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Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Amenability vs. injectivity (in the group setting)

Amenability . . . needs no introduction here.
Recall:

Definition

vN algebra M ⊆ B(H) injective ⇔ ∃ cond. exp. E : B(H)→ M

For LC group G, consider L(G) = {Lg | g ∈ G}′′ ⊆ B(L2(G)).

G discrete (or inner-amenable): G amenable ⇔ L(G) injective

G LC: G amenable ⇒ L(G) injective

The converse does not hold in general:

Theorem (Connes/Dixmier ’76)

G separable, connected LC group ⇒ L(G) injective

Question: L(G) injective + ? ⇒ G amenable
We will answer this more generally for LC quantum groups.
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Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Hopf–von Neumann Algebras

Definition

Hopf–von Neumann algebra = (M, Γ)

M vN algebra

Γ : M → M⊗̄M co-multiplication:
normal unital isometric ∗-hom., co-associative:

(id⊗ Γ) ◦ Γ = (Γ⊗ id) ◦ Γ

Examples:

M = L∞(G) = L1(G)∗

Γ = adjoint of convolution product ∗

M = L(G) = A(G)∗

Γ = adjoint of pointwise product •
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Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Putting on weight

Non-commutative integration (Tomita–Takesaki):

Weight ϕ : M+ → [0,∞] additive & positive homogeneous

Mϕ := lin {x ∈ M+ | ϕ(x) <∞}
Nϕ := {x ∈ M | ϕ(x∗x) <∞}
Then ϕ extends to a lin. map on Mϕ, and Nϕ is a left ideal of M.

Given an nsf weight ϕ on M, Nϕ, equipped with (x , y) := ϕ(y∗x),
is a pre-Hilbert space; we denote by L2(M, ϕ) its completion.
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Locally compact quantum groups

Definition (Kustermans–Vaes ’00)

LC Quantum Group G = (M, Γ, ϕ, ψ)

(M, Γ) Hopf–von Neumann algebra

ϕ left invariant nsf weight on M:

ϕ((f ⊗ id)(Γx)) = f (1)ϕ(x) (f ∈ M∗, x ∈ Mϕ)

ψ right invariant nsf weight on M:

ψ((id⊗ f )(Γx)) = f (1)ψ(x) (f ∈ M∗, x ∈ Mψ)

ϕ, ψ called left resp. right Haar weight
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Examples

M = L∞(G); Γ(f )(s, t) = f (st)

ϕ and ψ given by left resp. right Haar measure

M = L(G); Γ(Lx) = Lx ⊗ Lx

ϕ = ψ given by the Plancherel weight on L(G)
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Fundamental structure

Co-multiplication Γ implemented by left fundamental unitary
W ∈ B(L2(M, ϕ)⊗ L2(M, ϕ)):

Γ(x) = W ∗(1⊗ x)W (x ∈ M)

Examples:

M = L∞(G ): Wf (x , y) = f (x , xy) ∀ f ∈ L2(G × G)

M = L(G): fundy W assigns to ω ∈ A(G) the function
x → 〈Lx , ω〉 seen as an element of L∞(G)⊗L(G)

Write L∞(G) := M and L1(G) := M∗

; L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Fundamental structure

Co-multiplication Γ implemented by left fundamental unitary
W ∈ B(L2(M, ϕ)⊗ L2(M, ϕ)):

Γ(x) = W ∗(1⊗ x)W (x ∈ M)

Examples:

M = L∞(G ): Wf (x , y) = f (x , xy) ∀ f ∈ L2(G × G)

M = L(G): fundy W assigns to ω ∈ A(G) the function
x → 〈Lx , ω〉 seen as an element of L∞(G)⊗L(G)

Write L∞(G) := M and L1(G) := M∗

; L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Fundamental structure

Co-multiplication Γ implemented by left fundamental unitary
W ∈ B(L2(M, ϕ)⊗ L2(M, ϕ)):

Γ(x) = W ∗(1⊗ x)W (x ∈ M)

Examples:

M = L∞(G ): Wf (x , y) = f (x , xy) ∀ f ∈ L2(G × G)

M = L(G): fundy W assigns to ω ∈ A(G) the function
x → 〈Lx , ω〉 seen as an element of L∞(G)⊗L(G)

Write L∞(G) := M and L1(G) := M∗

; L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Fundamental structure

Co-multiplication Γ implemented by left fundamental unitary
W ∈ B(L2(M, ϕ)⊗ L2(M, ϕ)):

Γ(x) = W ∗(1⊗ x)W (x ∈ M)

Examples:

M = L∞(G ): Wf (x , y) = f (x , xy) ∀ f ∈ L2(G × G)

M = L(G): fundy W assigns to ω ∈ A(G) the function
x → 〈Lx , ω〉 seen as an element of L∞(G)⊗L(G)

Write L∞(G) := M and L1(G) := M∗

; L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Fundamental structure

Co-multiplication Γ implemented by left fundamental unitary
W ∈ B(L2(M, ϕ)⊗ L2(M, ϕ)):

Γ(x) = W ∗(1⊗ x)W (x ∈ M)

Examples:

M = L∞(G ): Wf (x , y) = f (x , xy) ∀ f ∈ L2(G × G)

M = L(G): fundy W assigns to ω ∈ A(G) the function
x → 〈Lx , ω〉 seen as an element of L∞(G)⊗L(G)

Write L∞(G) := M and L1(G) := M∗

; L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Fundamental structure

Co-multiplication Γ implemented by left fundamental unitary
W ∈ B(L2(M, ϕ)⊗ L2(M, ϕ)):

Γ(x) = W ∗(1⊗ x)W (x ∈ M)

Examples:

M = L∞(G ): Wf (x , y) = f (x , xy) ∀ f ∈ L2(G × G)

M = L(G): fundy W assigns to ω ∈ A(G) the function
x → 〈Lx , ω〉 seen as an element of L∞(G)⊗L(G)

Write L∞(G) := M and L1(G) := M∗

; L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Fundamental structure

Co-multiplication Γ implemented by left fundamental unitary
W ∈ B(L2(M, ϕ)⊗ L2(M, ϕ)):

Γ(x) = W ∗(1⊗ x)W (x ∈ M)

Examples:

M = L∞(G ): Wf (x , y) = f (x , xy) ∀ f ∈ L2(G × G)

M = L(G): fundy W assigns to ω ∈ A(G) the function
x → 〈Lx , ω〉 seen as an element of L∞(G)⊗L(G)

Write L∞(G) := M and L1(G) := M∗

; L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Duality, I

Left regular representation λ : L1(G)→ B(L2(M, ϕ)) given by

λ(f ) = (f ⊗ id)W

; λ injective c.c. homomorphism

M̂ := {λ(f ) : f ∈ M∗}
w∗

is vN algebra on L2(M, ϕ).

We obtain dual quantum group Ĝ = (M̂, Γ̂, ϕ̂, ψ̂) with
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Enock–Schwartz, Kac–Vainerman, Takesaki, . . .
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Left and right

What we did for the left Haar weight ϕ can of course also be done
for the right one, ψ.

We have L2(M, ψ) ∼= L2(M, ϕ) = L2(G).

Right fundamental unitary V gives:

Γ(x) = V (x ⊗ 1)V ∗.

Right regular representation ρ given by

ρ(f ) = (id⊗ f )V ∈ M̂ ′.
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C0(G) := {(id⊗ ν)(W ) | ν ∈ T (L2(G))}‖·‖ ⊆ L∞(G)

Examples:

L∞(G) = L∞(G) ; C0(G) = C0(G)

L∞(G) = L(G) ; C ∗r (G)

from Mathematical Physics: Woronowicz’s SUq(2)

with deformation parameter q ∈ (0, 1]

SUq(2) = C(SU(2)) for q = 1

Non-commutative C∗-algebra for q ∈ (0, 1)
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Representation for LC Quantum Groups

Recall:

L∞(G) := M L1(G) := M∗

L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)

McbL1(G) := {Φ : L1(G)→ L1(G) | Φ CB & Φ(f ∗g) = f ∗Φ(g)}

Theorem (Junge–N–Ruan)

θ : McbL1(G) ∼= NCB L∞(G)

L∞(Ĝ)
(B(L2(G)))



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Representation for LC Quantum Groups

Recall:

L∞(G) := M L1(G) := M∗

L1(G) Banach algebra: f ∗ g = Γ∗(f ⊗ g)

McbL1(G) := {Φ : L1(G)→ L1(G) | Φ CB & Φ(f ∗g) = f ∗Φ(g)}

Theorem (Junge–N–Ruan)

θ : McbL1(G) ∼= NCB L∞(G)

L∞(Ĝ)
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(B(L2(G)))



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

1 Amuse-gueule

2 Locally Compact Quantum Groups

3 Duality via T (L2(G))

4 Amenability = T (L2(G))-Covariant Injectivity



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Duality = Commutation in T (L2(G))

Co-multiplications Γ and Γ̂ extend to

B(L2(G))→ B(L2(G)) ⊗̄ B(L2(G))

; Γ∗ = m and Γ̂∗ = m̂ yield 2 dual products

T (L2(G)) ⊗̂ T (L2(G))→ T (L2(G))

Theorem (Kalantar–N)

On T (L2)⊗̂T (L2)⊗̂T (L2) we have

m ◦ (m̂⊗ id) = m̂ ◦ (m⊗ id) ◦ (id⊗ σ)

Here σ(ρ⊗ τ) = τ ⊗ ρ is the flip.

Anti-Commutation Relation on Tensor Level!
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T (L2(G)) as “Universal” Space

T (L2(G)) ∼= T (L2(Ĝ))

L1(G) L1(Ĝ)

∗ •

On T (L2(G)) we can compare
“convolution” and “pointwise product”!

(ρ ∗ τ) · ψ = (ρ · ψ) ∗ τ



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

T (L2(G)) as “Universal” Space

T (L2(G)) ∼= T (L2(Ĝ))
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∗ •

On T (L2(G)) we can compare
“convolution” and “pointwise product”!

(ρ ∗ τ) · ψ = (ρ · ψ) ∗ τ



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

T (L2(G)) as “Universal” Space

T (L2(G)) ∼= T (L2(Ĝ))
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LUC(G) := lin L∞(G) ∗ L1(G) ⊆ L∞(G)
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G compact if C0(G) unital (⇔ ∃ Haar state)

G discrete if L1(G) unital

G co-amenable if L1(G) has BAI
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LUC(G)

Proposition (Hu–N–Ruan)

LUC(G) = lin B(L2(G)) ∗ T (L2(G))

Proposition (Hu–N–Ruan)

T (L2(G)) does not have LAI unless G trivial

T (L2(G)) has BRAI ⇔ G co-amenable

T (L2(G)) has right identity ⇔ G discrete

Proposition (Hu–N–Ruan)

G co-amenable. Then:

LUC(G) = LUC(G)∗L1(G) = L∞(G)∗L1(G) = B(L2(G))∗T (L2(G))
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LUC(G) as a C ∗-algebra

Definition

Consider C (V ) := {(id⊗ ρ)(σV ) | ρ ∈ T (L2(G))} ⊆ B(L2(G))

G regular [resp. semi-regular] if
K(L2(G)) = linC (V ) [resp. K(L2(G)) ⊆ linC (V )]

Examples:
Kac algebras, compact and discrete quantum groups are regular

Theorem (Hu–N–Ruan)

If G is semi-regular, then LUC(G) is unital C ∗-algebra.
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Examples – amenability:

G = L∞(G) amenable ⇔ G amenable

G = L(G) amenable for all G
Examples – co-amenability:

G = L∞(G) co-amenable for all G
G = L(G) co-amenable ⇔ G amenable (Leptin)
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Amenability and Co-amenability, II

Theorem (Bédos–Tuset ’03; Tomatsu ’06)

Ĝ co-amenable ⇒ G amenable.
The converse holds if G is discrete.

Theorem (Hu–N–Ruan)

G amenable and co-amenable ⇔ L1(G)0 has BAI

The following is a quantum group version of Hulanicki’s
amenability criterion.

Proposition (Kalantar–N)

Let G be co-amenable. TFAE:

Ĝ co-amenable

λ : L1(G)→ L∞(Ĝ) isometry on L1(G)+
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Ĝ co-amenable ⇒ G amenable.
The converse holds if G is discrete.

Theorem (Hu–N–Ruan)

G amenable and co-amenable ⇔ L1(G)0 has BAI

The following is a quantum group version of Hulanicki’s
amenability criterion.

Proposition (Kalantar–N)

Let G be co-amenable. TFAE:
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Amenability and Injectivity, I

Recall:

For G discrete: G amenable ⇔ L(G) injective

For G LC: G amenable ⇒ L(G) injective

The converse does not hold in general (Connes/Dixmier ’76).

We get equivalence if we take into account action by T (L2(G))!
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Products on T (L2(G))

V induces extended co-multiplication

Γr : B(L2(G)) 3 x 7→ V (x ⊗ 1)V ∗ ∈ B(L2(G))⊗B(L2(G))

; c.c. product � on T (L2(G))

W analogously induces extended co-multiplication

Γ` : B(L2(G)) 3 x 7→W ∗(1⊗ x)W ∈ B(L2(G))⊗B(L2(G))

; c.c. product � on T (L2(G))

Both � and � yield T (L2(G))-actions on B(L2(G))
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Amenability and Injectivity, II

Theorem (Crann–N)

G LC quantum group.
G amenable ⇔ ∃ conditional expectation E : B(L2(G))→ L∞(Ĝ)
commuting with right T (L2(G))�-action

In other words:

LC quantum group G amenable ⇔ L∞(Ĝ) covariantly injective

Corollary (Crann–N)

LC group G amenable ⇔ L(G) covariantly injective
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Idea of Proof

Since LUC(G) ↪→ L∞(G), the quotient map L∞(G)∗ → LUC(G)∗

transports 1st Arens product

; Banach algebra LUC(G)∗

; right inv. means in LUC(G)∗ are idempotent states

; these give rise to cond. exp.’s when acting on B(L2(G))

Key tool = non-normal version of our rep. of cb-multipliers:

Theorem (Hu–N–Ruan)

LC quantum group G. We have w∗-cont. compl. contr.

representation LUC(G)∗ ↪→ CBT.(B(L2)) ∩ CBL∞(G)

L∞(Ĝ)
(B(L2))

Here, m ∈ LUC(G)∗ acts via

〈Θ(m)(T ), ρ〉 = 〈m, T � ρ︸ ︷︷ ︸
∈LUC(G)

〉 ∀ T ∈ B(L2(G)), ρ ∈ T (L2(G))
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(B(L2))

Here, m ∈ LUC(G)∗ acts via

〈Θ(m)(T ), ρ〉 = 〈m, T � ρ︸ ︷︷ ︸
∈LUC(G)

〉 ∀ T ∈ B(L2(G)), ρ ∈ T (L2(G))



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Idea of Proof

Since LUC(G) ↪→ L∞(G), the quotient map L∞(G)∗ → LUC(G)∗

transports 1st Arens product

; Banach algebra LUC(G)∗

; right inv. means in LUC(G)∗ are idempotent states

; these give rise to cond. exp.’s when acting on B(L2(G))

Key tool = non-normal version of our rep. of cb-multipliers:

Theorem (Hu–N–Ruan)

LC quantum group G. We have w∗-cont. compl. contr.

representation LUC(G)∗ ↪→ CBT.(B(L2)) ∩ CBL∞(G)

L∞(Ĝ)
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Cond. expectations from extreme invariant means
(Crann–N)

Question: For amenable G, is every cond. exp.
E : B(L2(G))→ L(G) covariant?

No! Let G = S f
N : (countable discrete) amenable ICC group

⇒ R(G) is the injective II1 factor with sep. predual

⇒ U(R(G)) is extremely amenable (Giordano–Pestov ’07):

∃ multiplicative RIM m on LUC(U(R(G)))

; cond. exp. Em : B(L2(G))→ L(G) (Paterson ’92)

Restriction r : LUC(U(R(G)))→ LUC(G) is surjective

⇒ cov. would give Em = Θ(n) for some mult. RIM n ∈ LUC(G)∗

⇒ G = {e} (Garnirer–Lau ’71)
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Amenability and Injectivity, III

Theorem (Crann–N)

G LC quantum group. TFAE:

∃ right invariant mean on L∞(G), i.e., G amenable

∃ right invariant mean on LUC(G)

L∞(Ĝ) covariantly injective

The first equivalence answers a question of Bédos–Tuset (’03),
generalizing a result by Volker:
G amenable ⇔ ∃ right inv. mean on M(C0(G))
(cf. also Zobeidi ’12)

Corollary (Crann–N)

G LC quantum group. TFAE:

G compact

L∞(Ĝ) covariantly injective via normal conditional expectation
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L∞(Ĝ) covariantly injective

The first equivalence answers a question of Bédos–Tuset (’03),
generalizing a result by Volker:

G amenable ⇔ ∃ right inv. mean on M(C0(G))
(cf. also Zobeidi ’12)

Corollary (Crann–N)

G LC quantum group. TFAE:

G compact
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Discreteness vs. RNP

The last result can be reformulated as

Theorem

G LC quantum group. TFAE:

∃ normal conditional expectation E : B(L2(G))→ L∞(G) s.t.

Γ ◦ E = (E ⊗ id) ◦ Γr

G discrete

Compare with the following

Proposition (Kalantar–N)

G LC quantum group. TFAE:

∃ normal conditional expectation E : B(L2(G))→ L∞(G)

L1(G) has RNP

Recall: L1(G) has RNP ⇔ G discrete
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Related covariance properties, I

Recall:

Theorem (Crann–N)

G LC quantum group. TFAE:

∃ cond. exp. E : B(L2(G))→ L∞(Ĝ) in CBT�(B(L2(G)))

G amenable
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G amenable
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Related covariance properties, II

Theorem (Crann–N)

G LC quantum group. TFAE:

∃ cond. exp. E : B(L2(G))→ L∞(Ĝ) in CBT�(B(L2(G)))

L∞(Ĝ) injective

Idea of proof: Tomiyama says E ∈ CBL∞(Ĝ)(B(L2(G)))

; approximate E (w∗) by normal c.b. L∞(Ĝ)-bimodule maps
(Effros–Kishimoto/May–Neuhardt–Wittstock)

Theorem (Crann–N)

G LC quantum group. TFAE:

∃ cond. exp. E : B(L2(G))→ L∞(Ĝ) in T�CB(B(L2(G)))

G co-commutative, i.e., L∞(G) = L(G) for some LC group G
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G co-commutative, i.e., L∞(G) = L(G) for some LC group G



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Related covariance properties, II

Theorem (Crann–N)

G LC quantum group. TFAE:

∃ cond. exp. E : B(L2(G))→ L∞(Ĝ) in CBT�(B(L2(G)))
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(Effros–Kishimoto/May–Neuhardt–Wittstock)

Theorem (Crann–N)

G LC quantum group. TFAE:

∃ cond. exp. E : B(L2(G))→ L∞(Ĝ) in T�CB(B(L2(G)))

G co-commutative, i.e., L∞(G) = L(G) for some LC group G



Appetizer Quantum Groups T (L2(G)) Amenability & Co.

Related covariance properties, II

Theorem (Crann–N)

G LC quantum group. TFAE:

∃ cond. exp. E : B(L2(G))→ L∞(Ĝ) in CBT�(B(L2(G)))
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Theorem (Crann–N)

G LC quantum group. TFAE:
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L∞(Ĝ) is injective in mod− T (L2(G))
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A new look at approximation properties, I

Definition (Kalantar–N–Ruan)

Let α be a reasonable cross norm, i.e., ε ≤ α ≤ π. Let G be a
discrete group.
We say that L(G) has the α-w∗CBAP if there is a net Ti in
L(G)⊗α A(G) s.t. Ti → idL(G) point-w∗ and supi ‖Ti‖cb <∞.

Theorem (Kalantar–N–Ruan)

Let d2 ≤ α ≤ π(= d1) where dp is the Chevet–Saphar tensor norm.
TFAE:

L(G) has the α-w∗CBAP [P]

G is weakly amenable [amenable]
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A new look at approximation properties, II

Proposition (Kalantar–N–Ruan)

The map L(G)⊗d2 A(G)→ `2, T 7→ τ(λx−1T (λx)) is surjective.

Theorem (Kalantar–N–Ruan)

L(G) has the ε-w∗CBAP [P] ⇔ G is weak Haagerup [Haagerup]
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Injective modules: generalities

A c.c. Banach algebra

mod−A = c.c. right A-modules & c.c. module maps

Monomorphism Φ admissible if Φ complete isometry with c.c.
left inverse

X ∈ mod−A injective if
∀ Y ,Z ∈ mod−A, admissible monomorphism Φ : Y → Z ,
morphism Ψ : Y → X
∃ morphism Ψ̃ : Z → X such that Ψ̃ ◦ Φ = Ψ

Z

Y X

Φ Ψ̃

Ψ
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Regularity

Theorem (Hu–N–Ruan)

lin K(L2(G)) � T (L2(G)) = C0(G)

Consider K∗(L2(G)) := lin T (L2(G)) �K(L2(G)).

Theorem (Hu–N–Ruan)

G regular ⇔ K(L2(G)) = K∗(L2(G))

G semi-regular ⇔ K(L2(G)) ⊆ K∗(L2(G))
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Regularity and Invariance

Theorem (Hu–N–Ruan)

TFAE:

G regular

each map in θ(L1(G)) has K(L2(G)) as invariant subspace

each map in θ(McbL1(G)) has K(L2(G)) as invariant subspace

Theorem (Hu–N–Ruan)

McbL1(G) ∼= NCBK∗T (B(L2(G)))
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G-continuous operators, I

Recall: lin B(L2(G)) � T (L2(G)) = LUC(G) ⊆ L∞(G)

Consider lin T (L2(G)) � B(L2(G)) =: X (L2(G))

Theorem (Hu–N–Ruan)

K∗(L2(G)) ∪ RUC(G) ∪ L∞(Ĝ) ⊆ X (L2(G))

If G discrete, then X (L2(G)) = B(L2(G))

If G co-amenable, then X (L2(G)) ∩ L∞(G) = RUC(G)
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G-continuous operators, II

Theorem (Hu–N–Ruan)

Let G be co-amenable with L1(G) separable. TFAE:

X (L2(G)) = B(L2(G))

L∞ ⊆ X (L2(G))

G discrete

Theorem (Hu–N–Ruan)

Let G be semi-regular. Then X (L2(G)) is a unital C ∗-subalgebra
of B(L2(G)).
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Woronowicz’s SUq(2)

C ∗-algebra generated by a and b with

b∗b = bb∗

a∗a + b∗b = 1

ab = q ba

ab∗ = q b∗a

aa∗ + q2 bb∗ = 1

Co-multiplication:

Γ(a) = a⊗ a− q b∗ ⊗ b

Γ(b) = b ⊗ a + a∗ ⊗ b
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