Closable multipliers of Herz-Schur type

Ivan Todorov

April 2014 Toronto

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Versions of closability for operators

- Versions of closability for operators
- Closable multipliers on group algebras the setting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Versions of closability for operators
- Closable multipliers on group algebras the setting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Closable Schur-type multipliers

- Versions of closability for operators
- Closable multipliers on group algebras the setting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Closable Schur-type multipliers
- Characterisation results

- Versions of closability for operators
- Closable multipliers on group algebras the setting

- Closable Schur-type multipliers
- Characterisation results
- Embedding results

Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T : D(T) \to \mathcal{Y}$ be a linear operator, where D(T) is a dense linear subspace of \mathcal{X} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T : D(T) \to \mathcal{Y}$ be a linear operator, where D(T) is a dense linear subspace of \mathcal{X} .

• The operator *T* is called *closable* if the closure $\overline{\operatorname{Gr} T}$ of its graph

Gr
$$T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}$$

is the graph of a linear operator.

Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T : D(T) \to \mathcal{Y}$ be a linear operator, where D(T) is a dense linear subspace of \mathcal{X} .

• The operator *T* is called *closable* if the closure $\overline{\operatorname{Gr} T}$ of its graph

Gr
$$T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}} \subseteq D(T)$, $y \in \mathcal{Y}$, $||x_k|| \to_{k\to\infty} 0$ and $||T(x_k) - y|| \to_{k\to\infty} 0$ imply that y = 0.

Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T : D(T) \to \mathcal{Y}$ be a linear operator, where D(T) is a dense linear subspace of \mathcal{X} .

• The operator *T* is called *closable* if the closure $\overline{\operatorname{Gr} T}$ of its graph

Gr
$$T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}}\subseteq D(T)$, $y\in\mathcal{Y}$, $||x_k|| \to_{k\to\infty} 0$ and $||T(x_k) - y|| \to_{k\to\infty} 0$ imply that y = 0.

• The operator T is called *weak** closable* if the weak* closure $\overline{\operatorname{Gr} T}^{w^*}$ of $\operatorname{Gr} T$ in $\mathcal{X}^{**} \oplus \mathcal{Y}^{**}$ is the graph of a linear operator.

Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T : D(T) \to \mathcal{Y}$ be a linear operator, where D(T) is a dense linear subspace of \mathcal{X} .

• The operator *T* is called *closable* if the closure $\overline{\operatorname{Gr} T}$ of its graph

Gr
$$T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}}\subseteq D(T)$, $y\in\mathcal{Y}$, $||x_k|| \to_{k\to\infty} 0$ and $||T(x_k) - y|| \to_{k\to\infty} 0$ imply that y = 0.

• The operator T is called *weak** closable* if the weak* closure $\overline{\operatorname{Gr} T}^{w^*}$ of $\operatorname{Gr} T$ in $\mathcal{X}^{**} \oplus \mathcal{Y}^{**}$ is the graph of a linear operator.

T is weak** closable iff whenever $(x_j)_{j \in J} \subseteq D(T)$ is a net, $y \in \mathcal{Y}^{**}$, $x_j \xrightarrow{w^*}_{j \in J} 0$ and $T(x_j) \xrightarrow{w^*}_{j \in J} y$, we have that y = 0.

Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T : D(T) \to \mathcal{Y}$ be a linear operator, where D(T) is a dense linear subspace of \mathcal{X} .

• The operator *T* is called *closable* if the closure $\overline{\operatorname{Gr} T}$ of its graph

Gr
$$T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}}\subseteq D(T)$, $y\in\mathcal{Y}$, $||x_k|| \to_{k\to\infty} 0$ and $||T(x_k) - y|| \to_{k\to\infty} 0$ imply that y = 0.

• The operator T is called *weak** closable* if the weak* closure $\overline{\operatorname{Gr} T}^{w^*}$ of $\operatorname{Gr} T$ in $\mathcal{X}^{**} \oplus \mathcal{Y}^{**}$ is the graph of a linear operator.

T is weak** closable iff whenever $(x_j)_{j\in J} \subseteq D(T)$ is a net, $y \in \mathcal{Y}^{**}$, $x_j \xrightarrow{w^*}_{j\in J} 0$ and $T(x_j) \xrightarrow{w^*}_{j\in J} y$, we have that y = 0.

- ロ ト - 4 回 ト - 4 □ - 4

Every weak* closable operator is closable.

Let \mathcal{X} and \mathcal{Y} be dual Banach spaces, with specified preduals \mathcal{X}_* and \mathcal{Y}_* , respectively, and $D(\Phi) \subseteq \mathcal{X}$ be a weak* dense subspace.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathcal{X} and \mathcal{Y} be dual Banach spaces, with specified preduals \mathcal{X}_* and \mathcal{Y}_* , respectively, and $D(\Phi) \subseteq \mathcal{X}$ be a weak* dense subspace.

A linear operator T : D(T) → Y is weak* closable if the conditions x_i ∈ X, y ∈ Y, x_i →_{w*} 0, T(x_i) →_{w*} y imply that y = 0.

Here, the weak* convergence is in the designated weak* topologies of $\mathcal X$ and $\mathcal Y$.

Let \mathcal{X} and \mathcal{Y} be dual Banach spaces, with specified preduals \mathcal{X}_* and \mathcal{Y}_* , respectively, and $D(\Phi) \subseteq \mathcal{X}$ be a weak* dense subspace.

A linear operator T : D(T) → Y is weak* closable if the conditions x_i ∈ X, y ∈ Y, x_i →_{w*} 0, T(x_i) →_{w*} y imply that y = 0.

Here, the weak* convergence is in the designated weak* topologies of $\mathcal X$ and $\mathcal Y$.

Note that, since the *-weak closure of the graph of T contains its norm-closure, each weak* closable operator is closable.

The domain of the *adjoint operator* T^* is

 $D(T^*) = \{g \in \mathcal{Y}^* : \exists f \in \mathcal{X}^* \text{ s. t. } \langle T(x), g \rangle = \langle x, f \rangle \text{ for all } x \in D(T) \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $T^*: D(T^*) \to \mathcal{X}^*$ is defined by letting $T^*(g) = f$, where f is the functional associated with g in the definition of $D(T^*)$.

The domain of the *adjoint operator* T^* is

 $D(T^*) = \{g \in \mathcal{Y}^* : \exists f \in \mathcal{X}^* \text{ s. t. } \langle T(x), g \rangle = \langle x, f \rangle \text{ for all } x \in D(T) \}$

 $T^*: D(T^*) \to \mathcal{X}^*$ is defined by letting $T^*(g) = f$, where f is the functional associated with g in the definition of $D(T^*)$.

Proposition

Let \mathcal{X} and \mathcal{Y} be Banach spaces, $D(T) \subseteq \mathcal{X}$, $T : D(T) \rightarrow \mathcal{Y}$ be a densely defined linear operator and set $\mathcal{D} = D(T^*)$. Consider the following conditions:

(i) T is weak** closable; (ii) $\overline{\mathcal{D}}^{\|\cdot\|} = \mathcal{Y}^*$; (iii) $\overline{\mathcal{D}}^{w^*} = \mathcal{Y}^*$; (iv) T is closable. Then (i) \iff (ii) \implies (iii) \iff (iv). Weak* closability can be characterised analogously:

Proposition

Let $D(T) \subseteq \mathcal{X}$ be a weak* dense subspace and $T : D(T) \to \mathcal{Y}$ be a linear operator. The following are equivalent: (i) the operator T is weak* closable; (ii) the space

 $D'_*(T) = \{g \in \mathcal{Y}_* : x \to \langle T(x), g \rangle \text{ is w}^* \text{ -cont. on } D(T)\} \text{ is dense in } \mathcal{Y}_*.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\psi : \mathcal{G} \to \mathbb{C}$ be a measurable function.

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a measurable function.

Let

$$D(\psi) = \{ f \in L^1(G) : \psi f \in L^1(G) \};$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(G)$, is closable.

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a measurable function.

Let

$$D(\psi) = \{ f \in L^1(G) : \psi f \in L^1(G) \};$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(G)$, is closable.

Since $\lambda(L^1(G))$ is dense in $C_r^*(G)$ and $\|\lambda(f)\| \le \|f\|_1$, $f \in L^1(G)$, the space $\lambda(D(\psi))$ is dense in $C_r^*(G)$ in the operator norm.

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a measurable function.

Let

$$D(\psi) = \{f \in L^1(G) : \psi f \in L^1(G)\};$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(G)$, is closable.

Since $\lambda(L^1(G))$ is dense in $C_r^*(G)$ and $\|\lambda(f)\| \le \|f\|_1$, $f \in L^1(G)$, the space $\lambda(D(\psi))$ is dense in $C_r^*(G)$ in the operator norm.

Thus, the operator $S_\psi:\lambda(D(\psi)) o C^*_r(G)$ given by

 $S_{\psi}(\lambda(f)) = \lambda(\psi f)$

is a densely defined operator on $C_r^*(G)$.

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a measurable function.

Let

$$D(\psi) = \{f \in L^1(G) : \psi f \in L^1(G)\};$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(G)$, is closable.

Since $\lambda(L^1(G))$ is dense in $C_r^*(G)$ and $\|\lambda(f)\| \le \|f\|_1$, $f \in L^1(G)$, the space $\lambda(D(\psi))$ is dense in $C_r^*(G)$ in the operator norm.

Thus, the operator $S_\psi:\lambda(D(\psi)) o C^*_r(G)$ given by

 $S_{\psi}(\lambda(f)) = \lambda(\psi f)$

is a densely defined operator on $C_r^*(G)$.

Recall that $B_{\lambda}(G) \subseteq B(G)$ is (isometric to) the dual of $C_r^*(G)$; the duality is given by

$$\langle \lambda(f), u \rangle = \int_G f(s)u(s)ds, \quad f \in L^1(G), u \in B_\lambda(G).$$

$$J_{\psi} = \{g \in B_{\lambda}(G) : \psi g \in B_{\lambda}(G)\}$$

and

$$S^*_\psi(g) = \psi g, \quad g \in J_\psi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}$$

and

$$S^*_\psi(g) = \psi g, \quad g \in J_\psi.$$

To see this, suppose $g \in D(S_{\psi}^*)$; then there exists $u \in B_{\lambda}(G)$ with $\int \psi fg dm = \int fu dm$, $f \in D(\psi)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}$$

and

$$S^*_\psi(g)=\psi g, \quad g\in J_\psi.$$

To see this, suppose $g \in D(S_{\psi}^*)$; then there exists $u \in B_{\lambda}(G)$ with $\int \psi fg dm = \int fu dm$, $f \in D(\psi)$.

Take a sequence $(K_N)_{N \in \mathbb{N}}$ of compacts such that $\bigcup_N K_N \sim G$ and $|\psi| \leq N$ on K_N . Then $L_1(K_N) \subseteq D(\psi)$.

$$J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}$$

and

$$S^*_\psi(g)=\psi g, \quad g\in J_\psi.$$

To see this, suppose $g \in D(S_{\psi}^*)$; then there exists $u \in B_{\lambda}(G)$ with $\int \psi fg dm = \int fu dm$, $f \in D(\psi)$.

Take a sequence $(K_N)_{N \in \mathbb{N}}$ of compacts such that $\bigcup_N K_N \sim G$ and $|\psi| \leq N$ on K_N . Then $L_1(K_N) \subseteq D(\psi)$.

Since $\psi g|_{K_N}$ and $u|_{K_N}$ are elements of $L^{\infty}(K_N)$, we have $\psi g \sim u$ on K_N , for each N.

$$J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}$$

and

$$S^*_\psi(g)=\psi g, \quad g\in J_\psi.$$

To see this, suppose $g \in D(S_{\psi}^*)$; then there exists $u \in B_{\lambda}(G)$ with $\int \psi fg dm = \int fu dm$, $f \in D(\psi)$.

Take a sequence $(K_N)_{N \in \mathbb{N}}$ of compacts such that $\bigcup_N K_N \sim G$ and $|\psi| \leq N$ on K_N . Then $L_1(K_N) \subseteq D(\psi)$.

Since $\psi g|_{K_N}$ and $u|_{K_N}$ are elements of $L^{\infty}(K_N)$, we have $\psi g \sim u$ on K_N , for each N.

Thus, $\psi g \sim u$ and so $\psi g \in B_{\lambda}(G)$.

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

I next formulate a couple of other – one necessary, and one sufficient – conditions for the closability of S_{ψ} .

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

I next formulate a couple of other – one necessary, and one sufficient – conditions for the closability of S_{ψ} .

The null set null(J) of a subset $J \subseteq A(G)$ is

 $\operatorname{null}(J) = \{ s \in G : u(s) = 0, \forall u \in J \}.$

For a closed subset $E \subseteq G$ let I(E) and J(E) be the largest and the smallest closed ideal of A(G) with null set E.

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

I next formulate a couple of other – one necessary, and one sufficient – conditions for the closability of S_{ψ} .

The null set null(J) of a subset $J \subseteq A(G)$ is

$$\operatorname{null}(J) = \{ s \in G : u(s) = 0, \forall u \in J \}.$$

For a closed subset $E \subseteq G$ let I(E) and J(E) be the largest and the smallest closed ideal of A(G) with null set E.

Recall that a closed subset $E \subseteq G$ is called a *U*-set if $J(E)^{\perp} \cap C_r^*(G) = \{0\}$ and a U_1 -set if $I(E)^{\perp} \cap C_r^*(G) = \{0\}$. *U*-sets for arbitrary locally compact groups were first studied by Bożejko (1977).

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

I next formulate a couple of other – one necessary, and one sufficient – conditions for the closability of S_{ψ} .

The null set null(J) of a subset $J \subseteq A(G)$ is

$$\operatorname{null}(J) = \{ s \in G : u(s) = 0, \forall u \in J \}.$$

For a closed subset $E \subseteq G$ let I(E) and J(E) be the largest and the smallest closed ideal of A(G) with null set E.

Recall that a closed subset $E \subseteq G$ is called a *U-set* if $J(E)^{\perp} \cap C_r^*(G) = \{0\}$ and a U_1 -set if $I(E)^{\perp} \cap C_r^*(G) = \{0\}$.

U-sets for arbitrary locally compact groups were first studied by Bożejko (1977).

The set *E* is an *M*-set (resp. M_1 -set) if it is not an *U*-set (resp. an U_1 -set).

Let

$$I_{\psi} = \{ f \in A(G) : \psi f \in A(G) \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let

$$I_{\psi} = \{ f \in A(G) : \psi f \in A(G) \}.$$

A function f belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = u on U.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Let

$$I_{\psi} = \{ f \in A(G) : \psi f \in A(G) \}.$$

A function f belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = u on U.

A function f almost belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = ualmost everywhere on U.
Let

$$I_{\psi} = \{ f \in A(G) : \psi f \in A(G) \}.$$

A function f belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = u on U.

A function f almost belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = ualmost everywhere on U.

 $A(G)^{\text{loc}} = \{f : \text{ belongs to } A(G) \text{ at every point}\}.$

Let

$$I_{\psi} = \{ f \in A(G) : \psi f \in A(G) \}.$$

A function f belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = u on U.

A function f almost belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = ualmost everywhere on U.

$$A(G)^{\text{loc}} = \{f : \text{ belongs to } A(G) \text{ at every point}\}.$$

If f almost belongs to A(G) at every point then $f \sim g$ for some $g \in A(G)^{\mathrm{loc}}$.

Let

$$I_{\psi} = \{ f \in A(G) : \psi f \in A(G) \}.$$

A function f belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = u on U.

A function f almost belongs to A(G) at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that f = ualmost everywhere on U.

$$A(G)^{\text{loc}} = \{f : \text{ belongs to } A(G) \text{ at every point}\}.$$

If f almost belongs to A(G) at every point then $f \sim g$ for some $g \in A(G)^{\mathrm{loc}}$.

Proposition

Let $E_{\psi} \stackrel{\text{def}}{=} \{t \in G : \psi \text{ does not almost belong to } A(G) \text{ at } t\}$. Then $\operatorname{null}(I_{\psi}) = E_{\psi}$.

Conditions related to the closability of S_ψ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Yet another approximation property:

Conditions related to the closability of S_{ψ}

Yet another approximation property:

Let us say G possesses property (A) if there exists a net $(u_i) \subseteq A(G)$ such that, for every $g \in B_{\lambda}(G)$,

 $u_i g \to g$ weakly* in $B_{\lambda}(G)$.

Conditions related to the closability of S_{ψ}

Yet another approximation property:

Let us say G possesses property (A) if there exists a net $(u_i) \subseteq A(G)$ such that, for every $g \in B_{\lambda}(G)$,

 $u_i g \to g$ weakly* in $B_{\lambda}(G)$.

• If G is weakly amenable then G has property (A).

Conditions related to the closability of S_{ψ}

Yet another approximation property:

Let us say G possesses property (A) if there exists a net $(u_i) \subseteq A(G)$ such that, for every $g \in B_{\lambda}(G)$,

$$u_i g \to g$$
 weakly* in $B_{\lambda}(G)$.

• If G is weakly amenable then G has property (A).

In fact, if (u_i) is a net in A(G) such that $||u_i||_{cbm} \leq C$ for all *i*, and $u_i \rightarrow 1$ uniformly on compact sets then for $g \in B_{\lambda}(G)$ and $f \in C_c(G)$ we have

$$\langle \lambda(f), gu_i - g \rangle = \int_G f(t)g(t)(u_i(t) - 1)dt \to 0.$$

Since $||gu_i - g||_{B(G)} \leq (||u_i||_{cbm} + 1)||g||_{B(G)}$, and $\lambda(C_c(G))$ is dense in $C_r^*(G)$, we are done.

Theorem

Suppose that G has property (A) and $\psi : G \to \mathbb{C}$ is a measurable function.

- If E_{ψ} is a *U*-set then S_{ψ} is closable;
- If E_{ψ} is an *M*-set then S_{ψ} is not closable.

Theorem

Suppose that G has property (A) and $\psi : G \to \mathbb{C}$ is a measurable function.

- If E_{ψ} is a *U*-set then S_{ψ} is closable;
- If E_{ψ} is an *M*-set then S_{ψ} is not closable.

To see these statements, note that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$, if and only if there is no non-zero $T \in C_r^*(G)$ such that

 $\langle T, u \rangle = 0$, for all $u \in J_{\psi}$.

Theorem

Suppose that G has property (A) and $\psi : G \to \mathbb{C}$ is a measurable function.

- If E_{ψ} is a *U*-set then S_{ψ} is closable;
- If E_{ψ} is an *M*-set then S_{ψ} is not closable.

To see these statements, note that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$, if and only if there is no non-zero $T \in C_r^*(G)$ such that

$$\langle T, u
angle = 0,$$
 for all $u \in J_{\psi}.$

On the other hand, property (A) implies that the weak* closures of J_{ψ} and I_{ψ} in $B_{\lambda}(G)$ coincide.

Thus, S_ψ is closable if and only if there is no non-zero $T\in C^*_r(G)$ such that

$$\langle T, u \rangle = 0$$
, for all $u \in \overline{I_{\psi}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thus, S_{ψ} is closable if and only if there is no non-zero $T \in C^*_r(G)$ such that

$$\langle T, u \rangle = 0$$
, for all $u \in \overline{I_{\psi}}$.

The statements now follow from the fact that

$$J(E_{\psi}) \subseteq \overline{I_{\psi}} \subseteq I(E_{\psi}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thus, S_{ψ} is closable if and only if there is no non-zero $T \in C^*_r(G)$ such that

$$\langle T, u \rangle = 0$$
, for all $u \in \overline{I_{\psi}}$.

The statements now follow from the fact that

$$J(E_{\psi}) \subseteq \overline{I_{\psi}} \subseteq I(E_{\psi}).$$

Corollary

Suppose G has property (A). If $\psi : G \to \mathbb{C}$ is a measurable function and $m(E_{\psi}) > 0$ then S_{ψ} is not closable.

・ロト・西ト・西ト・西ト・日・

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi} : L^{2}(X \times Y) \rightarrow L^{2}(X \times Y)$ be the corresponding multiplication operator

$$S_{\varphi}\xi = \varphi\xi.$$

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi} : L^{2}(X \times Y) \to L^{2}(X \times Y)$ be the corresponding multiplication operator

$$S_{\varphi}\xi = \varphi\xi.$$

The space $L^2(X \times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}(L^2(X), L^2(Y))$ by

$$\xi \longrightarrow T_{\xi}, \qquad T_{\xi}f(y) = \int_X \xi(x,y)f(x)d\mu(x).$$

Set $\|\xi\|_{\mathrm{op}} = \|T_{\xi}\|_{\mathrm{op}}$

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^{\infty}(X \times Y)$, let $S_{\varphi} : L^{2}(X \times Y) \to L^{2}(X \times Y)$ be the corresponding multiplication operator

$$S_{\varphi}\xi = \varphi\xi.$$

The space $L^2(X \times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}(L^2(X), L^2(Y))$ by

$$\xi \longrightarrow T_{\xi}, \qquad T_{\xi}f(y) = \int_X \xi(x,y)f(x)d\mu(x).$$

Set $\|\xi\|_{op} = \|T_{\xi}\|_{op}$ A function $\varphi \in L^{\infty}(X \times Y)$ is called a *Schur multiplier* if there exists C > 0 such that

$$\|S_{\varphi}\xi\|_{\mathrm{op}} \leq C \|\xi\|_{\mathrm{op}}, \quad \xi \in L^2(X \times Y).$$

Local Schur multipliers

The function $\varphi : X \times Y \to \mathbb{C}$ is called a *local Schur multiplier* if there exists a family $\{\alpha_i \times \beta_i\}_{i=1}^{\infty}$ of measurable rectangles such that

$$\cup_{i=1}^{\infty}\alpha_i\times\beta_i\cong X\times Y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and $\varphi|_{\alpha_i \times \beta_i}$ is a Schur multiplier on $\alpha_i \times \beta_i$.

Local Schur multipliers

The function $\varphi: X \times Y \to \mathbb{C}$ is called a *local Schur multiplier* if there exists a family $\{\alpha_i \times \beta_i\}_{i=1}^{\infty}$ of measurable rectangles such that

$$\cup_{i=1}^{\infty}\alpha_i\times\beta_i\cong X\times Y$$

and $\varphi|_{\alpha_i \times \beta_i}$ is a Schur multiplier on $\alpha_i \times \beta_i$.

Theorem

The measurable function $\varphi : X \times Y \to \mathbb{C}$ is a local Schur multiplier iff $\exists a_k, b_k$ such that

$$\sum_{k=1}^\infty |a_k(x)|^2 < \infty$$
 and $\sum_{k=1}^\infty |b_k(y)|^2 < \infty$ a.e.

and

$$\varphi(x,y) = \sum_{k=1}^{\infty} a_k(x)b_k(y), \quad \text{a.e. on } X \times Y.$$

$$D(\varphi) = \{\xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y)\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$D(\varphi) = \{\xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y)\}.$$

Let $S_{\varphi}: D(\varphi) \to L^2(X \times Y)$ be given by

$$S_{\varphi}\xi = \varphi\xi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$D(\varphi) = \{\xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y)\}.$$

Let $S_{arphi}: D(arphi)
ightarrow L^2(X imes Y)$ be given by

$$S_{\varphi}\xi = \varphi\xi.$$

We consider $D(\varphi)$ as a subspace of the space \mathcal{K} of all compact operators.

$$D(\varphi) = \{\xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y)\}.$$

Let $S_{arphi}: D(arphi)
ightarrow L^2(X imes Y)$ be given by

$$S_{\varphi}\xi = \varphi\xi.$$

We consider $D(\varphi)$ as a subspace of the space \mathcal{K} of all compact operators.

Set $\mathfrak{S}_{\mathrm{cl}}(X, Y) = \{ \varphi : S_{\varphi} \text{ is closable} \}.$

Closability here is considered with respect to the norm topology on $\ensuremath{\mathcal{K}}.$

$$D(\varphi) = \{\xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y)\}.$$

Let $S_{arphi}: D(arphi)
ightarrow L^2(X imes Y)$ be given by

$$S_{\varphi}\xi = \varphi\xi.$$

We consider $D(\varphi)$ as a subspace of the space \mathcal{K} of all compact operators.

Set $\mathfrak{S}_{\mathrm{cl}}(X, Y) = \{ \varphi : S_{\varphi} \text{ is closable} \}.$

Closability here is considered with respect to the norm topology on $\ensuremath{\mathcal{K}}.$

Call the element of $\mathfrak{S}_{\rm cl}(X, Y)$ closable multipliers.

Denoting by $\mathfrak{S}_{cl^{**}}(X, Y)$ the set of all $\varphi : X \times Y \to \mathbb{C}$ for which the operator S_{φ} is weak^{**} clocable, we have:

Theorem

 $\varphi \in \mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ if and ony if $\varphi = \frac{\varphi_1}{\varphi_2}$ such that φ_1 and φ_2 are local Schur multipliers with $\varphi_2(x, y) \neq 0$ for (marginally all) $(x, y) \in X \times Y$.

Denoting by $\mathfrak{S}_{cl^{**}}(X, Y)$ the set of all $\varphi : X \times Y \to \mathbb{C}$ for which the operator S_{φ} is weak^{**} clocable, we have:

Theorem

 $\varphi \in \mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ if and ony if $\varphi = \frac{\varphi_1}{\varphi_2}$ such that φ_1 and φ_2 are local Schur multipliers with $\varphi_2(x, y) \neq 0$ for (marginally all) $(x, y) \in X \times Y$.

Note that

 $\mathfrak{S}(X,Y) \subseteq \{ \text{local Schur multipliers} \} \subseteq \mathfrak{S}_{\mathrm{cl}^{**}}(X,Y) \subseteq \mathfrak{S}_{\mathrm{cl}}(X,Y).$

Denoting by $\mathfrak{S}_{cl^{**}}(X, Y)$ the set of all $\varphi : X \times Y \to \mathbb{C}$ for which the operator S_{φ} is weak^{**} clocable, we have:

Theorem

 $\varphi \in \mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ if and ony if $\varphi = \frac{\varphi_1}{\varphi_2}$ such that φ_1 and φ_2 are local Schur multipliers with $\varphi_2(x, y) \neq 0$ for (marginally all) $(x, y) \in X \times Y$.

Note that

 $\mathfrak{S}(X,Y) \subseteq \{ \text{local Schur multipliers} \} \subseteq \mathfrak{S}_{\mathrm{cl}^{**}}(X,Y) \subseteq \mathfrak{S}_{\mathrm{cl}}(X,Y).$

All inclusions but the middle one are known to be proper.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if $\kappa \subseteq (M \times Y) \cup (X \times N)$, where *M* and *N* are null.

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if $\kappa \subset (M \times Y) \cup (X \times N)$, where *M* and *N* are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if

 $\kappa \subseteq (M \times Y) \cup (X \times N)$, where *M* and *N* are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\bigcup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if

 $\kappa \subseteq (M \times Y) \cup (X \times N)$, where *M* and *N* are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\bigcup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

(iv) κ is called ω -closed if κ^c is ω -open.

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if

 $\kappa \subseteq (M \times Y) \cup (X \times N)$, where *M* and *N* are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\bigcup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

- (iv) κ is called ω -closed if κ^c is ω -open.
- (v) An operator $T \in \mathcal{B}(L^2(X), L^2(Y))$ is supported on κ if

$$(\alpha \times \beta) \cap \kappa \simeq \emptyset \Rightarrow P(\beta)TP(\alpha) = 0,$$

where $P(\alpha)$ is the projection from $L^2(X)$ onto $L^2(\alpha)$.

If $f \in L^{\infty}(X)$, let $M_f \in \mathcal{B}(L^2(X))$ be the operator of multiplication by f. Set

$$\mathcal{D}_X = \{M_f : f \in L^\infty(X)\};$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

similarly \mathcal{D}_{Y} .

If $f \in L^{\infty}(X)$, let $M_f \in \mathcal{B}(L^2(X))$ be the operator of multiplication by f. Set

$$\mathcal{D}_X = \{M_f : f \in L^\infty(X)\};$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

similarly $\mathcal{D}_{\mathbf{Y}}$.

 $\mathcal{U} \subseteq \mathcal{B}(L^2(X), L^2(Y))$ masa-bimodule if $\mathcal{D}_Y \mathcal{U} \mathcal{D}_X \subseteq \mathcal{U}$.

If $f \in L^{\infty}(X)$, let $M_f \in \mathcal{B}(L^2(X))$ be the operator of multiplication by f. Set

$$\mathcal{D}_X = \{M_f : f \in L^\infty(X)\};$$

similarly \mathcal{D}_{Y} .

 $\mathcal{U} \subseteq \mathcal{B}(L^2(X), L^2(Y))$ masa-bimodule if $\mathcal{D}_Y \mathcal{U} \mathcal{D}_X \subseteq \mathcal{U}$.

The weak* closed masa-bimodules are precisely the weak* closed invariant spaces of Schur multipliers.

If $f \in L^{\infty}(X)$, let $M_f \in \mathcal{B}(L^2(X))$ be the operator of multiplication by f. Set

$$\mathcal{D}_X = \{M_f : f \in L^\infty(X)\};$$

similarly \mathcal{D}_{Y} .

 $\mathcal{U} \subseteq \mathcal{B}(L^2(X), L^2(Y))$ masa-bimodule if $\mathcal{D}_Y \mathcal{U} \mathcal{D}_X \subseteq \mathcal{U}$.

The weak* closed masa-bimodules are precisely the weak* closed invariant spaces of Schur multipliers.

Theorem (Arveson)

Given an ω -closed subset $\kappa \subseteq X \times Y$, there exists a maximal weak* closed masa-bimodule $\mathfrak{M}_{max}(\kappa)$ and a minimal weak* closed masa-bimodule $\mathfrak{M}_{min}(\kappa)$ with support κ .
Given a measurable $\varphi: X \times Y \to \mathbb{C}$, let

$$D^*(\varphi) = \{h \in L^2(X) \hat{\otimes} L^2(Y) : \varphi h \in L^2(X) \hat{\otimes} L^2(Y)\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Given a measurable $\varphi: X \times Y \to \mathbb{C}$, let

$$D^*(\varphi) = \{h \in L^2(X) \hat{\otimes} L^2(Y) : \varphi h \in L^2(X) \hat{\otimes} L^2(Y)\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Note that $D^*(\varphi)$ is the domain of the adjoint S^*_{φ} .

Given a measurable $\varphi: X \times Y \to \mathbb{C}$, let

$$D^*(\varphi) = \{h \in L^2(X) \hat{\otimes} L^2(Y) : \varphi h \in L^2(X) \hat{\otimes} L^2(Y)\}.$$

Note that $D^*(\varphi)$ is the domain of the adjoint S^*_{φ} . Let $\kappa_{\varphi} \subseteq X \times Y$ be the zero set of $D^*(\varphi)$:

$$\kappa_{\varphi} \cong \{(x,y) : h(x,y) = 0, \text{ for all } h \in D^*(\varphi)\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a measurable $\varphi: X \times Y \to \mathbb{C}$, let

$$D^*(\varphi) = \{h \in L^2(X) \hat{\otimes} L^2(Y) : \varphi h \in L^2(X) \hat{\otimes} L^2(Y)\}.$$

Note that $D^*(\varphi)$ is the domain of the adjoint S^*_{φ} .

Let $\kappa_{\varphi} \subseteq X \times Y$ be the zero set of $D^*(\varphi)$:

$$\kappa_{\varphi} \cong \{(x,y) : h(x,y) = 0, \text{ for all } h \in D^*(\varphi)\}.$$

Theorem

Let $\varphi : X \times Y \to \mathbb{C}$ be measurable.

(i) If $\mathfrak{M}_{\max}(\kappa_{\varphi})$ does not contain a compact operator then φ is a closable multiplier;

(ii) If $\mathfrak{M}_{\min}(\kappa_{\varphi})$ contains a compact operator then φ is not a closable multiplier.

Let (X, μ) and (Y, ν) be standard measure spaces, $H_1 = L^2(X)$, $H_2 = L^2(Y)$, \mathcal{K} the space of all compact operators from H_1 to H_2 .

Definition

An ω -closed set $\kappa \subseteq X \times Y$ is called

(i) an operator M-set if $\mathcal{K} \cap \mathfrak{M}_{max}(\kappa) \neq \{0\}$;

(ii) an operator M_1 -set if $\mathcal{K} \cap \mathfrak{M}_{\min}(\kappa) \neq \{0\}$.

Let (X, μ) and (Y, ν) be standard measure spaces, $H_1 = L^2(X)$, $H_2 = L^2(Y)$, \mathcal{K} the space of all compact operators from H_1 to H_2 .

Definition

An ω -closed set $\kappa \subseteq X \times Y$ is called

(i) an operator *M*-set if
$$\mathcal{K} \cap \mathfrak{M}_{max}(\kappa) \neq \{0\}$$
;

(ii) an operator M_1 -set if $\mathcal{K} \cap \mathfrak{M}_{\min}(\kappa) \neq \{0\}$.

Studied first by Froelich (1988) in relation with problems in invariant subspace theory.

Let (X, μ) and (Y, ν) be standard measure spaces, $H_1 = L^2(X)$, $H_2 = L^2(Y)$, \mathcal{K} the space of all compact operators from H_1 to H_2 .

Definition

An ω -closed set $\kappa \subseteq X \times Y$ is called

(i) an operator *M*-set if
$$\mathcal{K} \cap \mathfrak{M}_{max}(\kappa) \neq \{0\}$$
;

(ii) an operator M_1 -set if $\mathcal{K} \cap \mathfrak{M}_{\min}(\kappa) \neq \{0\}$.

Studied first by Froelich (1988) in relation with problems in invariant subspace theory.

The space \mathcal{K} is a suitable substitute of $C_r^*(G)$ because

$$\mathcal{K}(L^2(G)) = \overline{\{M_a T M_b : a \in C_0(G), T \in C_r^*(G)\}}^{\|\cdot\|}.$$

Structure in $\mathfrak{S}_{cl}(X, Y)$

• The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Structure in $\mathfrak{S}_{\rm cl}(X,Y)$

- The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.
- It follows from the characterisation of S_{cl**}(X, Y) that it is a subalgebra of C_ω(X × Y), too.

(日) (日) (日) (日) (日) (日) (日) (日)

Structure in $\mathfrak{S}_{cl}(X, Y)$

- The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.
- It follows from the characterisation of S_{cl**}(X, Y) that it is a subalgebra of C_ω(X × Y), too.
- $\mathfrak{S}_{\rm cl}(X, Y)$ is also an algebra but for a different reason:

Proposition

If \mathcal{U}_1 and \mathcal{U}_2 are weak* dense $L^{\infty}(G)$ -invariant subspaces of T(X, Y) then the intersection $\mathcal{U}_1 \cap \mathcal{U}_2$ is weak* dense in T(X, Y), too.

Structure in $\mathfrak{S}_{cl}(X, Y)$

- The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.
- It follows from the characterisation of S_{cl**}(X, Y) that it is a subalgebra of C_ω(X × Y), too.
- $\mathfrak{S}_{\rm cl}(X, Y)$ is also an algebra but for a different reason:

Proposition

If \mathcal{U}_1 and \mathcal{U}_2 are weak* dense $L^{\infty}(G)$ -invariant subspaces of T(X, Y) then the intersection $\mathcal{U}_1 \cap \mathcal{U}_2$ is weak* dense in T(X, Y), too.

Proof for "+" : $D^*(\varphi_1) \cap D^*(\varphi_2) \subseteq D^*(\varphi_1 + \varphi_2)$.

It is well-known that triangular truncation on $\ell^2(\mathbb{N})$ is unbounded.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

It is well-known that triangular truncation on $\ell^2(\mathbb{N})$ is unbounded.

Equip [0,1] with Lebesgue measure and let

$$\Delta = \{(x, y) \in [0, 1] \times [0, 1] : x \le y\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is well-known that triangular truncation on $\ell^2(\mathbb{N})$ is unbounded.

Equip $\left[0,1\right]$ with Lebesgue measure and let

$$\Delta = \{(x, y) \in [0, 1] \times [0, 1] : x \le y\}.$$

Proposition

 χ_{Δ} is closable but not weak** closable.

 $D^*(\chi_{\Delta})$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

 $D^*(\chi_{\Delta})$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

Thus, $\kappa_{\chi_{\Delta}} \subseteq \Lambda$.

 $D^*(\chi_{\Delta})$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

Thus, $\kappa_{\chi_{\Delta}} \subseteq \Lambda$.

However, A does not support a compact operator and hence, by the above criterion, χ_Δ is closable.

 χ_{Δ} cannot be weak** closable since it is not equivalent to an $\omega\text{-continuous function.}$

 $D^*(\chi_{\Delta})$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

Thus, $\kappa_{\chi_{\Delta}} \subseteq \Lambda$.

However, A does not support a compact operator and hence, by the above criterion, χ_Δ is closable.

 χ_{Δ} cannot be weak** closable since it is not equivalent to an $\omega\text{-continuous function}.$

Indeed, if $\chi_{\Delta} \sim \varphi$, and φ is ω -continuous, then φ has to be 1 on the interiour Δ^o of Δ and 0 on Δ^c . Since Λ is in the ω -closure of both Δ^o and Δ^c , φ must be both 1 and 0 m.a.e. on Λ , a contradiction.

Passage from HA to OT

Theorem

Let $E \subseteq G$ be a closed set.

(i) E is an M-set if and only if E^* is an operator M-set;

(ii) E is an M_1 -set if and only if E^* is an operator M_1 -set.

Passage from HA to OT

Theore<u>m</u>

Let $E \subseteq G$ be a closed set.

```
(i) E is an M-set if and only if E^* is an operator M-set;
```

(ii) E is an M_1 -set if and only if E^* is an operator M_1 -set.

Theorem

Let G be a second countable locally compact group satisfying property (A), $\psi : G \to \mathbb{C}$ be a measurable function and $\varphi = N(\psi)$. The following are equivalent:

- the operator S_{ψ} is closable;
- the operator S_{φ} is closable.

Passage from HA to OT

Theorem

Let $E \subseteq G$ be a closed set.

```
(i) E is an M-set if and only if E^* is an operator M-set;
```

(ii) E is an M_1 -set if and only if E^* is an operator M_1 -set.

Theorem

Let G be a second countable locally compact group satisfying property (A), $\psi : G \to \mathbb{C}$ be a measurable function and $\varphi = N(\psi)$. The following are equivalent:

- the operator S_{ψ} is closable;
- the operator S_{φ} is closable.

Corollary

The set Clos(G) of all closable multipliers on $C_r^*(G)$ is an algebra with respect to pointwise addition and multiplication.

Theorem (A symbolic calculus)

For $\varphi \in T(G)$ let $E_{\varphi} : \mathcal{B}(L^2(G)) \to VN(G)$ be the bounded linear trasformation with the property

 $\langle E_{\varphi}(T), u \rangle = \langle T, \varphi N(u) \rangle, \quad u \in A(G), T \in \mathcal{B}(L^{2}(G)).$

Then E_{φ} maps \mathcal{K} into $C_r^*(G)$.

The map $\varphi \to E_{\varphi}$ is a contractive $\mathfrak{S}(G, G)$ -module map from T(G) into $CB^{w^*}(\mathcal{B}(L^2(G)), VN(G))$.

If $T \neq 0$ then $E_{a \otimes b}(T) \neq 0$ for some $a, b \in L^2(G)$.

Proof.

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $T \in C_r^*(G)$ that annihilates I_{ψ} . Let $A = M_f$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S_{\varphi}^*)$.

Proof.

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $T \in C_r^*(G)$ that annihilates I_{ψ} . Let $A = M_f$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S_{\varphi}^*)$.

Since $D(S^*_{\varphi})$ is invariant under $\mathfrak{S}(G)$, it suffices to show that T annihilates $D(S^*_{\varphi})$.

Proof.

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $T \in C_r^*(G)$ that annihilates I_{ψ} . Let $A = M_f$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S_{\varphi}^*)$.

Since $D(S_{\varphi}^*)$ is invariant under $\mathfrak{S}(G)$, it suffices to show that T annihilates $D(S_{\varphi}^*)$.

Let $h \in D(S^*_{\varphi})$. A direct verification shows that

$$\langle T,h\rangle = \langle T,P(h)\rangle$$

(check first in the case $T = \lambda(f)$).

Proof.

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $T \in C_r^*(G)$ that annihilates I_{ψ} . Let $A = M_f$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S_{\varphi}^*)$.

Since $D(S_{\varphi}^*)$ is invariant under $\mathfrak{S}(G)$, it suffices to show that T annihilates $D(S_{\varphi}^*)$.

Let $h \in D(S^*_{\varphi})$. A direct verification shows that

$$\langle T,h\rangle = \langle T,P(h)\rangle$$

(check first in the case $T = \lambda(f)$).

Since $\varphi h \in T(G)$, $\psi P(h) = P(\varphi h) \in A(G)$ and hence $P(h) \in I_{\psi}$. Thus, $\langle T, P(h) \rangle = 0$ and hence $\langle T, h \rangle = 0$.

Proof.

Suppose that S_{ψ} is a closable operator but $S_{\mathcal{N}(\psi)}$ is not.

Proof.

Suppose that S_{ψ} is a closable operator but $S_{N(\psi)}$ is not.

There exists $0
eq T \in \mathcal{K} \cap D(S^*_{\varphi})^{\perp}$

Proof.

Suppose that S_{ψ} is a closable operator but $S_{N(\psi)}$ is not.

There exists $0 \neq T \in \mathcal{K} \cap D(S^*_{\varphi})^{\perp}$

There exist $a, b \in L^2(G)$ such that $E_{a \otimes b}(T) \neq 0$.

Proof.

Suppose that S_{ψ} is a closable operator but $S_{N(\psi)}$ is not.

There exists $0 \neq T \in \mathcal{K} \cap D(S^*_{\varphi})^{\perp}$

There exist $a, b \in L^2(G)$ such that $E_{a \otimes b}(T) \neq 0$.

Suppose that $u \in J_{\psi}$; then

$$\varphi(\mathsf{a}\otimes \mathsf{b})\mathsf{N}(\mathsf{u})=(\mathsf{a}\otimes \mathsf{b})\mathsf{N}(\psi\mathsf{u})\in\mathsf{T}(\mathsf{G})$$

and hence $(a \otimes b)N(u) \in D(S_{\varphi}^*)$.

Suppose that S_{ψ} is a closable operator but $S_{N(\psi)}$ is not.

There exists $0 \neq T \in \mathcal{K} \cap D(S^*_{\varphi})^{\perp}$

There exist $a, b \in L^2(G)$ such that $E_{a \otimes b}(T) \neq 0$.

Suppose that $u \in J_{\psi}$; then

$$\varphi(a \otimes b)N(u) = (a \otimes b)N(\psi u) \in T(G)$$

and hence $(a \otimes b)N(u) \in D(S_{\varphi}^*)$.

Thus

$$\langle E_{a\otimes b}(T), u \rangle = \langle T, (a \otimes b)N(u) \rangle = 0.$$

Suppose that S_{ψ} is a closable operator but $S_{N(\psi)}$ is not.

There exists $0 \neq T \in \mathcal{K} \cap D(S^*_{\varphi})^{\perp}$

There exist $a, b \in L^2(G)$ such that $E_{a \otimes b}(T) \neq 0$.

Suppose that $u \in J_{\psi}$; then

$$\varphi(a \otimes b)N(u) = (a \otimes b)N(\psi u) \in T(G)$$

and hence $(a \otimes b)N(u) \in D(S_{\varphi}^*)$.

Thus

$$\langle E_{a\otimes b}(T), u \rangle = \langle T, (a \otimes b)N(u) \rangle = 0.$$

But $E_{a\otimes b}(T) \in C^*_r(G)$ and we are done by the closability criterion.

$$c * d = 0$$
 but $c * \overline{d} \neq 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

$$c * d = 0$$
 but $c * \overline{d} \neq 0$.

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$.

$$c * d = 0$$
 but $c * \overline{d} \neq 0$.

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$. Choose $h_k \in L^1(\mathbb{T}), k \in \mathbb{N}$, with $\|\lambda(h_k) - F\| \to 0$

$$c * d = 0$$
 but $c * \overline{d} \neq 0$.

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$. Choose $h_k \in L^1(\mathbb{T}), k \in \mathbb{N}$, with $||\lambda(h_k) - F|| \to 0$

It follows that $\lambda(fh_n) \to f \cdot F$ in the operator norm. Similarly, $\lambda(\overline{f}h_n) \to \overline{f} \cdot F$ in the operator norm.
Let $c = (c_n)_{n \in \mathbb{Z}} \in \ell^p(\mathbb{Z})$, p > 2, and $d = (d_n)_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ be such that

$$c * d = 0$$
 but $c * \overline{d} \neq 0$.

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$. Choose $h_k \in L^1(\mathbb{T}), k \in \mathbb{N}$, with $||\lambda(h_k) - F|| \to 0$

It follows that $\lambda(fh_n) \to f \cdot F$ in the operator norm. Similarly, $\lambda(\overline{f}h_n) \to \overline{f} \cdot F$ in the operator norm.

Let
$$\psi(t) = \frac{f(t)}{f(t)}$$
 if $f(t) \neq 0$ and $\psi(t) = 0$ if $f(t) = 0$.

Let $c = (c_n)_{n \in \mathbb{Z}} \in \ell^p(\mathbb{Z})$, p > 2, and $d = (d_n)_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ be such that

$$c * d = 0$$
 but $c * \overline{d} \neq 0$.

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$. Choose $h_k \in L^1(\mathbb{T}), k \in \mathbb{N}$, with $||\lambda(h_k) - F|| \to 0$

It follows that $\lambda(fh_n) \to f \cdot F$ in the operator norm. Similarly, $\lambda(\overline{f}h_n) \to \overline{f} \cdot F$ in the operator norm.

Let
$$\psi(t) = \frac{\overline{f}(t)}{\overline{f}(t)}$$
 if $f(t) \neq 0$ and $\psi(t) = 0$ if $f(t) = 0$.
Then $\lambda(fh_n) \to 0$ while $S_{\psi}(\lambda(fh_n)) \to \overline{f} \cdot F \neq 0$.

Let $X \subseteq \mathbb{T}$ be a closed set of positive Lebesgue measure and $S \subseteq X$ be a dense subset of Lebesgue measure zero.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of *S*.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of *S*.

By Riemann's Localisation Principle, if a function g belongs locally to A(G) at t then its Fourier series converges at t.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of *S*.

By Riemann's Localisation Principle, if a function g belongs locally to A(G) at t then its Fourier series converges at t.

Thus, $S \subseteq E_h$.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of *S*.

By Riemann's Localisation Principle, if a function g belongs locally to A(G) at t then its Fourier series converges at t.

Thus, $S \subseteq E_h$.

Since E_h is closed, $X \subseteq E_h$.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of *S*.

By Riemann's Localisation Principle, if a function g belongs locally to A(G) at t then its Fourier series converges at t.

Thus, $S \subseteq E_h$.

Since E_h is closed, $X \subseteq E_h$.

Since E_h has positive measure, S_h is not closable.

A class of examples: idempotent closable multipliers on $C^*_r(\mathbb{R})$

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A class of examples: idempotent closable multipliers on $C_r^*(\mathbb{R})$

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

A class of examples: idempotent closable multipliers on $C^*_r(\mathbb{R})$

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

In fact, E_{χ_F} is the set of boundary points of F, and hence E_{χ_F} is contained in the set of all endpoints of intervals whose union is F.

A class of examples: idempotent closable multipliers on $C_r^*(\mathbb{R})$

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

In fact, E_{χ_F} is the set of boundary points of F, and hence E_{χ_F} is contained in the set of all endpoints of intervals whose union is F.

In particular, E_{χ_F} is countable. However:

Theorem (Bożejko, 1977)

Every closed countable set in a locally compact non-discrete group is a U-set.

A class of examples: idempotent closable multipliers on $C^*_r(\mathbb{R})$

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

In fact, E_{χ_F} is the set of boundary points of F, and hence E_{χ_F} is contained in the set of all endpoints of intervals whose union is F.

In particular, E_{χ_F} is countable. However:

Theorem (Bożejko, 1977)

Every closed countable set in a locally compact non-discrete group is a U-set.

Thus, χ_F is a closable multiplier.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a continuous function.

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a continuous function.

There are two natural domains one may consider for a multiplier corresponding to $\psi:$

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a continuous function.

There are two natural domains one may consider for a multiplier corresponding to $\psi:$

•
$$D(\psi) = \{\lambda(f) : f \in L^1(G), \psi f \in L^1(G)\}, S_{\psi}(\lambda(f)) = \lambda(\psi f),$$

and

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a continuous function.

There are two natural domains one may consider for a multiplier corresponding to $\psi:$

•
$$D(\psi) = \{\lambda(f) : f \in L^1(G), \psi f \in L^1(G)\}, S_{\psi}(\lambda(f)) = \lambda(\psi f),$$

and

•
$$\operatorname{VN}_0(G) = \operatorname{span}\{\lambda_s : s \in G\}, \ S'_{\psi}(\lambda_s) = \psi(s)\lambda_s.$$

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Let $\psi: G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(i) the operator S_{ψ} is weak* closable;

Let $\psi: G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_{ψ} is weak* closable;

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_{η_2} is weak* closable;

(iii) the function ψ belongs locally to A(G) at every point;

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_{η} is weak* closable;
- (iii) the function ψ belongs locally to A(G) at every point;
- (iv) the function φ is a local Schur multiplier on $\mathcal{K}(L^2(G))$;

Let $\psi: G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_{ψ} is weak* closable;
- (iii) the function ψ belongs locally to A(G) at every point;
- (iv) the function φ is a local Schur multiplier on $\mathcal{K}(L^2(G))$;

(v) the operator S_{φ} is weak** closable;

Distinguishing different types of closability

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a continuous function. Then

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Distinguishing different types of closability

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a continuous function. Then

 S_{ψ} weak** closable \Longrightarrow S_{ψ} weak* closable \Longrightarrow S_{ψ} closable.

Let $\psi: {\mathcal G} \to {\mathbb C}$ be a continuous function. Then

 S_{ψ} weak** closable $\Longrightarrow S_{\psi}$ weak* closable $\Longrightarrow S_{\psi}$ closable.

These implications are proper:

• There exists $\psi \in A(G)^{\text{loc}}$ such that S_{ψ} is not weak** closable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\psi: \mathcal{G} \to \mathbb{C}$ be a continuous function. Then

 S_{ψ} weak** closable $\Longrightarrow S_{\psi}$ weak* closable $\Longrightarrow S_{\psi}$ closable.

These implications are proper:

• There exists $\psi \in A(G)^{\text{loc}}$ such that S_{ψ} is not weak** closable.

Indeed, let $f \in B(\mathbb{R})$ such that $1/f \notin B(\mathbb{R})$, and let $\psi = 1/f$. Then $\psi \in A(\mathbb{R})^{\text{loc}}$ but J_{ψ} is contained in the ideal of $B(\mathbb{R})$ generated by f and hence is not dense in $B(\mathbb{R})$.

• There exists $\psi \notin A(G)^{\text{loc}}$ for which S_{ψ} is closable.

Indeed, this will be the case whenever E_{ψ} is a non-empty *U*-set. Continuous functions with this property are *e.g.* those odd ψ which are smooth on $(-\pi, \pi) \setminus \{0\}$, $\psi(0) = \psi(\pi) = 0$, $\psi'(\pi) = 0$, and $\int_0^1 \psi(t)/tdt$ diverges. For such ψ , we have $E_{\psi} = \{0\}$.

THANK YOU VERY MUCH