> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

Contractive homomorphisms from Fourier algebras: not new

Pham Le Hung

Victoria University of Wellington, New Zealand

Fields Institute, 15 April 2014

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

```
Contractive
phisms
A(G) \rightarrow B(H)
```
The Main Problem

Let *G* and *H* be locally compact groups.

Problem

Suppose that θ is a homomorphism from the Fourier algebras A(*G*) into the Fourier-Stieltjes algebra B(*H*). Describe θ.

Outline

homomorphisms from Fourier [algebras: not](#page-0-0) new

Contractive

Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

1 [Contractive homomorphisms](#page-3-0) $L^1(H) \to M(G)$

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$ 2 [Homomorphisms](#page-9-0) $A(G) \to B(H)$

3 [Contractive homomorphisms](#page-15-0) $A(G) \rightarrow B(H)$

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

(Contractive) homomorphisms $L^1(G) \rightarrow M(H)$

Suppose that $\phi : G \to M(H)$ is a uniformly bounded, weak[∗] -continuous homomorphism. Define

$$
\phi^t(f)(t):=\langle\phi(t),f\rangle \quad (f\in C_0(H),\ t\in G).
$$

Then $\phi^t: \mathcal C_0(H) \to \mathcal C^b(G)$ is a bounded linear map. Define ϕ^{tt} : $\mathcal{M}(G) \rightarrow \mathcal{M}(H)$ as follows.

$$
\big\langle \phi^{t\!t}(\mu), f \big\rangle := \int_G \phi^{t}(f) \mathrm{d} \mu \,.
$$

Then ϕ^{tt} is a bounded homomorphism.

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

A contractive homomorphism $L^1(G) \rightarrow M(H)$

Suppose that $\phi : G \to H$ is a continuous group homomorphism. Define

$$
\phi^t(f) := f \circ \phi \quad (f \in C_0(H)).
$$

Then $\phi^t: \mathcal C_0(H) \to \mathcal C^b(G)$ is a contractive linear map. Define ϕ^{tt} : $\mathcal{M}(G) \rightarrow \mathcal{M}(H)$ as follows.

$$
\big\langle \phi^{t\!t}(\mu), f \big\rangle := \int_G \phi^t(f) \text{d} \mu \,.
$$

Then $\phi^{\textit{tt}}$ is a contractive homomorphism.

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

A more complicated one

Suppose that *K* is a compact supgroup of *H* that commutes with $\phi(G)$ i.e.

 $K\phi(G) \subseteq \phi(G)K$.

Then we can define $\phi_K^{\textit{tt}}:M(G)\rightarrow M(H)$ as follows.

$$
\phi_{\mathsf{K}}^{\mathsf{tt}}(\mu):=\phi^{\mathsf{tt}}(\mu)*m_{\mathsf{K}};
$$

where m_K is the normalized Haar measure on K. Then $\phi^{\textit{tt}}_{\mathcal{K}}$ is a contractive homomorphism.

If in addition we have a "nice" character $\rho: K \to \mathbb{T}$, we could modify

$$
\phi_{K,\rho}^{\sharp\sharp}(\mu) := \phi^{\sharp\sharp}(\mu) * (\rho m_K).
$$

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$

A further complication

If *L* is a normal supgroup of *G* such that

$$
\phi(\mathbf{s}) * (\rho m_K) = \rho m_K \quad (\mathbf{s} \in L),
$$

i.e. $\psi(\boldsymbol{s}) = \psi(\boldsymbol{1}_{\boldsymbol{G}})$ for all $\boldsymbol{s} \in \mathcal{L}$, where $\psi := \phi_{\mathcal{K},\rho}^{\boldsymbol{t}\boldsymbol{t}}.$ Consider $\bar{\psi}: G/L \to M(H)$. Define $\bar{\psi}^{tt}$: $M(G/L) \rightarrow M(H)$.

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

A more concrete example

Take $\Omega_0 \subseteq \Omega$ be closed subgroups of $\mathbb{T} \times H$ with

- Ω_0 is compact and normal in Ω , and
- π_H : $\Omega_0 \to H$ is injective.

Set $K := \pi_H(\Omega_0)$ and set $\rho := \pi_{\mathbb{T}} \circ (\pi_H|_{\Omega_0})^{-1}$. Then

- \bigodot $\pi_H : \Omega \to H$ is a homomorphism,
- 2 *K* is a compact subgroup of *H*,
- **3** π _H(Ω) commutes with *K*, and
- 4 ρ is a "nice" character on *K*.

Thus we have a contractive homomorphism $\Phi : M(\Omega) \to M(H)$ as above.

Moreover,

 \bullet $\Phi(\Omega_0) = \Phi(1_\Omega)$.

Hence, a contractive homomorphism $\tilde{\Phi}: M(\Omega/\Omega_0) \to M(H)$.

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

Greenleaf's theorem

Let *G* and *H* be locally compact groups. Every contractive homomorphism $\mathsf{L}^1(G)\to\mathsf{M}(H)$ has the form

$$
\tilde{\Phi}\circ\phi^{tt}
$$

where

- $\mathbf{\Phi}: M(\Omega/\Omega_0) \to M(H)$ as above, and
- $\mathbf{Q} \phi : G \to \Omega/\Omega_0$ is a continuous epimorphism.

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

Homomorphisms from A(*G*).

- • Suppose that $\theta : A(G) \to B(H)$ is a homomorphism.
- For each $t \in H$, either $\theta(f)(t) = 0 \ \forall f \in A(G)$.
- Or, $f \mapsto \theta(f)(t)$ is a character of A(*G*).
- So that $\exists \tau(t) \in G$, $\theta(f)(t) = f(\tau(t))$ for all $f \in A(G)$.
- Thus, ∃ an open subset Ω of *H* and a continuous map $\tau : \Omega \to G$ such that

$$
\theta(f)(t)=\left\{\begin{array}{cl} f(\tau(t)) & \text{if } t\in\Omega \\ 0 & \text{if } t\in H\setminus\Omega \end{array},\right. \qquad (\forall f\in\mathbb{A}(G)).
$$

• As a consequence, $\theta : A(G) \to B(H)$ is automatically bounded.

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

Homomorphisms from A(*G*) (cont.)

• Conversely, given a map $\tau : \Omega \to G$, where $\Omega \subseteq H$. Define

$$
\theta_{\tau}(f)(t)=\left\{\begin{array}{cc}f(\tau(t))&\text{if }t\in\Omega\\0&\text{if }t\in H\setminus\Omega\end{array},\quad(\forall f\in\mathbb{A}(G)).\right.
$$

- Then $\theta_{\tau} : A(G) \to \ell^{\infty}(H)$ is a homomorphism.
- Where $\ell^{\infty}(H)$ is the algebra of bounded functions on H.

Question

For which τ , does $\theta_{\tau}(\mathbb{A}(G)) \subseteq \mathbb{B}(H)$?

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

A reduction lemma

Let $\theta : A(G) \to B(H)$ be a homomorphism. Then θ is induced by some continuous map $\tau : \Omega \to G$. The formula

$$
\varphi(f)(t) = \left\{ \begin{array}{cl} f(\tau(t)) & \text{if} \;\; t \in \Omega \\ 0 & \text{if} \;\; t \in H \setminus \Omega \end{array} \right.
$$

makes sense even if $f \in B(G_d)$. In fact, φ is a homomorphism from $A(G_d)$ into $B(H_d)$ with $\|\varphi\| \leq \|\theta\|.$

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

Proof of the reduction

It suffices to show that for $u = \sum_{i=1}^{m} \alpha_i \delta_{a_i}$ and $v = \sum_{i=1}^{m} \beta_i \delta_{b_i}$ in $c_{00}(G_0)$ with $\sum_{i=1}^m |\alpha_i|^2 = \sum_{i=1}^m |\beta_i|^2 = 1$ we have

$$
\left|\sum_{k=1}^n \gamma_k \varphi(u * \check{v})(x_k)\right| \leq \|\theta\| \tag{1}
$$

for every finite systems $(x_k) \subseteq H$ and $(\gamma_k) \subset \mathbb{C}$ with $\|\sum_{k=1}^n \gamma_k \omega_{H_d}(x_k)\| \leq 1.$ The left hand side of [\(1\)](#page-12-0) is

$$
\left|\sum_{k=1}^n \gamma_k \varphi(u * \check{v})(x_k)\right| = \left|\sum_{x_k \in \Omega} \gamma_k(u * \check{v})(\tau(x_k))\right|
$$

$$
= \left|\sum_{x_k \in \Omega} \sum_{i,j=1}^m \gamma_k \alpha_i \beta_j \delta_{a_i b_j^{-1}}(\tau(x_k))\right|
$$

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$ Take a measurable set *V* to be chosen. Consider $f = \sum_{i=1}^m \alpha_i \chi_{\boldsymbol{a}_i}$ ν and $g = \sum_{i=1}^m \beta_i \chi_{\boldsymbol{b}_i}$ ν in $\mathsf{L}^2(G)$ both of L^2 -norm $\sqrt{|V|}.$ So, $f * \check{g} \in A(G)$ with norm at most $|V|$. Therefore,

 $\|\theta(f * \check{g})\| < \|\theta\| |V|.$

Thus

 $\|\theta\|$

$$
||V| \geq \left| \sum_{k=1}^{n} \gamma_{k} \theta(f * \check{g})(x_{k}) \right| = \left| \sum_{x_{k} \in \Omega} \gamma_{k}(f * \check{g})(\tau(x_{k})) \right|
$$

=
$$
\left| \sum_{x_{k} \in \Omega} \sum_{i,j=1}^{m} \gamma_{k} \alpha_{i} \beta_{j} |a_{i} V \cap \tau(x_{k}) b_{j} V \right|
$$

=
$$
\left| \sum_{x_{k} \in \Omega} \sum_{i,j=1}^{m} \gamma_{k} \alpha_{i} \beta_{j} \delta_{a_{i} b_{j}^{-1}}(\tau(x_{k})) \right| \cdot |V|.
$$

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) phisms $A(G) \rightarrow B(H)$

A reduction question

Let $\theta : A(G) \to B(H)$ be a homomorphism. Then θ is induced by some continuous map $\tau : \Omega \to G$. The formula

$$
\varphi(f)(t) = \left\{ \begin{array}{cl} f(\tau(t)) & \text{if } t \in \Omega \\ 0 & \text{if } t \in H \setminus \Omega \end{array} \right.
$$

makes sense even if $f \in B(G_d)$.

Is φ is a homomorphism from $B(G_d)$ into $B(H_d)$ with $\|\varphi\| < \|\theta\|$?

> Pham Le Hung

[Contractive](#page-3-0) $L^1(H) \rightarrow$ *M*(*G*)

```
Homomorphisms
A(G) \rightarrow B(H)
```

```
Contractive
homomor-
phisms
A(G) \rightarrow B(H)
```
Anti-Affine Maps

- • Suppose that *C* is an open coset of *G*.
- An anti-affine map $\tau : C \rightarrow H$ is a continuous map satisfying that

$$
\tau(rs^{-1}t) = \tau(t)\tau(s)^{-1}\tau(r) \quad (r, s, t \in C).
$$

- An anti-affine map $\tau : C \rightarrow H$ is a translation of a group anti-homomorphism:
	- 1 fix $s_0 \in C$, then s_0^{-1} C is an open subgroup of G ;
	- 2 the map $s \mapsto \tau(\mathbf{s}_0)^{-1} \tau(\mathbf{s}_0\mathbf{s}),$ \mathbf{s}_0^{-1} $C \to H$ is a continuous group anti-homomorphism.

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$

Isometric Isomorphisms

Theorem (Walter)

 $Let $\theta : A(G) \to A(H)$ be an isometric isomorphism. Then$ *there exists an either affine or anti-affine homeomorphism* $τ$ *from H onto G such that* $\theta(f) = f \circ \tau \; (\forall f \in A(G))$.

Theorem (Walter)

 $Let θ : B(G) \rightarrow B(H)$ *be an isometric isomorphism. Then there exists an either affine or anti-affine homeomorphism* $τ$ *from H onto G such that* $\theta(f) = f \circ \tau \; (\forall f \in B(G))$.

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$

Contractive Homomorphisms from $A(G)$ into $B(H)$

Theorem

Suppose that $\theta : A(G) \to B(H)$ *is a contractive homomorphism. Then there exist an open coset C and an either affine or anti-affine map* τ : *C* → *G such that*

$$
\theta(f)(t)=\left\{\begin{array}{cc} f(\tau(t)) & \text{if } t\in C \\ 0 & \text{if } t\in H\setminus C \end{array}\right. \qquad (\forall\, f\in\text{A}(G)).
$$

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$ We may assume that *G* and *H* have discrete topologies. Suppose that θ is induced by $\tau : \Omega \to G$ where $\Omega \subseteq H$.

By composing with translations by elements of *G* and *H*, we suppose that $1_H \in \Omega$ and $\tau(1_H) = 1_G$.

Now, if $f \in A(G)$ is positive definite, then

$$
\theta(f)(1_H) = f(1_G) = ||f|| \ge ||\theta_\tau(f)||,
$$

and so $\theta(f)$ is also positive definite. Thus if *t* ∈ Ω, then

$$
\theta(f)(t^{-1}) = \overline{\theta(f)(t)} = \overline{f(\tau(t))} = f(\tau(t)^{-1});
$$

and so $t^{-1} \in \Omega$ and $\tau(t)^{-1} = \tau(t^{-1})$.

Proof

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$

 $\theta^*:{\rm W}^*(H)\rightarrow {\rm VN}(G)$ is a positive linear operator with $\theta^*(1) = 1.$ Let *t*, $s \in \Omega$ and $\alpha, \beta \in \mathbb{C}$ be arbitrary. Set $a := \alpha \omega_H(t) + \beta \omega_H(s) + \overline{\alpha} \omega_H(t^{-1}) + \overline{\beta} \omega_H(s^{-1}).$

Then $a = a^* \in W^*(H)$. Kadison's generalized Schwarz inequality: $\theta^*(a^2) \geq \theta^*(a)^2$. We see that

$$
\theta^*(a^2) = \text{Re}\left\{2\left(|\alpha|^2 + |\beta|^2\right) + \alpha^2 \theta^*[\omega_H(t^2)] + \beta^2 \theta^*[\omega_H(s^2)] + 2\alpha\beta \theta^*[\omega_H(ts) + \omega_H(st)] + 2\alpha\overline{\beta} \theta^*[\omega_H(ts^{-1}) + \omega_H(s^{-1}t)]\right\} \text{ and}
$$

$$
\theta^*(a)^2 = \text{Re}\left\{2\left(|\alpha|^2 + |\beta|^2\right) + \alpha^2\lambda_G(\tau(t)^2) + \beta^2\lambda_G(\tau(s)^2) + 2\alpha\beta[\lambda_G(\tau(t)\tau(s)) + \lambda_G(\tau(s)\tau(t))] + 2\alpha\overline{\beta}[\lambda_G(\tau(t)\tau(s)^{-1}) + \lambda_G(\tau(s)^{-1}\tau(t))]\right\}.
$$

> Pham Le Hung

[Contractive](#page-3-0) homomorphisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$ **[Contractive](#page-15-0)** homomorphisms $A(G) \rightarrow B(H)$

It follows that

$$
\theta^*[\omega_H(ts)] + \theta^*[\omega_H(st)] = \lambda_G[\tau(t)\tau(s)] + \lambda_G[\tau(s)\tau(t)].
$$

Since $\lambda_G(G) = {\lambda_G(x) : x \in G}$ is linearly independent, and

 $\theta^* \circ \omega_H(x) = \lambda_G \circ \tau(x)$ if $x \in \Omega$ and $\theta^* \circ \omega_H(x) = 0$ if $x \in H \backslash \Omega$.

we see that *ts*, $st \in \Omega$ and the ordered pair

 $\{\theta^*[\omega_H(ts)], \theta^*[\omega_H(st)]\} = \{\lambda_G[\tau(ts)], \lambda_G[\tau(st)]\}$

is a permutation of $\{\lambda_G[\tau(t)\tau(s)], \lambda_G[\tau(s)\tau(t)]\}.$

Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$

Consequences

Corollary

Suppose that θ : $A(G) \rightarrow B(H)$ *is an injective and contractive homomorphism. Then* θ *is necessarily isometric.*

Corollary

Suppose that $\theta : A(G) \to A(H)$ *is a contractive isomorphism. Then there exists an either affine or anti-affine homeomorphism* τ *from H onto G such that* $\theta(f) = f \circ \tau$ $($ ∀ f ∈ A(G)).

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$ Contractive Homomorphism $\theta : A(G) \to A(H)$

Must be the composition of a diagram of the form

$$
\begin{array}{ccc}\n\mathbb{A}(G) & \xrightarrow{L_{U_0}} \mathbb{A}(G) & \xrightarrow{\pi} \mathbb{A}(G_0) & \xrightarrow{\varphi} \\
\longrightarrow & \mathbb{A}(\Omega/K) & \xrightarrow{\iota} \mathbb{A}(\Omega) & \xrightarrow{\rho} \mathbb{A}(H) & \xrightarrow{L_{U_0}} \mathbb{A}(H);\n\end{array}
$$

where

- G_0 is a closed subgroup of G , Ω is an open subgroup of *H*, and *K* is a compact normal subgroup of Ω ;
	- L_{u_0} and L_{r_0} are (left) translations,
- π is the restriction to G_0 map, induced by $G_0 \hookrightarrow G$,
- φ is an isometric isomorphism,
- \bullet ι is the isometric monomorphism, induced by $\Omega \twoheadrightarrow \Omega/K$,
- ρ is the natural inclusion.

> Pham Le Hung

[Contractive](#page-3-0) homomor- $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$

Contractive Isomorphisms of Fourier-Stieltjes Algebras

Let *G* and *H* be locally compact groups.

Theorem

 $\mathsf{Let}\, \theta:\mathbb{B}(G)\to\mathbb{B}(H)$ be an isomorphism such that $\theta|_{\mathbb{A}(G)}$ is *contractive. Then there exists an either affine or anti-affine homeomorphism* τ *from* H onto G such that $\theta(f) = f \circ \tau$ $($ ∀ f ∈ B(G)).

Corollary

In particular, θ *is isometric and maps* $A(G)$ *onto* $A(H)$ *.*

> Pham Le Hung

[Contractive](#page-3-0) phisms $L^1(H) \rightarrow$ *M*(*G*)

[Homomorphisms](#page-9-0) $A(G) \rightarrow B(H)$

[Contractive](#page-15-0) homomorphisms $A(G) \rightarrow B(H)$

A partial answer to the reduction question

Let $\theta : A(G) \to B(H)$ be a contractive homomorphism. Says θ is induced by $\tau : \Omega \to G$. The formula

$$
\varphi(f)(t) = \left\{ \begin{array}{cl} f(\tau(t)) & \text{if} \;\; t \in \Omega \\ 0 & \text{if} \;\; t \in H \setminus \Omega \end{array} \right.
$$

gives a contractive homomorphism from $B(G_d)$ into $B(H_d)$!