrow \exists 2^{\mathfrak{c}}$ many invariant means on $\ell_{\infty}(X)$

Arens type product and topological centre for group actions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Arens type product and topological centre for group actions

Definition

 $\mathcal{G} \cap X$.

Arens type product and topological centre for group actions

Definition

 $\mathcal{G} \cap X$.

• For
$$n \in \ell_{\infty}(X)^*$$
 and $h \in \ell_{\infty}(X)$

Arens type product and topological centre for group actions

Definition

 $\mathcal{G} \cap X$.

① For
$$n \in \ell_{\infty}(X)^*$$
 and $h \in \ell_{\infty}(X)$ define $n \Box h \in \ell_{\infty}(\mathcal{G})$ by

 $(n\Box h)(g) := \langle n, hg \rangle$

Arens type product and topological centre for group actions

Definition

 $\mathcal{G} \cap X$.

① For $n \in \ell_{\infty}(X)^*$ and $h \in \ell_{\infty}(X)$ define $n \Box h \in \ell_{\infty}(\mathcal{G})$ by

$$(n\Box h)(g) := \langle n, hg \rangle$$

② Define a "convolution" $\ell_\infty(\mathcal{G})^* imes \ell_\infty(X)^* o \ell_\infty(X)^*$ by

 $\langle m\Box n,h\rangle := \langle m,n\Box h\rangle$

Arens type product and topological centre for group actions

Definition

 $\mathcal{G} \cap X$.

① For
$$n \in \ell_{\infty}(X)^*$$
 and $h \in \ell_{\infty}(X)$ define $n \Box h \in \ell_{\infty}(\mathcal{G})$ by

$$(n\Box h)(g) := \langle n, hg \rangle$$

2 Define a "convolution" $\ell_\infty(\mathcal{G})^* imes \ell_\infty(X)^* o \ell_\infty(X)^*$ by

 $\langle m\Box n,h\rangle := \langle m,n\Box h\rangle$

Definition

$$Z_t(\mathcal{G}, X) := \{ m \in \ell_\infty(\mathcal{G})^* \mid \ell_\infty(X)^* \ni n \mapsto m \Box n \text{ } w^*\text{-cont.} \}$$

The topological centre of Foreman's group \mathcal{F}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The topological centre of Foreman's group \mathcal{F}

Theorem (N–Pachl–Steprāns)

 $\mathcal{G} \cap X$ with \mathcal{G} amenable and $Z_t(\mathcal{G}, X) = \ell_1(\mathcal{G})$.

The topological centre of Foreman's group \mathcal{F}

Theorem (N–Pachl–Steprāns)

 $\mathcal{G} \cap X$ with \mathcal{G} amenable and $Z_t(\mathcal{G}, X) = \ell_1(\mathcal{G})$. If the number of inv. means on $\ell_{\infty}(X)$ is finite, then \mathcal{G} is finite.

The topological centre of Foreman's group \mathcal{F}

Theorem (N–Pachl–Steprāns)

 $\mathcal{G} \curvearrowright X$ with \mathcal{G} amenable and $Z_t(\mathcal{G}, X) = \ell_1(\mathcal{G})$. If the number of inv. means on $\ell_{\infty}(X)$ is finite, then \mathcal{G} is finite.

Corollary (N–Pachl–Steprāns)

 $CH \Rightarrow Z_t(\mathcal{F},\mathbb{N}) \neq \ell_1(\mathcal{F})$

The topological centre of Foreman's group \mathcal{F}

Theorem (N–Pachl–Steprāns)

 $\mathcal{G} \cap X$ with \mathcal{G} amenable and $Z_t(\mathcal{G}, X) = \ell_1(\mathcal{G})$. If the number of inv. means on $\ell_{\infty}(X)$ is finite, then \mathcal{G} is finite.

Corollary (N–Pachl–Steprāns)

 $CH \Rightarrow Z_t(\mathcal{F},\mathbb{N}) \neq \ell_1(\mathcal{F})$

By using work of Erdös and Shelah, we even obtain:

Theorem (N–Pachl–Steprāns)

 $CH \Rightarrow \ell_1(\mathcal{F}) \subsetneq Z_t(\mathcal{F}, \mathbb{N}) \subsetneq \ell_1(\mathcal{F})^{**}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Ghahramani–Farhadi's multiplier problem

Ghahramani–Farhadi's multiplier problem

Problem (Duncan–Hosseiniun '79)

 \mathcal{G} LC group. Does the involution on $L_1(\mathcal{G})$ extend to an involution on its bidual?

Ghahramani–Farhadi's multiplier problem

Problem (Duncan–Hosseiniun '79)

 \mathcal{G} LC group. Does the involution on $L_1(\mathcal{G})$ extend to an involution on its bidual?

Proposition (Farhadi–Ghahramani '07)

• This fails for non-discrete groups.

Ghahramani–Farhadi's multiplier problem

Problem (Duncan–Hosseiniun '79)

 \mathcal{G} LC group. Does the involution on $L_1(\mathcal{G})$ extend to an involution on its bidual?

Proposition (Farhadi–Ghahramani '07)

- This fails for non-discrete groups.
- It also fails for all groups with the following property (*): Consider any Φ : L_∞(G)** → L_∞(G)** normal & surjective; if Φ commutes with L₁(G), then also with L₁(G)**.

Ghahramani–Farhadi's multiplier problem

Problem (Duncan–Hosseiniun '79)

 \mathcal{G} LC group. Does the involution on $L_1(\mathcal{G})$ extend to an involution on its bidual?

Proposition (Farhadi–Ghahramani '07)

This fails for non-discrete groups.

2 It also fails for all groups with the following property (*): Consider any $\Phi : L_{\infty}(\mathcal{G})^{**} \to L_{\infty}(\mathcal{G})^{**}$ normal & surjective; if Φ commutes with $L_1(\mathcal{G})$, then also with $L_1(\mathcal{G})^{**}$.

Problem (Farhadi–Ghahramani '07)

Does every group \mathcal{G} satisfy (*) ?

Solution to the multiplier problem

Solution to the multiplier problem

Theorem (N)

The problem has a negative answer for all infinite countable discrete abelian groups.

Solution to the multiplier problem

Theorem (N)

The problem has a negative answer for all infinite countable discrete abelian groups.

For the proof, consider $\beta \mathcal{G} \subseteq \ell_1(\mathcal{G})^{**}$:

compact right topological semigroup with first Arens product

Solution to the multiplier problem

Theorem (N)

The problem has a negative answer for all infinite countable discrete abelian groups.

For the proof, consider $\beta \mathcal{G} \subseteq \ell_1(\mathcal{G})^{**}$:

compact right topological semigroup with first Arens product

Remainder/Corona/Growth:

$$\mathcal{G}^* := \beta \mathcal{G} \setminus \mathcal{G}$$

 $\Rightarrow \mathcal{G}^*$ compact right topological semigroup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Module maps

Module maps

 $m \in \beta \mathcal{G}$ is called left cancellable if λ_m is injective on $\beta \mathcal{G}$

Proposition (Dales-Lau-Strauss '08)

 $m \in \beta \mathcal{G}$ left cancellable $\Rightarrow \lambda_m : \ell_1(\mathcal{G})^{**} \to \ell_1(\mathcal{G})^{**}$ isometry

Module maps

 $m \in \beta \mathcal{G}$ is called left cancellable if λ_m is injective on $\beta \mathcal{G}$

Proposition (Dales-Lau-Strauss '08)

 $m \in \beta \mathcal{G}$ left cancellable $\Rightarrow \lambda_m : \ell_1(\mathcal{G})^{**} \to \ell_1(\mathcal{G})^{**}$ isometry

Write $\mathcal{A} := \ell_1(\mathcal{G})^{**}$. $\exists m \in \mathcal{G}^* \subseteq \mathcal{A}$ such that m is left cancellable in $\beta \mathcal{G}$

Module maps

 $m \in \beta \mathcal{G}$ is called left cancellable if λ_m is injective on $\beta \mathcal{G}$

Proposition (Dales-Lau-Strauss '08)

 $m \in \beta \mathcal{G}$ left cancellable $\Rightarrow \lambda_m : \ell_1(\mathcal{G})^{**} \to \ell_1(\mathcal{G})^{**}$ isometry

Write $\mathcal{A} := \ell_1(\mathcal{G})^{**}$. $\exists m \in \mathcal{G}^* \subseteq \mathcal{A}$ such that m is left cancellable in $\beta \mathcal{G}$ Proposition $\Rightarrow \Phi := \lambda_m^* : \mathcal{A}^* \to \mathcal{A}^*$ (normal &) surjective

Module maps

 $m \in \beta \mathcal{G}$ is called left cancellable if λ_m is injective on $\beta \mathcal{G}$

Proposition (Dales-Lau-Strauss '08)

 $m \in \beta \mathcal{G}$ left cancellable $\Rightarrow \lambda_m : \ell_1(\mathcal{G})^{**} \to \ell_1(\mathcal{G})^{**}$ isometry

Write $\mathcal{A} := \ell_1(\mathcal{G})^{**}$. $\exists m \in \mathcal{G}^* \subseteq \mathcal{A}$ such that m is left cancellable in $\beta \mathcal{G}$ Proposition $\Rightarrow \Phi := \lambda_m^* : \mathcal{A}^* \to \mathcal{A}^*$ (normal &) surjective Need to show:

- **1** Φ is a right $\ell_1(\mathcal{G})$ -module map
- **2** Φ is **not** a right $\ell_1(\mathcal{G})^{**}$ -module map

$\Phi = \lambda_m^*$ is a right $\ell_1(\mathcal{G})$ -module map

$\Phi = \lambda_m^*$ is a right $\overline{\ell_1(\mathcal{G})}$ -module map

$$\begin{array}{ll} \underline{\operatorname{Recall:}} & \mathcal{A} = \ell_1(\mathcal{G})^{**} \\ \forall & \mathcal{H} \in \mathcal{A}^*, \ a \in \ell_1(\mathcal{G}) \subseteq \mathcal{A}, \ b \in \mathcal{A} \\ & \langle \Phi(\mathcal{H} \Box a), b \rangle = \langle \mathcal{H}, a * m * b \rangle \end{array}$$

$\Phi = \lambda_m^*$ is a right $\ell_1(\mathcal{G})$ -module map

$$\begin{array}{ll} \underline{\operatorname{Recall:}} & \mathcal{A} = \ell_1(\mathcal{G})^{**} \\ \forall \ H \in \mathcal{A}^*, \ a \in \ell_1(\mathcal{G}) \subseteq \mathcal{A}, \ b \in \mathcal{A} \\ & \langle \Phi(H \Box a), b \rangle = \langle H, a * m * b \rangle \\ \\ & \text{But } a \in \ell_1(\mathcal{G}) = Z(\mathcal{A}), \ \text{so a commutes with $m \in \mathcal{G}^* \subseteq \mathcal{A}$:} \end{array}$$

$$\langle \Phi(H \Box a), b \rangle = \langle H, m * a * b \rangle = \langle \Phi(H) \Box a, b \rangle$$

as desired.

$\Phi = \lambda_m^*$ is not a right $\ell_1(\mathcal{G})^{**}$ -module map

$\Phi = \lambda_m^*$ is not a right $\ell_1(\mathcal{G})^{**}$ -module map

Recall:
$$\mathcal{A} = \ell_1(\mathcal{G})^{**}$$

Suppose Φ is a right A-module map

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\Phi = \lambda_m^*$ is not a right $\ell_1(\mathcal{G})^{**}$ -module map

Recall:
$$\mathcal{A} = \ell_1(\mathcal{G})^{**}$$

Suppose Φ is a right \mathcal{A} -module map
 $\Rightarrow \forall H \in \mathcal{A}^*, a, b \in \mathcal{A}$
 $\langle H, a * m * b \rangle = \langle \Phi(H \Box a), b \rangle = \langle \Phi(H) \Box a, b \rangle = \langle H, m * a * b \rangle$

$\Phi = \lambda_m^*$ is not a right $\ell_1(\mathcal{G})^{**}$ -module map

Recall:
$$\mathcal{A} = \ell_1(\mathcal{G})^{**}$$

Suppose Φ is a right \mathcal{A} -module map
 $\Rightarrow \forall H \in \mathcal{A}^*, a, b \in \mathcal{A}$
 $\langle H, a * m * b \rangle = \langle \Phi(H \Box a), b \rangle = \langle \Phi(H) \Box a, b \rangle = \langle H, m * a * b \rangle$
 $\Rightarrow a * m * b = m * a * b \forall a, b \in \mathcal{A}$
 \Rightarrow (with $b = \delta_e$) $m \in \mathbb{Z}(\mathcal{A}) = \ell_1(\mathcal{G})$
This contradicts $m \in \mathcal{G}^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Topological centres for quantum group algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Topological centres for quantum group algebras

Definition

Hopf–von Neumann algebra (M, Γ)

- M von Neumann algebra
- $\Gamma: M \to M \bar{\otimes} M$ co-multiplication

Topological centres for quantum group algebras

Definition

Hopf–von Neumann algebra (M, Γ)

- *M* von Neumann algebra
- $\Gamma: M \to M \bar{\otimes} M$ co-multiplication

Examples

•
$$M = L_{\infty}(\mathcal{G}) = L_1(\mathcal{G})^*$$

 $\Gamma=$ adjoint of convolution product \ast

Topological centres for quantum group algebras

Definition

Hopf–von Neumann algebra (M, Γ)

- M von Neumann algebra
- $\Gamma: M \to M \bar{\otimes} M$ co-multiplication

Examples

•
$$M = L_{\infty}(\mathcal{G}) = L_1(\mathcal{G})^*$$

 $\Gamma=$ adjoint of convolution product \ast

•
$$M = \mathcal{L}(\mathcal{G}) = A(\mathcal{G})^*$$

 $\Gamma=$ adjoint of pointwise product \bullet

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Locally compact quantum groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Locally compact quantum groups

Non-commutative integration

N.s.f. weight
$$\lambda : M^+ \to [0, \infty]$$

 $M_{\lambda} := \lim \{ x \in M^+ \mid \lambda(x) < \infty \}$

Locally compact quantum groups

Non-commutative integration

N.s.f. weight
$$\lambda : M^+ \to [0,\infty]$$

 $M_{\lambda} := \lim \{ x \in M^+ \mid \lambda(x) < \infty \}$

Definition (Kustermans–Vaes '00)

- LC Quantum Group $\mathbb{G} = (M, \Gamma, \lambda, \rho)$
 - λ left Haar weight on M:

 $\lambda((f \otimes id) \Gamma x) = \langle f, 1 \rangle \lambda(x) \qquad \forall f \in M_* \ , \ x \in M_{\lambda}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Locally compact quantum groups

Non-commutative integration

N.s.f. weight
$$\lambda : M^+ \to [0,\infty]$$

 $M_{\lambda} := \lim \{ x \in M^+ \mid \lambda(x) < \infty \}$

Definition (Kustermans–Vaes '00)

- LC Quantum Group $\mathbb{G} = (M, \Gamma, \lambda, \rho)$
 - λ left Haar weight on M:

$$\lambda((f \otimes \mathrm{id})\Gamma x) \;=\; \langle f, 1 \rangle \; \lambda(x) \qquad \forall \; f \in M_* \;,\; x \in M_{\lambda}$$

• ρ right Haar weight on M:

$$\rho((\mathsf{id} \otimes f) \Gamma x) \;=\; \langle f, 1 \rangle \; \rho(x) \qquad \forall \; f \in M_* \;, \; x \in M_\rho$$

(日)、

Locally compact quantum groups

Non-commutative integration

N.s.f. weight
$$\lambda : M^+ \to [0,\infty]$$

 $M_{\lambda} := \lim \{ x \in M^+ \mid \lambda(x) < \infty \}$

Definition (Kustermans–Vaes '00)

- LC Quantum Group $\mathbb{G} = (M, \Gamma, \lambda, \rho)$
 - λ left Haar weight on M:

$$\lambda((f \otimes \mathsf{id})\mathsf{\Gamma} x) \;=\; \langle f, 1 \rangle \; \lambda(x) \qquad \forall \; f \in M_* \;,\; x \in M_\lambda$$

• ρ right Haar weight on M:

$$\rho((\mathrm{id}\otimes f)\Gamma x) = \langle f,1\rangle \ \rho(x) \qquad \forall \ f\in M_* \ , \ x\in M_\rho$$

Theorem (Kustermans–Vaes '00) "Pontryagin duality" $\hat{\mathbb{G}} \cong \mathbb{G}$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algebras over quantum groups

$L_{\infty}(\mathbb{G}) := M \quad L_1(\mathbb{G}) := M_* \quad L_2(\mathbb{G}) := L_2(M, \lambda)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$L_{\infty}(\mathbb{G}) := M$$
 $L_1(\mathbb{G}) := M_*$ $L_2(\mathbb{G}) := L_2(M, \lambda)$
 $\boxed{L_1(\mathbb{G})}$ Banach algebra via $f * g = \Gamma_*(f \otimes g)$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

$$\begin{array}{ll} L_{\infty}(\mathbb{G}) := M & L_{1}(\mathbb{G}) := M_{*} & L_{2}(\mathbb{G}) := L_{2}(M, \lambda) \\ \hline \\ L_{1}(\mathbb{G}) \end{array} \\ \begin{array}{ll} \text{Banach algebra via} & f * g = \Gamma_{*}(f \otimes g) \\ \\ \text{LUC}(\mathbb{G}) & := & \overline{\text{lin}} & L_{\infty}(\mathbb{G}) \Box L_{1}(\mathbb{G}) \subseteq L_{\infty}(\mathbb{G}) \end{array} \end{array}$$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characterization of compact quantum groups

Characterization of compact quantum groups

Since $LUC(\mathbb{G}) \subseteq L_{\infty}(\mathbb{G})$ we have

 $LUC(\mathbb{G})^* \longleftarrow L_1(\mathbb{G})^{**}$

Characterization of compact quantum groups

Since $LUC(\mathbb{G}) \subseteq L_{\infty}(\mathbb{G})$ we have

 $LUC(\mathbb{G})^* \longleftarrow L_1(\mathbb{G})^{**}$

 \rightsquigarrow Transport of left Arens product $\rightsquigarrow \mathsf{LUC}(\mathbb{G})^*$ Banach algebra

Characterization of compact quantum groups

Since $LUC(\mathbb{G}) \subseteq L_{\infty}(\mathbb{G})$ we have

 $LUC(\mathbb{G})^* \longleftarrow L_1(\mathbb{G})^{**}$

 \rightsquigarrow Transport of left Arens product \rightsquigarrow $\mathsf{LUC}(\mathbb{G})^*$ Banach algebra

 $Z_t(\mathsf{LUC}(\mathbb{G})^*) := \{ X \in \mathsf{LUC}(\mathbb{G})^* \mid Y \mapsto X \Box Y \text{ } w^*\text{-cont.} \}$

Characterization of compact quantum groups

Since $\mathsf{LUC}(\mathbb{G}) \subseteq L_\infty(\mathbb{G})$ we have

$$\mathsf{LUC}(\mathbb{G})^* \longleftarrow L_1(\mathbb{G})^{**}$$

 \rightsquigarrow Transport of left Arens product $\rightsquigarrow \mathsf{LUC}(\mathbb{G})^*$ Banach algebra

 $Z_t(\mathsf{LUC}(\mathbb{G})^*) := \{ X \in \mathsf{LUC}(\mathbb{G})^* \mid Y \mapsto X \Box Y \text{ } w^*\text{-cont.} \}$

Theorem (Hu–N–Ruan)

TFAE:

- G compact (i.e., has finite Haar weight)
- $LUC(\mathbb{G}) \subseteq WAP(\mathbb{G})$ and $Z_t(LUC(\mathbb{G})^*) = M(\mathbb{G})$

Characterization of compact quantum groups

Since $\mathsf{LUC}(\mathbb{G}) \subseteq L_\infty(\mathbb{G})$ we have

$$\mathsf{LUC}(\mathbb{G})^* \longleftarrow L_1(\mathbb{G})^{**}$$

 \rightsquigarrow Transport of left Arens product $\rightsquigarrow \mathsf{LUC}(\mathbb{G})^*$ Banach algebra

 $Z_t(\mathsf{LUC}(\mathbb{G})^*) := \{ X \in \mathsf{LUC}(\mathbb{G})^* \mid Y \mapsto X \Box Y \text{ } w^*\text{-cont.} \}$

Theorem (Hu–N–Ruan)

TFAE:

- G compact (i.e., has finite Haar weight)
- $LUC(\mathbb{G}) \subseteq WAP(\mathbb{G})$ and $Z_t(LUC(\mathbb{G})^*) = M(\mathbb{G})$

Question $\mathbb{G} = \mathcal{L}(\mathcal{G})$ with \mathcal{G} discrete $\stackrel{?}{\Rightarrow} \mathsf{WAP}(\mathbb{G}) \subseteq \mathsf{LUC}(\mathbb{G})$

Characterization of compact quantum groups

Since $\mathsf{LUC}(\mathbb{G}) \subseteq L_\infty(\mathbb{G})$ we have

$$\mathsf{LUC}(\mathbb{G})^* \longleftarrow L_1(\mathbb{G})^{**}$$

 \rightsquigarrow Transport of left Arens product $\rightsquigarrow \mathsf{LUC}(\mathbb{G})^*$ Banach algebra

 $Z_t(\mathsf{LUC}(\mathbb{G})^*) := \{ X \in \mathsf{LUC}(\mathbb{G})^* \mid Y \mapsto X \Box Y \text{ } w^*\text{-cont.} \}$

Theorem (Hu–N–Ruan)

TFAE:

- G compact (i.e., has finite Haar weight)
- $LUC(\mathbb{G}) \subseteq WAP(\mathbb{G})$ and $Z_t(LUC(\mathbb{G})^*) = M(\mathbb{G})$

Question $\mathbb{G} = \mathcal{L}(\mathcal{G})$ with \mathcal{G} discrete $\stackrel{?}{\Rightarrow} \mathsf{WAP}(\mathbb{G}) \subseteq \mathsf{LUC}(\mathbb{G})$

If yes, then there is NO infinite \mathcal{G} with $A(\mathcal{G})$ Arens regular! Open for Olshanskii group ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Characterizations using invariant means on quantum groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Characterizations using invariant means on quantum groups

Definition

 \mathbb{G} amenable : $\Leftrightarrow \exists$ mean on $L_{\infty}(\mathbb{G})$ s.t.

$$f \Box M = \langle f, 1
angle \, M \ \ orall \, f \in L_1(\mathbb{G})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characterizations using invariant means on quantum groups

Definition

 \mathbb{G} amenable : $\Leftrightarrow \exists$ mean on $L_{\infty}(\mathbb{G})$ s.t.

$$f \Box M = \langle f, 1 \rangle \ M \quad \forall \ f \in L_1(\mathbb{G})$$

Theorem (Hu–N–Ruan)

Let \mathbb{G} be amenable with $L_1(\mathbb{G})$ separable <u>or</u> SAI.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Characterizations using invariant means on quantum groups

Definition

 \mathbb{G} amenable : $\Leftrightarrow \exists$ mean on $L_{\infty}(\mathbb{G})$ s.t.

$$f \Box M = \langle f, 1 \rangle \ M \quad \forall \ f \in L_1(\mathbb{G})$$

Theorem (Hu–N–Ruan)

Let \mathbb{G} be amenable with $L_1(\mathbb{G})$ separable <u>or</u> SAI. Then: \mathbb{G} uniquely amenable $\Leftrightarrow \mathbb{G}$ compact

Characterizations using invariant means on quantum groups

Definition

 \mathbb{G} amenable : $\Leftrightarrow \exists$ mean on $L_{\infty}(\mathbb{G})$ s.t.

$$f \Box M = \langle f, 1
angle \, M \ \ orall \, f \in L_1(\mathbb{G})$$

Theorem (Hu–N–Ruan)

Let \mathbb{G} be amenable with $L_1(\mathbb{G})$ separable <u>or</u> SAI. Then: \mathbb{G} uniquely amenable $\Leftrightarrow \mathbb{G}$ compact

Theorem (Hu–N–Ruan)

Let \mathbb{G} be amenable & co-amenable, with $L_1(\mathbb{G})$ separable.

Characterizations using invariant means on quantum groups

Definition

 \mathbb{G} amenable : $\Leftrightarrow \exists$ mean on $L_{\infty}(\mathbb{G})$ s.t.

$$f \Box M = \langle f, 1
angle \, M \ \ orall \, f \in L_1(\mathbb{G})$$

Theorem (Hu–N–Ruan)

Let \mathbb{G} be amenable with $L_1(\mathbb{G})$ separable <u>or</u> SAI. Then: \mathbb{G} uniquely amenable $\Leftrightarrow \mathbb{G}$ compact

Theorem (Hu–N–Ruan)

Let \mathbb{G} be amenable & co-amenable, with $L_1(\mathbb{G})$ separable. Then: $L_1(\mathbb{G})$ Arens regular $\Leftrightarrow \mathbb{G}$ finite

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Uniform continuity

Uniform continuity

 \mathcal{G} LC group. Then $f \in L_{\infty}(\mathcal{G})$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e) \text{ s.t.}$

 $\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$

By Cohen: $LUC(\mathcal{G}) = L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

Uniform continuity

 \mathcal{G} LC group. Then $f \in L_{\infty}(\mathcal{G})$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e) \text{ s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(\mathcal{G}) = L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{lin} L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

Uniform continuity

 \mathcal{G} LC group. Then $f \in L_{\infty}(\mathcal{G})$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e) \text{ s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(\mathcal{G}) = L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{lin} L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

If \mathbb{G} is co-amenable: $LUC(\mathbb{G}) = L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

Uniform continuity

 \mathcal{G} LC group. Then $f \in L_{\infty}(\mathcal{G})$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e) \text{ s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(\mathcal{G}) = L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{lin} L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

If \mathbb{G} is co-amenable: $LUC(\mathbb{G}) = L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

What about equi uniform continuity?

Uniform continuity

 \mathcal{G} LC group. Then $f \in L_{\infty}(\mathcal{G})$ is LUC $\Leftrightarrow \forall \varepsilon > 0 \ \exists U \in \mathfrak{U}(e) \text{ s.t.}$

$$\|\ell_x f - f\|_{\infty} < \varepsilon \quad \forall x \in U$$

By Cohen: $LUC(\mathcal{G}) = L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

Definition

 \mathbb{G} LC quantum group. Then LUC(\mathbb{G}) := $\overline{\text{lin}} \ L_{\infty}(\mathcal{G}) * L_1(\mathcal{G})$

If \mathbb{G} is co-amenable: $\mathsf{LUC}(\mathbb{G}) = L_\infty(\mathcal{G}) * L_1(\mathcal{G})$

What about equi uniform continuity?

<u>Recall</u>: $(f_{\alpha}) \subseteq B_1LUC(\mathbb{G})$ is equi-LUC if $\forall \varepsilon > 0 \exists U \in \mathfrak{U}(e)$ s.t.

$$\|\ell_x f_\alpha - f_\alpha\|_\infty < \varepsilon \quad \forall x \in U \ \forall \alpha$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Equi uniform continuity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Equi uniform continuity

Theorem (N–Pachl–Salmi)

 \mathcal{G} LC group. For bounded $(f_{\alpha}) \subseteq LUC(\mathcal{G})$ TFAE:

- (f_{α}) is equi-LUC
- $\exists g \in L_1(\mathcal{G}) \ \exists \text{ bounded } (h_\alpha) \subseteq LUC(\mathcal{G}) \text{ s.t. } f_\alpha = h_\alpha * g$

Equi uniform continuity

Theorem (N–Pachl–Salmi)

 \mathcal{G} LC group. For bounded $(f_{\alpha}) \subseteq LUC(\mathcal{G})$ TFAE:

- (f_{α}) is equi-LUC
- $\exists g \in L_1(\mathcal{G}) \ \exists \text{ bounded } (h_\alpha) \subseteq \mathsf{LUC}(\mathcal{G}) \text{ s.t. } f_\alpha = h_\alpha * g$

Proof.

• \mathcal{G} non-compact Then: $B_1LUC(\mathcal{G}) = B_1LUC(\mathcal{G})^* \Box B_1LUC(\mathcal{G})$. Now:

$$f_{lpha}=\psi_{lpha}\Box f=\psi_{lpha}\Box(hst g)=(\psi_{lpha}\Box h)st g=h_{lpha}st g.$$

Equi uniform continuity

Theorem (N–Pachl–Salmi)

 \mathcal{G} LC group. For bounded $(f_{\alpha}) \subseteq LUC(\mathcal{G})$ TFAE:

- (f_{α}) is equi-LUC
- $\exists g \in L_1(\mathcal{G}) \ \exists \text{ bounded } (h_\alpha) \subseteq \mathsf{LUC}(\mathcal{G}) \text{ s.t. } f_\alpha = h_\alpha * g$

Proof.

• \mathcal{G} non-compact Then: $B_1LUC(\mathcal{G}) = B_1LUC(\mathcal{G})^* \Box B_1LUC(\mathcal{G})$. Now:

$$f_{\alpha} = \psi_{\alpha} \Box f = \psi_{\alpha} \Box (h * g) = (\psi_{\alpha} \Box h) * g = h_{\alpha} * g.$$

$\bullet \ \mathcal{G} \ compact$

General result: \mathcal{A} Banach algebra with BAI for action on Banach A-module X; if $K \subseteq X$ norm-compact, then $\exists a \in \mathcal{A}$ s.t. $K \subseteq X * a$. Apply this with $\mathcal{A} = L_1(\mathcal{G}), X = \text{LUC}(\mathcal{G}), K = \overline{\{f_\alpha\}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Equi-LUC and uniform measures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Equi-LUC and uniform measures

Definition (N–Pachl–Salmi)

• Bounded $(f_{\alpha}) \subseteq LUC(\mathbb{G})$ is equi-LUC \Leftrightarrow $\exists g \in L_1(\mathbb{G}) \exists$ bounded $(h_{\alpha}) \subseteq LUC(\mathbb{G})$ s.t. $f_{\alpha} = h_{\alpha} * g$

Equi-LUC and uniform measures

Definition (N–Pachl–Salmi)

- Bounded $(f_{\alpha}) \subseteq LUC(\mathbb{G})$ is equi-LUC $\Leftrightarrow \exists g \in L_1(\mathbb{G}) \exists$ bounded $(h_{\alpha}) \subseteq LUC(\mathbb{G})$ s.t. $f_{\alpha} = h_{\alpha} * g$
- $m \in LUC(\mathbb{G})^*$ is uniform measure, written $m \in U(\mathbb{G}) \Leftrightarrow \forall (f_\alpha)$ equi-LUC with $f_\alpha \to 0$ (w^*) we have $\langle m, f_\alpha \rangle \to 0$

Equi-LUC and uniform measures

Definition (N–Pachl–Salmi)

- Bounded $(f_{\alpha}) \subseteq LUC(\mathbb{G})$ is equi-LUC $\Leftrightarrow \exists g \in L_1(\mathbb{G}) \exists$ bounded $(h_{\alpha}) \subseteq LUC(\mathbb{G})$ s.t. $f_{\alpha} = h_{\alpha} * g$
- $m \in LUC(\mathbb{G})^*$ is uniform measure, written $m \in U(\mathbb{G}) \Leftrightarrow \forall (f_\alpha)$ equi-LUC with $f_\alpha \to 0$ (w^*) we have $\langle m, f_\alpha \rangle \to 0$

Theorem (Berezanskii '68)

 \mathcal{G} LC group. Then $U(L_{\infty}(\mathcal{G})) = M(\mathcal{G})$.

Equi-LUC and uniform measures

Definition (N–Pachl–Salmi)

- Bounded $(f_{\alpha}) \subseteq LUC(\mathbb{G})$ is equi-LUC $\Leftrightarrow \exists g \in L_1(\mathbb{G}) \exists$ bounded $(h_{\alpha}) \subseteq LUC(\mathbb{G})$ s.t. $f_{\alpha} = h_{\alpha} * g$
- $m \in LUC(\mathbb{G})^*$ is uniform measure, written $m \in U(\mathbb{G}) \Leftrightarrow \forall (f_\alpha)$ equi-LUC with $f_\alpha \to 0$ (w^*) we have $\langle m, f_\alpha \rangle \to 0$

Theorem (Berezanskii '68)

 \mathcal{G} LC group. Then $U(L_{\infty}(\mathcal{G})) = M(\mathcal{G})$.

Theorem (N–Pachl–Salmi)

 \mathbb{G} co-amenable LC quantum group. Then $U(\mathbb{G}) = M(\mathbb{G})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From quantum groups back to groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From quantum groups back to groups

$$\mathfrak{M}_{\mathsf{cb}}\mathcal{L}_1(\mathbb{G}) := \{ \Phi : \mathcal{L}_1(\mathbb{G}) \to \mathcal{L}_1(\mathbb{G}) \mid \Phi \mathsf{CB}, \ \Phi(a \ast b) = a \ast \Phi(b) \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From quantum groups back to groups

$$\mathfrak{M}_{\mathsf{cb}}\mathcal{L}_1(\mathbb{G}) := \{ \Phi : \mathcal{L}_1(\mathbb{G}) \to \mathcal{L}_1(\mathbb{G}) \mid \Phi \mathsf{CB}, \ \Phi(a \ast b) = a \ast \Phi(b) \}$$

Consider $m \in \mathfrak{M}_{cb}L_1(\mathbb{G})$ s.t.

• *m*^{*} UCP (= Markov operator)

From quantum groups back to groups

$$\mathfrak{M}_{\mathsf{cb}}\mathcal{L}_1(\mathbb{G}) := \{ \Phi : \mathcal{L}_1(\mathbb{G}) \to \mathcal{L}_1(\mathbb{G}) \mid \Phi \mathsf{CB}, \ \Phi(a \ast b) = a \ast \Phi(b) \}$$

Consider $m \in \mathfrak{M}_{cb}L_1(\mathbb{G})$ s.t.

- m^* UCP (= Markov operator)
- *m* invertible and complete isometry on $L_1(\mathbb{G})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From quantum groups back to groups

$$\mathfrak{M}_{\mathsf{cb}}\mathcal{L}_1(\mathbb{G}) := \{ \Phi : \mathcal{L}_1(\mathbb{G}) \to \mathcal{L}_1(\mathbb{G}) \mid \Phi \mathsf{CB}, \ \Phi(a \ast b) = a \ast \Phi(b) \}$$

Consider $m \in \mathfrak{M}_{cb}L_1(\mathbb{G})$ s.t.

- m^* UCP (= Markov operator)
- *m* invertible and complete isometry on $L_1(\mathbb{G})$

Denote by $\widetilde{\mathbb{G}}$ the set of those multipliers.

From quantum groups back to groups

$$\mathfrak{M}_{\mathsf{cb}}\mathcal{L}_1(\mathbb{G}) := \{ \Phi : \mathcal{L}_1(\mathbb{G}) \to \mathcal{L}_1(\mathbb{G}) \mid \Phi \mathsf{CB}, \ \Phi(a \ast b) = a \ast \Phi(b) \}$$

Consider $m \in \mathfrak{M}_{cb}L_1(\mathbb{G})$ s.t.

- *m*^{*} UCP (= Markov operator)
- *m* invertible and complete isometry on $L_1(\mathbb{G})$

Denote by $\widetilde{\mathbb{G}}$ the set of those multipliers.

Examples

•
$$\widetilde{L_{\infty}(\mathcal{G})} \cong \mathcal{G}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From quantum groups back to groups

$$\mathfrak{M}_{\mathsf{cb}}\mathcal{L}_1(\mathbb{G}) := \{ \Phi : \mathcal{L}_1(\mathbb{G}) \to \mathcal{L}_1(\mathbb{G}) \mid \Phi \mathsf{CB}, \ \Phi(a \ast b) = a \ast \Phi(b) \}$$

Consider $m \in \mathfrak{M}_{cb}L_1(\mathbb{G})$ s.t.

- m^* UCP (= Markov operator)
- *m* invertible and complete isometry on $L_1(\mathbb{G})$

Denote by $\widetilde{\mathbb{G}}$ the set of those multipliers.

Examples

•
$$\widetilde{L_{\infty}(\mathcal{G})} \cong \mathcal{G}$$

•
$$\widetilde{\mathcal{L}(\mathcal{G})} \cong \widehat{\mathcal{G}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A functor LC quantum groups \rightarrow LC groups

A functor LC quantum groups \rightarrow LC groups

Theorem (Kalantar-N)

• $\widetilde{\mathbb{G}}$ is a LC group w.r.t. point weak topology on $L_1(\mathbb{G})$

A functor LC quantum groups \rightarrow LC groups

Theorem (Kalantar-N)

- \mathbb{G} is a LC group w.r.t. point weak topology on $L_1(\mathbb{G})$
- $\widetilde{\mathbb{G}} \cong Sp(L_1(\widehat{\mathbb{G}}))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A functor LC quantum groups \rightarrow LC groups

Theorem (Kalantar–N)

G̃ is a LC group w.r.t. point weak topology on L₁(G)
G̃ ≅ Sp(L₁(Ĝ))

Theorem (Kalantar–N)

The functor $\mathbb{G} \to \widetilde{\mathbb{G}}$ preserves

- Iocal compactness
- compactness
- discreteness
- (hence) finiteness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semigroup compactifications from quantum groups

Semigroup compactifications from quantum groups

Assume $\mathbb G$ co-amenable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semigroup compactifications from quantum groups

Assume $\mathbb G$ co-amenable.

Theorem (Hu–N–Ruan)

$\mathfrak{M}_{\mathsf{cb}}L_1(\mathbb{G}) \cong M(\mathbb{G}) \hookrightarrow Z_t(\mathsf{LUC}(\mathbb{G})^*)$

Semigroup compactifications from quantum groups

Assume ${\mathbb G}$ co-amenable.

Theorem (Hu–N–Ruan)

 $\mathfrak{M}_{\mathsf{cb}}L_1(\mathbb{G}) \cong M(\mathbb{G}) \hookrightarrow Z_t(\mathsf{LUC}(\mathbb{G})^*)$

Theorem (Kalantar–N)

The embedding $\widetilde{\mathbb{G}}\subseteq\mathfrak{M}_{\mathsf{cb}}L_1(\mathbb{G})$ in $\mathsf{LUC}(\mathbb{G})^*$ gives rise to

 $\mathbb{G}^{\mathsf{LUC}} := \overline{\widetilde{\mathbb{G}}}^{w^*}$

Then \mathbb{G}^{LUC} is a compact right topological semigroup.

Semigroup compactifications from quantum groups

Assume ${\mathbb G}$ co-amenable.

Theorem (Hu–N–Ruan)

 $\mathfrak{M}_{\mathsf{cb}}L_1(\mathbb{G}) \cong M(\mathbb{G}) \hookrightarrow Z_t(\mathsf{LUC}(\mathbb{G})^*)$

Theorem (Kalantar–N)

The embedding $\widetilde{\mathbb{G}} \subseteq \mathfrak{M}_{cb}L_1(\mathbb{G})$ in LUC(\mathbb{G})* gives rise to

 $\mathbb{G}^{\mathsf{LUC}} := \overline{\widetilde{\mathbb{G}}}^{w^*}$

Then \mathbb{G}^{LUC} is a compact right topological semigroup.

 $\underline{\mathsf{Note:}} \ \mathbb{G} = L_{\infty}(\mathcal{G}) \text{ for a LC group } \mathcal{G} \ \Rightarrow \ \mathbb{G}^{\mathsf{LUC}} = \mathcal{G}^{\mathsf{LUC}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Structure of \mathbb{G}

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Structure of $\widetilde{\mathbb{G}}$

Theorem (Kalantar–N)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Structure of $\widetilde{\mathbb{G}}$

Theorem (Kalantar–N)

Example Woronowicz's $SU_q(2)$ with deformation parameter $q \in (0, 1]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Structure of $\widehat{\mathbb{G}}$

Theorem (Kalantar–N)

•
$$SU_q(2) = C(SU(2))$$
 for $q = 1$

• Non-commutative C^* -algebra for $q \in (0,1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Structure of $\widehat{\mathbb{G}}$

Theorem (Kalantar–N)

•
$$SU_q(2) = C(SU(2))$$
 for $q = 1$

• Non-commutative C^* -algebra for $q \in (0,1)$

$$\widetilde{SU_q(2)} \cong SU(2) \text{ for } q = 1$$
$$\widetilde{SU_q(2)} \cong \mathbb{T} \text{ for } q \neq 1$$

Structure of $\widetilde{\mathbb{G}}$

Theorem (Kalantar–N)

 $\mathbb{G} \text{ compact matrix pseudogroup (Woronowicz '87)}$ $\Rightarrow \widetilde{\mathbb{G}} \text{ is a compact Lie group}$

•
$$SU_q(2) = C(SU(2))$$
 for $q = 1$

• Non-commutative C^* -algebra for $q \in (0,1)$

$$\widetilde{SU_q(2)} \cong SU(2)$$
 for $q = 1$
 $\widetilde{SU_q(2)} \cong \mathbb{T}$ for $q \neq 1$

Theorem (Kalantar–N)

 \mathbb{G} compact, non-Kac with $L_1(\mathbb{G})$ separable $\Rightarrow \widetilde{\mathbb{G}}$ uncountable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Heisenberg relation for quantum groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Heisenberg relation for quantum groups

 ${\mathcal G}$ abelian. For $s\in {\mathcal G}$ and $\gamma\in \widehat{{\mathcal G}}$

$$L_s M_\gamma = \langle \gamma, s \rangle \atop \in \mathbb{T} M_\gamma L_s$$

Heisenberg relation for quantum groups

 ${\mathcal G}$ abelian. For $s\in {\mathcal G}$ and $\gamma\in \widehat{{\mathcal G}}$

$$L_s M_\gamma = \langle \gamma, s \rangle \atop \in \mathbb{T} M_\gamma L_s$$

We obtain a generalization to quantum groups, using a commutation result by Junge–N–Ruan:

Heisenberg relation for quantum groups

 ${\mathcal G}$ abelian. For $s\in {\mathcal G}$ and $\gamma\in \widehat{{\mathcal G}}$

$$L_s M_\gamma = \langle \gamma, s \rangle \atop \in \mathbb{T} M_\gamma L_s$$

We obtain a generalization to quantum groups, using a commutation result by Junge–N–Ruan:

Theorem: Non-commutative Torus (Kalantar–N) $g \in \widetilde{\mathbb{G}}, \ \widehat{g} \in \widetilde{\widehat{\mathbb{G}}} \Rightarrow \exists \langle \widehat{g}, g \rangle \in \mathbb{T} \ s.t.$ $g \ \widehat{g} = \langle \widehat{g}, g \rangle \ \widehat{g} \ g$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heisenberg relation for quantum groups

 ${\mathcal G}$ abelian. For $s\in {\mathcal G}$ and $\gamma\in \widehat{{\mathcal G}}$

$$L_s M_\gamma = \langle \gamma, s \rangle \atop \in \mathbb{T} M_\gamma L_s$$

We obtain a generalization to quantum groups, using a commutation result by Junge-N-Ruan:

Theorem: Non-commutative Torus (Kalantar–N)

$$g \in \widetilde{\mathbb{G}}, \ \widehat{g} \in \widetilde{\widehat{\mathbb{G}}} \Rightarrow \exists \langle \widehat{g}, g \rangle \in \mathbb{T} \text{ s.t.}$$

 $g \ \widehat{g} = \langle \widehat{g}, g \rangle \ \widehat{g} \ g$
 $\left\langle \widetilde{\widehat{\mathbb{G}}}, \widetilde{\mathbb{G}} \right\rangle =: \mathbb{G}_0 \text{ is a subgroup of } \mathbb{T} \text{ .}$

Heisenberg relation for quantum groups

 ${\mathcal G}$ abelian. For $s\in {\mathcal G}$ and $\gamma\in \widehat{{\mathcal G}}$

$$L_s M_\gamma = \langle \gamma, s \rangle \atop \in \mathbb{T} M_\gamma L_s$$

We obtain a generalization to quantum groups, using a commutation result by Junge–N–Ruan:

Theorem: Non-commutative Torus (Kalantar–N)

$$g \in \widetilde{\mathbb{G}}, \ \widehat{g} \in \widetilde{\widehat{\mathbb{G}}} \Rightarrow \exists \langle \widehat{g}, g \rangle \in \mathbb{T} \text{ s.t.}$$

 $g \ \widehat{g} = \langle \widehat{g}, g \rangle \ \widehat{g} \ g$
 $\left\langle \widetilde{\widehat{\mathbb{G}}}, \widetilde{\mathbb{G}} \right\rangle =: \mathbb{G}_0 \text{ is a subgroup of } \mathbb{T} \text{ .}$

Example $SU_q(2)_0 = \mathbb{T} \ (q \neq 1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unification via $\mathcal{T}(L_2(\mathbb{G}))$

Unification via $\mathcal{T}(L_2(\mathbb{G}))$

Co-multiplications Γ and $\widehat{\Gamma}$ extend to

 $\mathcal{B}(L_2(\mathbb{G})) \rightarrow \mathcal{B}(L_2(\mathbb{G})) \bar{\otimes} \mathcal{B}(L_2(\mathbb{G}))$

Unification via $\mathcal{T}(L_2(\mathbb{G}))$

Co-multiplications Γ and $\widehat{\Gamma}$ extend to $\mathcal{B}(L_2(\mathbb{G})) \rightarrow \mathcal{B}(L_2(\mathbb{G})) \bar{\otimes} \mathcal{B}(L_2(\mathbb{G}))$ $\Rightarrow \Gamma_* = m$ and $\widehat{\Gamma}_* = \widehat{m}$ yield 2 dual products $\mathcal{T}(L_2(\mathbb{G})) \bar{\otimes} \mathcal{T}(L_2(\mathbb{G})) \rightarrow \mathcal{T}(L_2(\mathbb{G}))$

Unification via $\mathcal{T}(L_2(\mathbb{G}))$

Co-multiplications Γ and $\widehat{\Gamma}$ extend to $\mathcal{B}(L_2(\mathbb{G})) \rightarrow \mathcal{B}(L_2(\mathbb{G})) \bar{\otimes} \mathcal{B}(L_2(\mathbb{G}))$ $\Rightarrow \Gamma_* = m$ and $\widehat{\Gamma}_* = \widehat{m}$ yield 2 dual products $\mathcal{T}(L_2(\mathbb{G})) \bar{\otimes} \mathcal{T}(L_2(\mathbb{G})) \rightarrow \mathcal{T}(L_2(\mathbb{G}))$

Theorem (Kalantar–N)

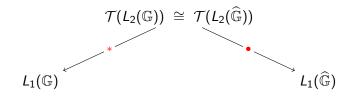
$$\begin{array}{l} \mathrm{m} \ \circ \ (\widehat{\mathrm{m}} \otimes \mathsf{id}) \ = \ \widehat{\mathrm{m}} \ \circ \ (\mathrm{m} \otimes \mathsf{id}) \ \circ \ (\mathsf{id} \otimes \sigma) \\ \\ \end{array} \\ Here, \ \sigma(\varphi \otimes \tau) = \tau \otimes \varphi \ \textit{is the flip.} \end{array}$$

Duality = Anti-Commutation Relation on tensor level

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

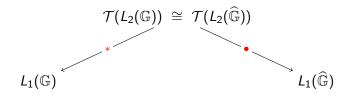
$\mathcal{T}(L_2(\mathbb{G}))$ as a home for convolution and pointwise product

$\mathcal{T}(L_2(\mathbb{G}))$ as a home for convolution and pointwise product



On $\mathcal{T}(L_2(\mathbb{G}))$ we can compare "convolution" and "pointwise product"!

$\mathcal{T}(L_2(\mathbb{G}))$ as a home for convolution and pointwise product



On $\mathcal{T}(L_2(\mathbb{G}))$ we can compare "convolution" and "pointwise product"!

$$(\varphi * \tau) \bullet \psi = (\varphi \bullet \psi) * \tau$$

(Kalantar–N)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some cohomology for LC quantum groups

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Some cohomology for LC quantum groups

The following generalizes results by Pirkovskii on $(\mathcal{T}(L_2(\mathcal{G})), *)$ to quantum groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Some cohomology for LC quantum groups

The following generalizes results by Pirkovskii on $(\mathcal{T}(L_2(\mathcal{G})), *)$ to quantum groups.

Theorem (Kalantar–N)

 $L_1(\mathbb{G})$ is projective in mod- $\mathcal{T}(L_2(\mathbb{G}))$

 \Leftrightarrow $L_1(\mathbb{G})$ has the Radon–Nikodým Property

Some cohomology for LC quantum groups

The following generalizes results by Pirkovskii on $(\mathcal{T}(L_2(\mathcal{G})), *)$ to quantum groups.

Theorem (Kalantar–N)

$$L_1(\mathbb{G})$$
 is projective in mod- $\mathcal{T}(L_2(\mathbb{G}))$

 \Leftrightarrow $L_1(\mathbb{G})$ has the Radon–Nikodým Property

Theorem (Kalantar–N)

 $\mathbb C$ is projective in mod– $\mathcal T(L_2(\mathbb G))$

 $\Leftrightarrow \mathbb{G} \text{ is compact}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Woronowicz's $SU_q(2)$

 C^* -algebra generated by a and b with

$$b^*b = bb^*$$

$$a^*a + b^*b = 1$$

$$ab = q ba$$

$$ab^* = q b^*a$$

$$aa^* + q^2 bb^* = 1$$

Co-multiplication:

$$\Gamma(a) = a \otimes a - q \ b^* \otimes b$$

$$\Gamma(b) = b \otimes a + a^* \otimes b$$

Compact matrix pseudogroups

Definition (Woronowicz '87)

Given A unital C*-algebra, $u \in M_n(A)_{inv}$.

 $\mathbb{G} = (A, u)$ compact matrix pseudogroup if

- *-subalgebra \mathcal{A} generated by u_{ij} is dense in A
- \exists co-multiplication Γ on A
- $\exists \ \kappa : \mathcal{A} \to \mathcal{A}$ anti-multiplicative, $\kappa(\kappa(a^*)^*) = a \ (a \in \mathcal{A})$,

$$(\mathsf{id}\otimes\kappa)u=u^{-1}$$

$$\sim$$
 For $SU_q(2)$: $u = \begin{pmatrix} a & -q & b^* \\ b & a^* \end{pmatrix}$