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Positive Herz-Schur multipliers

Definition

Let X be a set. A function k : X × X → C is called positive
definite if (k(xi , xj))ni ,j=1 is a positive matrix, for all n ∈ N and
all x1, . . . , xn ∈ X .

Let G be a group. A function u : G → C is called positive
definite if N(u) is positive definite.

Schur product lemma

Let A = (ai ,j) ∈ Mn. The following are equivalent:

for every positive matrix B ∈ Mn, the Schur product A ∗ B of
A and B is a positive matrix;

the matrix A is positive.
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Positive Herz-Schur multipliers

Mercer’s Theorem

If X is a locally compact Hausdorff space equipped with a regular
Borel measure of full support and if h ∈ L2(X × X ) ∩ C (X × X ),
the operator Th is positive if and only if h is positve definite.

Proposition

Let X be a σ-compact metric space, equipped with a Radon
measure µ with full support. Let k : X × X → C be a continuous
Schur multiplier. The following are equivalent:

(i) Sk is positive;

(ii) k is positive definite.



Positive Herz-Schur multipliers

Mercer’s Theorem

If X is a locally compact Hausdorff space equipped with a regular
Borel measure of full support and if h ∈ L2(X × X ) ∩ C (X × X ),
the operator Th is positive if and only if h is positve definite.

Proposition

Let X be a σ-compact metric space, equipped with a Radon
measure µ with full support. Let k : X × X → C be a continuous
Schur multiplier. The following are equivalent:

(i) Sk is positive;

(ii) k is positive definite.



Positive Herz-Schur multipliers

Proof.

(i)⇒(ii) By the assumption and Mercer’s Theorem, kh is positive
definite whenever h ∈ L2(X × X ) ∩ C (X × X ) is positive definite.
The statement now follows from the Schur product lemma.

(ii)⇒(i) follows from Mercer’s Theorem, the Schur product lemma
and the fact that

{Tk : k ∈ L2(X × X ) ∩ C (X × X ),Tk ≥ 0}‖·‖ = K(L2(X ))+.

(The latter can be seen as follows: suppose that h ∈ T (X ,X ) and
〈Tk ,Th〉 ≥ 0 for each k ∈ L2(X × X ) ∩ C (X × X ) with Tk ≥ 0.
By taking k = a⊗ ā, where a ∈ Cc(X ), we see that (Tha, a) ≥ 0
for all such a, and this implies that Th ≥ 0. It follows that
〈T ,Th〉 ≥ 0 for all T ∈ K(L2(X ))+, and the claim now follows by
Hahn-Banach separation.)
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Positive Herz-Schur multipliers

Lemma

The unit ball of the subspace

A =

{
k∑

i=1

AiTi : Ai ∈ DG ,Ti ∈ VN(G )

}

is strongly dense in the unit ball of B(L2(G )).

Proof.

Use the Stone-von Neumann Theorem, according to which the
representation of the crossed product G ×α C0(G ) arising from the
covariant pair of representations (λ, π), where λ is the left regular
representation of G and π : C0(G )→ B(L2(G )) is given by
π(a) = Ma, is faithful and its image coincides with the C*-algebra
K(L2(G )) of all compact operators on L2(G ).
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Positive Herz-Schur multipliers

Theorem (de Canniere-Haagerup, 1985)

Let G be a locally compact group and u : G → C be a continuous
function. The following are equivalent:

(i) u ∈ McbA(G ) and Su is completely positive;

(ii) u is positive definite.

If these conditions are fulfilled then ‖u‖cbm = u(e).

Proof.

(ii)⇒(i) Since u is positive definite and continuous, we have that
u ∈ B(G ) and so u ∈ McbA(G ).

Thus, SN(u) is positive and hence SN(u) is completely positive.

Thus, its restriction Su to VN(G ) is completely positive.
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Positive Herz-Schur multipliers

Proof.

(i)⇒(ii) Let T = SS∗ for some contraction S ∈ B(L2(G )).
Approximate S in the strong operator topology by contractions of
the form

∑k
i=1 AiTi , where Ai ∈ DG and Ti ∈ VN(G ),

i = 1, . . . , k.

It follows that T can be approximated in the weak* topology by
the operators

∑k
i ,j=1 AiTiT

∗
j A
∗
j .

Since (TiT
∗
j )i ,j ≥ 0, we have (Su(TiT

∗
j ))i ,j ≥ 0. Letting

A = (A1, . . . ,Ak), we have

SN(u)

 k∑
i ,j=1

AiTiT
∗
j A
∗
j

 = A(Su(TiT
∗
j ))i ,jA

∗ ≥ 0.

By weak* continuity, SN(u) is positive and so u is positive definite.

Finally, note that Su(I ) = Su(λe) = u(e)I .
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Positive Herz-Schur multipliers

Theorem (de Canniere-Haagerup, 1985)

The following are equivalent, for a continuous function u : G → C
and a natural number n:

(i) Su is n-positive;

(ii) for all fi , gi ∈ Cc(G ), i = 1, . . . , n, we have∫
G
u(s)

n∑
i=1

(f ∗i ∗ fi )(s)(gi ∗ g̃i )(s)ds ≥ 0.

In this case, ‖u‖m = u(e).
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Idempotent Herz-Schur multipliers

u ∈ McbA(G ) idempotent iff u = χE for a closed and open E .

The coset ring of a locally compact group G is the ring of sets
generated by the translates of open subgroups of G .

The Cohen-Host Theorem

An element u ∈ B(G ) is idempotent precisely when u = χE for an
element E of the coset ring of G .

This result answers completely the question of which are the
idempotent Herz-Schur multipliers in the case of amenable groups.

Theorem (A.-M. Stan, 2009)

Let G be a locally compact group and E ⊆ G . The following are
equivalent:

(i) χE ∈ McbA(G ) and ‖χE‖cbm = 1;

(ii) E belongs to the coset ring of G .
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Idempotent Herz-Schur multipliers

In Z, the subset N0 = {0, 1, 2, . . . } does not give rise to a
multiplier.

One can see that either by checking that it does not belong to the
coset ring of Z, or by envoking the Embedding Theorem:
triangular truncation is unbounded.

The set of all idempotent Herz-Schur multipliers is a Boolean
algebra.

Suppose G is discrete. A subset Λ ⊆ G is called an L-set if
`∞(Λ) ⊆ McbA(G ).

If X and Y are sets, call a subset E ⊆ X × Y an operator L-set if
`∞(E ) ⊆ S(X ,Y ).

Bożejko, Davidson, Donsig, Haagerup, Leinert, Popa, Pisier,
Varopoulos

Λ ⊆ G is an L-set if and only if Λ∗ = {(s, t) : ts−1 ∈ Λ} is an
opetator L-set.
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Idempotent Herz-Schur multipliers

Theorem

The following are equivalent, for a subset E ⊆ X × Y :

(i) E is an operator L-set;

(ii) there exist C > 0 and E1,E2 ⊆ X × Y such that

|{y ∈ Y : (x , y) ∈ E1}| ≤ C , ∀x ∈ X ,

|{x ∈ X : (x , y) ∈ E2}| ≤ C , ∀y ∈ Y

and
E = E1 ∪ E2.

The set E of generators of F∞ is an L-set.
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Radial functions on Fr

Let r > 1 and Fr be the free group on generators a1, a2, . . . .

Reduced word in Fr : t = t1 . . . tk , where ti ∈ {a1, a−11 , a2, a
−1
2 , . . . }

and t−1i 6= ti+1 for all i .

Set |t| = k , the length of t. Note |st| ≤ |s|+ |t| and |t−1| = |t|.

A function ϕ : Fr → C is called radial if it only depends on |t|;
that is, if there exists a function ϕ̇ : N0 → C (where
N0 = N ∪ {0}) such that ϕ(s) = ϕ̇(|s|), s ∈ Fr .

Given ϕ radial, we always let ϕ̇ be the corresponding “underlying”
function on N0.
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Given ϕ radial, we always let ϕ̇ be the corresponding “underlying”
function on N0.
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Sufficient conditions for a multiplier of A(Fr)

Theorem (Haagerup (1979), Haagerup-Steenstrup-Szwarc (2010))

Let ϕ : Fr → C.

(i) If sups∈Fr
|ϕ(s)|(1 + |s|2) <∞ then ϕ ∈ MA(Fr ) and

‖ϕ‖m ≤ sup
s∈Fr

|ϕ(s)|(1 + |s|2).

(ii) Suppose that ϕ is radial and
∑∞

n=0(n + 1)2|ϕ̇(n)|2 <∞.
Then ϕ ∈ MA(Fr ) and

‖ϕ‖m ≤

( ∞∑
n=0

(n + 1)2|ϕ̇(n)|2
) 1
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Radial multipliers and homogeneous trees

Radial functions can be defined on more general groups.

G = (∗Mi=1Z2) ∗ FN , where M,N ≥ 0.

Let G be a discrete group, generated by E = {s1, . . . , sn}, assumed
to satisfy E = E−1.

The Cayley graph CG of G is the graph whose vertices are the
elements of G , and {s, t} ⊆ G is an edge of CG if ts−1 ∈ E .

A tree is a connected graph without cycles. The degree of a vertex
is the number of edges containing the vertex, and a graph is called
locally finite if the degrees of all vertices are finite.

It is called homogeneous if all vertices have the same degree
(called in this case the degee of the graph).
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Radial multipliers and homogeneous trees

Theorem (Figà-Talamanca, Nebbia, 1982)

Let G be a discrete finitely generated group. The Cayley graph CG
of G is a locally finite homogeneous tree if and only if G is of the
form G = (∗Mi=1Z2) ∗ FN ; in this case, the degree q of CG is equal
to 2M + N − 1.

If C is a homogeneous tree with vertex set X , let d(x , y) be the
distance between two vertices x , y ; that is, the length of the
(unique) path connecting x and y ; we set d(x , x) = 0.

A function ϕ : X → C is radial if there exists ϕ̇ : N0 → C with
ϕ(x) = ϕ̇(d(x , o)), x ∈ X (here o is a fixed vertex).
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Radial multipliers and homogeneous trees

Proposition

Let ϕ : G → C be a radial function and ϕ̃ : G × G → C be given
by ϕ̃(s, t) = ϕ̇(d(s, t)), s, t ∈ G .

Then ϕ ∈ McbA(G ) if and only if ϕ̃ is a Schur multiplier; in this
case, ‖ϕ‖cbm = ‖ϕ̃‖S.

Proof.

Since the distance d is left-invariant, we have

ϕ̃(s, t) = ϕ̇(d(s, t)) = ϕ̇(d(t−1s, e)) = ϕ(t−1s).

The claim now follows from the embedding theorem.
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Radial multipliers and homogeneous trees

Theorem (Haagerup-Steenstrup-Szwarc, 2010)

Let X be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞). Let
ϕ̇ : N0 → C be a function, ϕ : X → C be the corresponding radial
function and ϕ̃(x , y) = ϕ̇(d(x , y)), x , y ∈ X . Set

hi ,j = ϕ̇(i + j)− ϕ̇(i + j + 2), i , j ∈ N0.

(i) ϕ̃ is a Schur multiplier if and only if H = (hi ,j)i ,j∈N0 is trace
class.
(ii) (q =∞). If (i) hold, the limits

lim
n→∞

ϕ̇(2n) and lim
n→∞

ϕ̇(2n + 1)

exist. If c± = 1
2(limn→∞ ϕ̇(2n)± limn→∞ ϕ̇(2n + 1)), then

‖ϕ̃‖S = |c+|+ |c−|+ ‖H‖1.



Multipliers that are not completely bounded

Theorem (Haagerup-Steenstrup-Szwarc, 2010)

Let G = (∗Mi=1Z2) ∗ FN . There exists a radial function ϕ which lies
in MA(G ) but not in McbA(G ).

Proof.

Let ϕ̇ : N0 → C be given by ϕ̇(n) = 0 if n 6= 2k , k ∈ N, and
ϕ̇(2k) = 1

k2k
, k ∈ N.

Then
∞∑
n=0

(n + 1)2|ϕ̇(n)|2 <∞,

and so ϕ ∈ MA(G ). A direct verification shows that the
corresponding matrix H is not of trace class.
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Radial multipliers on free products

Let Gi , i = 1, . . . , n, be discrete groups of the same cardinality
(finite or countably infinite), and G = ∗ni=1Gi .

If g ∈ G then g = gi1gi2 · · · gik , where gim ∈ Gim are non-unit and
i1 6= i2 6= · · · 6= im.

The number m id called the block length of g . Call a function
ϕ : G → C radial if it depends only on ‖g‖.

Theorem (Wysoczański, 1995)

Let ϕ̇ : N0 → C and ϕ : G → C be the corresponding radial
function with respect to the block length. The following are
equivalent:

(i) ϕ ∈ McbA(G );

(ii) the matrix (ϕ̇(i + j)− ϕ̇(i + j + 1))i ,j defines a trace class
operator on `2(N0).
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Positive multipliers of the Fourier algebra of a free group

Theorem (Haagerup, 1979)

Let 0 < θ < 1. Then the function t → θ|t| on Fr is positive
definite.

A function k : X × X → R is called conditionally negative definite
if k(x , x) = 0, k(x , y) = k(y , x) for all x , y , and

m∑
i ,j=1

k(xi , xj)αiαj ≤ 0,

for all x1, . . . , xm ∈ X and all α1, . . . , αm ∈ R with
∑m

i=1 αi = 0.

k is conditionally negative definite iff k(x , y) = ‖b(x)− b(y)‖2 for
a function b : X → H (H being a Hilbert space).

Shoenberg’s Theorem

If k(x , y) is a conditionally negative definite kernel, then, for
λ > 0, e−λk(x ,y) is a positive definite function.
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Positive multipliers of the Fourier algebra of a free group

Proof.

Let k(s, t) = |s−1t|, s, t ∈ Fn. It suffices to show that k is
conditionally negative definite.

Fix generators a1, . . . , an of Fn, let
Λ = {(s, t) ∈ Fn × Fn : s−1t = ai , for some i} and H = `2(Λ).

Let {e(s,t) : (s, t) ∈ Λ} be the standard basis of H. If s−1t = a−1i

for some i , then set e(s,t) = −e(t,s).

For s = s1s2 . . . sk , where si is either a generator or its inverse, let

b(s) = e(e,s1) + e(s1,s1s2) + · · ·+ e(s1s2...sk−1,s).
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Positive multipliers of the Fourier algebra of a free group

Theorem

Let θ ∈ R. Then the function ϕθ : t → θ|t| on F∞ is positive
definite if and only if −1 ≤ θ ≤ 1.

It turns out that the functions ϕθ can be used to synthesise all
positive definite radial functions on F∞:

Theorem (Haagerup-Knudby, 2013)

Let ϕ : F∞ → C be a radial function with ϕ(e) = 1.
The following are equivalent:

(i) The function ϕ is positive definite;

(ii) There exists a probability measure µ on [−1, 1] such that

ϕ(x) =

∫
θ|x |dµ(θ), x ∈ F∞.
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It turns out that the functions ϕθ can be used to synthesise all
positive definite radial functions on F∞:
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The radial algebra

Fix r ∈ N and let En = {x ∈ Fr : |x | = n}.

For n > 0, let µn be the function taking the same constant value
on the elements of En and zero on Fr \ En, such that∑

x µn(x) = 1 (note that the constant value equals 1
2r(2r−1)n−1 ).

Let µ0 be the characteristic function of the singleton {e}.

Denote by A the subalgebra of the group algebra C[Fr ] generated
by µn, n ≥ 0 – this is the algebra of all radial functions on Fr ,
equipped with the operation of convolution. Clearly, A is the linear
span of {µn : n ≥ 0}.

Lemma

Let q = 2r − 1. Then

µ1 ∗ µn =
1

q + 1
µn−1 +

q

q + 1
µn+1, n ≥ 1.
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The radial algebra

Proof.

We have

µ1 ∗ µn(x) =
∑
y∈Fr

µ1(y)µn(y−1x) =
1

q + 1

∑
|y |=1

µn(y−1x). (1)

Let {a1, . . . , aq+1} be the set of words of length one. If
|x | = n + 1, then among the words ajx , j = 1, . . . , q, there is only
one of length n, namely, the word ajx for which x = a−1j x ′ (for
some x ′ ∈ Fr ). Thus, in this case

µ1 ∗ µn(x) =
1

q + 1

1

(q + 1)qn−1
=

q

q + 1
µn+1(x).



The radial algebra

Proof.

If |x | = n − 1, then among the words ajx , j = 1, . . . , r , there are q
of length n, and thus

µ1 ∗ µn(x) =
1

q + 1

q

(q + 1)qn−1
=

1

q + 1
µn−1(x).

Finally, if x has length different from n + 1 or n − 1 then all words
ajx , j = 1, . . . , q have length different from n and hence the right
hand side of (1) is zero. The claim follows.



The polynomials Pn

Define a sequence (Pn) of polynomials by setting P0(x) = 1,
P1(x) = x and

Pn+1(x) =
q + 1

q
xPn(x)− 1

q
Pn−1(x), n ≥ 1. (2)

By the definition of this sequence, we have that

µn = Pn(µ1), n ≥ 0. (3)

(Here, the product is taken with respect to the convolution.)
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The Laplace operator

The Laplace operator is the linear map L acting on C[Fr ] and
given by

Lϕ = µ1 ∗ ϕ, ϕ ∈ C[Fr ] .

If ϕ ∈ C[Fr ] and x ∈ Fr , then

Lϕ(x) =
1

q + 1

∑
y

ϕ(y),

where the sum is taken over all neighbours y of x in the Cayley
graph of Fr .
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Spherical functions

Definition

Call a function ϕ ∈ C[Fr ] spherical if ϕ is radial, ϕ(e) = 1 and
Lϕ = sϕ for some s ∈ C.

Suppose that ϕ ∈ C[Fr ] is spherical and let ϕ̇ be as usual the
underlying function defined on N0. We have

ϕ̇(0) = 1, ϕ̇(1) = s, ϕ̇(n + 1) =
q + 1

q
sϕ̇(n)− 1

q
ϕ̇(n − 1).

We have that
ϕ̇(n) = Pn(s), n ≥ 0.

It also follows that for each s ∈ C there exists a unique spherical
function corresponding to the eigenvalue s; we denote this function
by ϕs .
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Spherical functions

On the group algebra C[Fr ], consider the bilinear form 〈·, ·〉 given
by

〈f , g〉 =
∑
x∈Fr

f (x)g(x), f , g ∈ C[Fr ] .

If ϕ ∈ A then
〈µn, ϕ〉 = ϕ̇(n), n ≥ 0.

Thus,
〈µn, ϕs〉 = Pn(s), n ≥ 0.
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Spherical functions

Lemma

Let ϕ : Fr → C be a non-zero radial function. The following are
equivalent:

(i) ϕ is spherical;

(ii) the functional f → 〈f , ϕ〉 on A is multiplicative.

Proof.

(i)⇒(ii) Let s ∈ C. We have 〈Pn(µ1), ϕs〉 = Pn(s), n ≥ 0. The
set {Pn : n ≥ 0} spans the set of all polynomials, and hence by
linearity

〈P(µ1), ϕs〉 = P(s), P a polynomial.

On the other hand, the map P → P(µ1), is a homomoprhism from
the algebra of all polynomials onto A. Statement (ii) now
follows.
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Spherical functions

Proof.

(ii)⇒(i) We have

〈µn, ϕ〉 = 〈µ0 ∗ µn, ϕ〉 = 〈µ0, ϕ〉〈µn, ϕ〉

and hence ϕ̇(0) = 〈µ0, ϕ〉 = 1.
Let s = ϕ̇(1) = 〈µ1, ϕ〉. Then

〈µ1 ∗ µn, ϕ〉 = 〈µ1, ϕ〉〈µn, ϕ〉 = sϕ̇(n),

〈µ1 ∗ µn, ϕ〉 =

〈
1

q + 1
µn−1, ϕ

〉
+

〈
q

q + 1
µn+1, ϕ

〉
=

1

q + 1
ϕ̇(n − 1) +

q

q + 1
ϕ̇(n + 1).

Thus, ϕ = ϕs .



The expectation onto A
Let E : C[Fr ]→ A be the map given by

E(f )(x) =
1

(q + 1)qn−1

∑
|y |=n

f (y), |x | = n;

thus,
E(f )(x) = 〈f , µn〉, |x | = n.

Lemma

(i) The following properties hold:

(a) E(f ) = f if f ∈ A;

(b) 〈f , E(g)〉 = 〈f , g〉 if f is radial.

Moreover, if E ′ : C[Fr ]→ A satisfies (a) and (b) then E ′ = E .
(ii) Let R be the von Neumann subalgebra of VN(Fr ) generated
by A. Then the map E extends to a normal conditional
expectation from VN(Fr ) onto R.
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The expectation onto A

Proof.

(i) Properties (a) and (b) are straightforward. Suppose
E ′ : C[Fr ]→ A satisfies (a) and (b). If f ∈ C[Fr ] and x ∈ Fr then

E ′(f )(x) = 〈E ′(f ), δx〉 = 〈E ′(f ), E(δx)〉 = 〈f , E(δx)〉 = E(f )(x).

(ii) By general von Neumann algebra theory, there exists a normal
conditional expectation from VN(Fr ) onto R. Its restriction on
C[Fr ] must satisfy (a) and (b), and by (i) it must coincide with
E .
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Positive definiteness of spherical functions

Proposition

The function ϕs is positive definite if and only if −1 ≤ s ≤ 1.

Proof.

Suppose that −1 ≤ s ≤ 1. Then ϕs is real-valued. It was shown by
Figà-Talamanca and Picardello that in this case ϕs is also bounded.

Let A be the closure of A in `1(Fr ). Since ϕs is radial,
ϕs(x) = ϕs(x−1) for all x ∈ Fr .

We claim that the functional f → 〈f , ϕs〉 on A is positive. Indeed,
if f ∈ A then
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Positive definiteness of spherical functions

Proof.

〈f ∗ f ∗, ϕs〉 = 〈f , ϕs〉〈f ∗, ϕs〉

=

(∑
x∈Fr

f (x)ϕs(x)

)(∑
x∈Fr

f (x−1)ϕs(x)

)

=

(∑
x∈Fr

f (x)ϕs(x)

)(∑
x∈Fr

f (x−1)ϕs(x−1)

)
= 〈f , ϕs〉〈f , ϕs〉 ≥ 0.



Positive definiteness of spherical functions

Proof.

Now let f ∈ `1(Fr ) be positive. Then E(f ) is positive and, by the
previous slide,

〈f , ϕs〉 = 〈E(f ), ϕs〉 ≥ 0.

It follows that the functional on `1(Fr ) , f → 〈f , ϕs〉, is positive,
and hence ϕs is positive definite.

Conversely, suppose that ϕs is positive definite. Then
ϕs(x) = ϕs(x−1) and since |x | = |x−1|, the function ϕs is
real-valued. Since ϕs is also bounded, −1 ≤ s ≤ 1.
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Radial positive definite functions on Fr

Theorem (Haagerup-Knudby, 2013)

Let ϕ : Fr → C be a radial function with ϕ(e) = 1. The following
are equivalent:

(i) ϕ is positive definite;

(ii) there exists a probability measure µ on [−1, 1] such that

ϕ(x) =

∫ 1

−1
ϕs(x)dµ(s), x ∈ Fr .

If (ii) holds true then the measure µ is uniquely determined by ϕ.

Proof.

(ii)⇒(i) follows from the previous proposition.
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Radial positive definite functions on Fr

Proof.

(i)⇒(ii) Let Φ (resp. Φs , −1 ≤ s ≤ 1) be the state on C ∗(Fr )
which corresponds to ϕ (resp. ϕs , −1 ≤ s ≤ 1).

Let C ∗(µ1) be the C*-subalgebra of C ∗(Fr ) generated by µ1; since
A is generated by µ1 as an algebra, C ∗(µ1) coincides with the
closure of A in C ∗(Fr ).

We have that µ1 = µ∗1 and ‖µ1‖ ≤ 1 (indeed, in every
represtentation of Fr , the image of µ1 is the average of r unitary
operators and hence has norm at most 1), we have that the
spectrum of µ1 is contained in [−1, 1].

Conversely, since Φs(µ1) = 〈µ1, ϕs〉 = s, we have that the
spectrum of µ1 coincides with [−1, 1].
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operators and hence has norm at most 1), we have that the
spectrum of µ1 is contained in [−1, 1].
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Radial positive definite functions on Fr

Proof.

It follows that C ∗(µ1) is *-isomorphic to C ([−1, 1]). The
restriction of Φ to C ∗(µ1) hence yields a state on C ([−1, 1]); by
the Riesz Representation Theorem, there exists a probability
measure µ on [−1, 1] such that

Φ(f (µ1)) =

∫ 1

−1
f (s)dµ(s), f ∈ C ([−1, 1]).

Now taking f = Pn, we obtain

ϕ̇(n) = Φ(µn) = Φ(Pn(µ1)) =

∫ 1

−1
Pn(s)dµ(s) =

∫ 1

−1
ϕ̇s(n)dµ(s).



Approximation properties for groups – weak amenability

We first recall that a locally compact group G is amenable if A(G )
possesses a bounded approximate identity. It is known that G is
amenable if and only if there exists a net (ui ) of continuous
compactly supported positive definite functions such that ui → 1
uniformly on compact sets.

Amenability is a fairly restrictive property and in some cases
weaker approximation properties prove to be more instrumental.
Such is the property of weak amenability, first defined by M.
Cowling and U. Haagerup in 1989.

Definition

A locally compact group G is called weakly amenable if there exists
a net (ui ) ⊆ A(G ) and a constant C > 0 such that ‖ui‖cbm ≤ C
and ui → 1 uniformly on compact sets.
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Weak amenability

If G is weakly amenable, the infimum of all constants C appearing
in the last Definition is denoted by ΛG .

It was shown M. Cowling and U. Haagrup that if G is a weakly
amenable group then the net (ui ) from the definition can moreover
be chosen so that the following conditions are satisfied:

ui is compactly supported for each i ;

uiu → u in the norm of A(G ), for every u ∈ A(G ).

Every amenable group is weakly amenable.

The notion of weak amenability has been studied extensively. The
first results in this direction was the fact that Fn is weakly
amenable (U. Haagreup, 1979).

The multipliers that were utilised in this setting were radial.
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Weak amenability

Since non-commutative free groups are not amenable, we have
that the class of weakly amenable groups is strictly larger than that
of amenable ones.

The weak amenability of Fn was generalised as follows:

Theorem (Bożejko-Picardello, 1993)

Let Gi , i ∈ I , be amenable locally compact groups, each of which
contains a given open compact group H. Then the free product G
of the family (Gi )i∈I over H is weakly amenable and ΛG = 1.

The multipliers that are utilised in establishing the latter result
were also radial.

We point out a functoriality property of weak amenability: if G1

and G2 are discrete groups then ΛG1×G2 = ΛG1ΛG2 .
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The approximation property

An even weaker approximation property for groups was introduced
by U. Haagerup and J. Kraus (1994).

Definition

A locally compact group G is said to have the approximation
property (AP) if there exists a net (ui ) ⊆ A(G ) such that ui → 1
in the weak* topology of McbA(G ).

Proposition

(i) The functions ui from the above definition can be chosen of
compact support.

(ii) Every weakly amenable locally compact group has the
approximation property.
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(AP) continued

Theorem (Haagerup-Kraus, 1994)

The following are equivalent, for a locally compact group G :

(i) G has (AP);

(ii) for every locally compact group H, there exists a net
(ui ) ⊆ A(G ) of functions with compact support such that
(ui ⊗ 1) is an approximate identity for A(G × H);

(iii) there exists a net (ui ) ⊆ A(G ) of functions with compact
support such that (ui ⊗ 1) is an approximate identity for
A(G × SU(2)).
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More on amenability, weak amenability and (AP)

Theorem (Haagerup-Kraus, 1994)

Let G be a locally compact group.

(i) the group G is weakly amenable with ΛG ≤ L if and only if
the constant function 1 can be approximated in the weak*
topology of McbA(G ) by elements of the set
{u ∈ A(G ) : ‖u‖cbm ≤ L}.

(ii) the group G is amenable if and only if the constant function 1
can be approximated in the weak* topology of McbA(G ) by
elements of the set {u ∈ A(G ) : u positive definite, u(e) = 1}.

Theorem (Haagerup-Kraus, 1994)

Let G be a locally compact group and H be a closed normal
subgroup of G . If H and G/H have (AP) then so does G .
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A list of examples

(de Canniere-Haagerup) SOo(1, n): the connected
component of the identity of the group SO(1, n) of all real
(n + 1)× (n + 1) matrices with determinant 1, leaving the
quadratic form −t10 + t21 + · · ·+ t2n invariant. Here
ΛSOo(1,n) = 1.

(Cowling-Haagerup) More generally, connected real Lie
groups with finite centre that are locally isomorphic to
SO(1, n) or SU(1, n). Here ΛG = 1. (finiteness of centre
removed by Hansen).

(de Canniere-Haagerup, Cowling-Haagerup, Hansen)
More generally, real simple Lie groups of real rank one are
weakly amenable.

(Haagerup) Real simple Lie groups of real rank at least two
are not weakly amenable.
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(Ozawa) Hyperbolic groups are weakly amenable.

(Ozawa) Wreath products by non-amenable groups are not
weakly amenable.

(Haagerup-de Laat) Connected simple Lie groups with finite
centre and real rank at least two do not have the (AP).

(Lafforgue-de la Salle) SL(3,Z) does not have (AP).
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