> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms from Fourier algebras: not new

Pham Le Hung

Victoria University of Wellington, New Zealand

Fields Institute, 15 April 2014

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

```
Contractive
homomor-
phisms
A(G) \rightarrow B(H)
```

The Main Problem

Let G and H be locally compact groups.

Problem

Suppose that θ is a homomorphism from the Fourier algebras $\mathbb{A}(G)$ into the Fourier-Stieltjes algebra $\mathbb{B}(H)$. Describe θ .

Outline

algebras: not new Pham Le Hung

Contractive homomor-

phisms from Fourier

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

1 Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $\mathbb{A}(G) \to \mathbb{B}(H)$

Contractive homomorphisms $A(G) \rightarrow B(F)$ **2** Homomorphisms $A(G) \rightarrow B(H)$

3 Contractive homomorphisms $A(G) \rightarrow B(H)$

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$ (Contractive) homomorphisms $L^1(G) \to M(H)$

Suppose that $\phi : G \to M(H)$ is a uniformly bounded, weak*-continuous homomorphism. Define

$$\phi^t(f)(t) := \langle \phi(t), f \rangle \quad (f \in \mathcal{C}_0(H), \ t \in G).$$

Then $\phi^t : \mathcal{C}_0(H) \to \mathcal{C}^b(G)$ is a bounded linear map. Define $\phi^{tt} : M(G) \to M(H)$ as follows.

$$\left\langle \phi^{tt}(\mu), f \right\rangle := \int_{G} \phi^{t}(f) \mathrm{d}\mu \,.$$

Then ϕ^{tt} is a bounded homomorphism.

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $\mathbb{A}(G) \to \mathbb{B}(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

A contractive homomorphism $L^1(G) \to M(H)$

Suppose that $\phi : G \to H$ is a continuous group homomorphism. Define

$$\phi^t(f) := f \circ \phi \quad (f \in \mathcal{C}_0(H)).$$

Then $\phi^t : C_0(H) \to C^b(G)$ is a contractive linear map. Define $\phi^{tt} : M(G) \to M(H)$ as follows.

$$\left\langle \phi^{tt}(\mu), f \right\rangle := \int_{G} \phi^{t}(f) \mathrm{d}\mu \, .$$

Then ϕ^{tt} is a contractive homomorphism.

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

A more complicated one

Suppose that *K* is a compact supgroup of *H* that commutes with $\phi(G)$ i.e.

 $K\phi(G)\subseteq \phi(G)K$.

Then we can define $\phi_K^{tt} : M(G) \to M(H)$ as follows.

$$\phi_{\mathcal{K}}^{tt}(\mu) := \phi^{tt}(\mu) * m_{\mathcal{K}};$$

where m_K is the normalized Haar measure on K. Then ϕ_K^{tt} is a contractive homomorphism.

If in addition we have a "nice" character $\rho: \mathcal{K} \to \mathbb{T},$ we could modify

$$\phi_{K,\rho}^{tt}(\mu) := \phi^{tt}(\mu) * (\rho m_K).$$

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(F)$

A further complication

If L is a normal supgroup of G such that

$$\phi(\boldsymbol{s})*(\rho \boldsymbol{m}_{\mathcal{K}})=\rho \boldsymbol{m}_{\mathcal{K}} \quad (\boldsymbol{s}\in \boldsymbol{L}),$$

i.e. $\psi(s) = \psi(1_G)$ for all $s \in L$, where $\psi := \phi_{K,\rho}^{tt}$. Consider $\overline{\psi} : G/L \to M(H)$. Define $\overline{\psi}^{tt} : M(G/L) \to M(H)$.

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(F)$

A more concrete example

Take $\Omega_0\subseteq \Omega$ be closed subgroups of $\mathbb{T}\times {\boldsymbol{\textit{H}}}$ with

- Ω_0 is compact and normal in Ω , and
- $\pi_H: \Omega_0 \to H$ is injective.

Set $K := \pi_H(\Omega_0)$ and set $\rho := \pi_T \circ (\pi_H|_{\Omega_0})^{-1}$. Then

- **1** $\pi_H : \Omega \to H$ is a homomorphism,
- **2** K is a compact subgroup of H,
- **3** $\pi_H(\Omega)$ commutes with *K*, and
- 4 ρ is a "nice" character on K.

Thus we have a contractive homomorphism $\Phi: M(\Omega) \rightarrow M(H)$ as above.

Moreover,

• $\Phi(\Omega_0) = \Phi(\mathbf{1}_\Omega).$

Hence, a contractive homomorphism $\tilde{\Phi} : M(\Omega/\Omega_0) \to M(H)$.

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(F)$

Greenleaf's theorem

Let *G* and *H* be locally compact groups. Every contractive homomorphism $L^1(G) \rightarrow M(H)$ has the form

$$\tilde{\Phi}\circ\phi^{tt}$$

where

- **1** $\tilde{\Phi}$: $M(\Omega/\Omega_0) \rightarrow M(H)$ as above, and
- **2** ϕ : $G \rightarrow \Omega/\Omega_0$ is a continuous epimorphism.

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

Homomorphisms from A(G).

- Suppose that $\theta : A(G) \rightarrow B(H)$ is a homomorphism.
- For each $t \in H$, either $\theta(f)(t) = 0 \ \forall f \in A(G)$.
- Or, $f \mapsto \theta(f)(t)$ is a character of A(G).
- So that $\exists \tau(t) \in G$, $\theta(f)(t) = f(\tau(t))$ for all $f \in A(G)$.
- Thus, \exists an open subset Ω of H and a continuous map $\tau: \Omega \to G$ such that

$$heta(f)(t) = \left\{ egin{array}{cc} f(au(t)) & ext{if } t \in \Omega \ 0 & ext{if } t \in H \setminus \Omega \end{array}
ight., \qquad (orall f \in \mathbb{A}(G)).$$

As a consequence, θ : A(G) → B(H) is automatically bounded.

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

Homomorphisms from A(G) (cont.)

• Conversely, given a map $\tau : \Omega \to G$, where $\Omega \subseteq H$. Define

$$heta_ au(f)(t) = \left\{ egin{array}{cc} f(au(t)) & ext{if} \ t\in\Omega \ 0 & ext{if} \ t\in H\setminus\Omega \end{array}
ight., \qquad (orall f\in {f A}(G)).$$

- Then $heta_ au: \mathtt{A}(G) o \ell^\infty(H)$ is a homomorphism.
- Where $\ell^{\infty}(H)$ is the algebra of bounded functions on H.

Question

For which τ , does $\theta_{\tau}(\mathbb{A}(G)) \subseteq \mathbb{B}(H)$?

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(F)$

A reduction lemma

Let $\theta : \mathbb{A}(G) \to \mathbb{B}(H)$ be a homomorphism. Then θ is induced by some continuous map $\tau : \Omega \to G$. The formula

$$\varphi(f)(t) = \left\{ egin{array}{cc} f(au(t)) & ext{if} & t \in \Omega \ 0 & ext{if} & t \in H \setminus \Omega \end{array}
ight.$$

makes sense even if $f \in B(G_d)$. In fact, φ is a homomorphism from $A(G_d)$ into $B(H_d)$ with $\|\varphi\| \leq \|\theta\|$.

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(F)$

Proof of the reduction

It suffices to show that for $u = \sum_{i=1}^{m} \alpha_i \delta_{a_i}$ and $v = \sum_{i=1}^{m} \beta_i \delta_{b_i}$ in $c_{00}(G_0)$ with $\sum_{i=1}^{m} |\alpha_i|^2 = \sum_{i=1}^{m} |\beta_i|^2 = 1$ we have

$$\left|\sum_{k=1}^{n} \gamma_k \varphi(u * \check{v})(x_k)\right| \le \|\theta\| \tag{1}$$

for every finite systems $(x_k) \subseteq H$ and $(\gamma_k) \subset \mathbb{C}$ with $\|\sum_{k=1}^n \gamma_k \omega_{H_d}(x_k)\| \leq 1$. The left hand side of (1) is

$$\left|\sum_{k=1}^{n} \gamma_{k} \varphi(\boldsymbol{u} \ast \check{\boldsymbol{v}})(\boldsymbol{x}_{k})\right| = \left|\sum_{\boldsymbol{x}_{k} \in \Omega} \gamma_{k}(\boldsymbol{u} \ast \check{\boldsymbol{v}})(\tau(\boldsymbol{x}_{k}))\right|$$
$$= \left|\sum_{\boldsymbol{x}_{k} \in \Omega} \sum_{i,j=1}^{m} \gamma_{k} \alpha_{i} \beta_{j} \delta_{\boldsymbol{a}_{i} \boldsymbol{b}_{j}^{-1}}(\tau(\boldsymbol{x}_{k}))\right|$$

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$ Take a measurable set *V* to be chosen. Consider $f = \sum_{i=1}^{m} \alpha_i \chi_{a_i V}$ and $g = \sum_{i=1}^{m} \beta_i \chi_{b_i V}$ in $L^2(G)$ both of L^2 -norm $\sqrt{|V|}$.

So, $f * \check{g} \in A(G)$ with norm at most |V|. Therefore,

$$\|\theta(f * \check{g})\| \leq \|\theta\| |V|$$

Thus

 $\|\theta\|$

$$||V| \ge \left|\sum_{k=1}^{n} \gamma_{k} \theta(f * \check{g})(x_{k})\right| = \left|\sum_{x_{k} \in \Omega} \gamma_{k}(f * \check{g})(\tau(x_{k}))\right|$$
$$= \left|\sum_{x_{k} \in \Omega} \sum_{i,j=1}^{m} \gamma_{k} \alpha_{i} \beta_{j} \left|a_{i}V \cap \tau(x_{k})b_{j}V\right|\right|$$
$$= \left|\sum_{x_{k} \in \Omega} \sum_{i,j=1}^{m} \gamma_{k} \alpha_{i} \beta_{j} \delta_{a_{i}b_{j}^{-1}}(\tau(x_{k}))\right| \cdot |V|.$$

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(F)$

A reduction question

Let $\theta : \mathbb{A}(G) \to \mathbb{B}(H)$ be a homomorphism. Then θ is induced by some continuous map $\tau : \Omega \to G$. The formula

$$\varphi(f)(t) = \begin{cases} f(\tau(t)) & \text{if } t \in \Omega \\ 0 & \text{if } t \in H \setminus \Omega \end{cases}$$

makes sense even if $f \in B(G_d)$.

Is φ is a homomorphism from $\mathbb{B}(G_d)$ into $\mathbb{B}(H_d)$ with $\|\varphi\| \le \|\theta\|$?

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

```
Homomorphisms A(G) \rightarrow B(H)
```

```
Contractive
homomor-
phisms
A(G) \rightarrow B(H)
```

Anti-Affine Maps

- Suppose that *C* is an open coset of *G*.
- An anti-affine map *τ* : *C* → *H* is a continuous map satisfying that

$$au(rs^{-1}t) = au(t) au(s)^{-1} au(r) \quad (r, s, t \in C)$$

- An anti-affine map *τ* : *C* → *H* is a translation of a group anti-homomorphism:
 - **1** fix $s_0 \in C$, then $s_0^{-1} C$ is an open subgroup of *G*;
 - 2 the map $s \mapsto \tau(s_0)^{-1}\tau(s_0s), s_0^{-1} C \to H$ is a continuous group anti-homomorphism.

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

Isometric Isomorphisms

Theorem (Walter)

Let $\theta : \mathbb{A}(G) \to \mathbb{A}(H)$ be an isometric isomorphism. Then there exists an either affine or anti-affine homeomorphism τ from H onto G such that $\theta(f) = f \circ \tau \ (\forall f \in \mathbb{A}(G))$.

Theorem (Walter)

Let $\theta : B(G) \to B(H)$ be an isometric isomorphism. Then there exists an either affine or anti-affine homeomorphism τ from H onto G such that $\theta(f) = f \circ \tau \ (\forall f \in B(G))$.

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

Contractive Homomorphisms from A(G) into B(H)

Theorem

Suppose that $\theta : A(G) \to B(H)$ is a contractive homomorphism. Then there exist an open coset C and an either affine or anti-affine map $\tau : C \to G$ such that

$$heta(f)(t) = \left\{ egin{array}{cc} f(au(t)) & \mbox{if } t \in C \ 0 & \mbox{if } t \in H \setminus C \end{array}
ight. (orall f \in \mathbb{A}(G)).$$

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$ Proof

We may assume that *G* and *H* have discrete topologies. Suppose that θ is induced by $\tau : \Omega \to G$ where $\Omega \subset H$.

By composing with translations by elements of *G* and *H*, we suppose that $1_H \in \Omega$ and $\tau(1_H) = 1_G$.

Now, if $f \in A(G)$ is positive definite, then

$$\theta(f)(\mathbf{1}_H) = f(\mathbf{1}_G) = \|f\| \ge \|\theta_{\tau}(f)\|,$$

and so $\theta(f)$ is also positive definite. Thus if $t \in \Omega$, then

 $\theta(f)(t^{-1}) = \overline{\theta(f)(t)} = \overline{f(\tau(t))} = f(\tau(t)^{-1});$

and so $t^{-1} \in \Omega$ and $\tau(t)^{-1} = \tau(t^{-1})$.

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

 $\theta^* : W^*(H) \to VN(G)$ is a positive linear operator with $\theta^{*}(1) = 1.$ Let $t, s \in \Omega$ and $\alpha, \beta \in \mathbb{C}$ be arbitrary. Set $\mathbf{a} := \alpha \omega_H(t) + \beta \omega_H(s) + \overline{\alpha} \omega_H(t^{-1}) + \overline{\beta} \omega_H(s^{-1}).$ Then $a = a^* \in W^*(H)$. Kadison's generalized Schwarz inequality: $\theta^*(a^2) > \theta^*(a)^2$. We see that $\theta^*(\boldsymbol{a}^2) = \operatorname{Re}\left\{2\left(|\alpha|^2 + |\beta|^2\right) + \alpha^2 \; \theta^*[\omega_H(\boldsymbol{t}^2)] + \beta^2 \; \theta^*[\omega_H(\boldsymbol{s}^2)]\right\}$ $+2\alpha\beta \theta^*[\omega_H(ts)+\omega_H(st)]$ $+2\alpha\overline{\beta} \theta^*[\omega_H(ts^{-1})+\omega_H(s^{-1}t)]$ and $\theta^*(\boldsymbol{a})^2 = \operatorname{Re}\left\{2\left(|\alpha|^2 + |\beta|^2\right) + \alpha^2\lambda_G(\tau(\boldsymbol{t})^2) + \beta^2\lambda_G(\tau(\boldsymbol{s})^2)\right\}$

$$\left. + 2\alpha\beta[\lambda_G(\tau(t)\tau(s)) + \lambda_G(\tau(s)\tau(t))] + 2\alpha\overline{\beta}[\lambda_G(\tau(t)\tau(s)^{-1}) + \lambda_G(\tau(s)^{-1}\tau(t))] \right\}$$

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

$$\theta^*[\omega_H(ts)] + \theta^*[\omega_H(st)] = \lambda_G[\tau(t)\tau(s)] + \lambda_G[\tau(s)\tau(t)].$$

Since $\lambda_G(G) = \{\lambda_G(x) : x \in G\}$ is linearly independent, and

 $\theta^* \circ \omega_H(x) = \lambda_G \circ \tau(x) \text{ if } x \in \Omega \quad \text{and} \quad \theta^* \circ \omega_H(x) = \mathbf{0} \text{ if } x \in H \setminus \Omega.$

we see that $ts, st \in \Omega$ and the ordered pair

 $\{\theta^*[\omega_H(ts)], \theta^*[\omega_H(st)]\} = \{\lambda_G[\tau(ts)], \lambda_G[\tau(st)]\}$

is a permutation of $\{\lambda_G[\tau(t)\tau(s)], \lambda_G[\tau(s)\tau(t)]\}.$

Consequences

Contractive homomorphisms from Fourier algebras: not new

Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

Corollary

Suppose that $\theta : \mathbb{A}(G) \to \mathbb{B}(H)$ is an injective and contractive homomorphism. Then θ is necessarily isometric.

Corollary

Suppose that $\theta : A(G) \to A(H)$ is a contractive isomorphism. Then there exists an either affine or anti-affine homeomorphism τ from H onto G such that $\theta(f) = f \circ \tau$ $(\forall f \in A(G)).$

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphism $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$ Contractive Homomorphism $\theta : A(G) \rightarrow A(H)$

Must be the composition of a diagram of the form

$$A(G) \xrightarrow{L_{u_0}} A(G) \xrightarrow{\pi} A(G_0) \xrightarrow{\varphi} \\ \longrightarrow A(\Omega/K) \xrightarrow{\iota} A(\Omega) \xrightarrow{\rho} A(H) \xrightarrow{L_{r_0}} A(H);$$

where

- G₀ is a closed subgroup of G, Ω is an open subgroup of H, and K is a compact normal subgroup of Ω;
- L_{u_0} and L_{r_0} are (left) translations,
- π is the restriction to G_0 map, induced by $G_0 \hookrightarrow G$,
- φ is an isometric isomorphism,
- ι is the isometric monomorphism, induced by $\Omega \twoheadrightarrow \Omega/K$,
- ρ is the natural inclusion.

> Pham Le Hung

Contractive homomorphisms $L^1(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

Contractive Isomorphisms of Fourier-Stieltjes Algebras

Let *G* and *H* be locally compact groups.

Theorem

Let $\theta : \mathbb{B}(G) \to \mathbb{B}(H)$ be an isomorphism such that $\theta|_{\mathbb{A}(G)}$ is contractive. Then there exists an either affine or anti-affine homeomorphism τ from H onto G such that $\theta(f) = f \circ \tau$ ($\forall f \in \mathbb{B}(G)$).

Corollary

In particular, θ is isometric and maps A(G) onto A(H).

> Pham Le Hung

Contractive homomorphisms $L^{1}(H) \rightarrow M(G)$

Homomorphisms $A(G) \rightarrow B(H)$

Contractive homomorphisms $A(G) \rightarrow B(H)$

A partial answer to the reduction question

Let $\theta : \mathbb{A}(G) \to \mathbb{B}(H)$ be a contractive homomorphism. Says θ is induced by $\tau : \Omega \to G$. The formula

$$\varphi(f)(t) = \begin{cases} f(\tau(t)) & \text{if } t \in \Omega \\ 0 & \text{if } t \in H \setminus \Omega \end{cases}$$

gives a contractive homomorphism from $B(G_d)$ into $B(H_d)!$