Closable multipliers of Herz-Schur type

Ivan Todorov

April 2014 **Toronto**

イロト イ御 トイミト イミト ニミー りんぴ

Versions of closability for operators

- Versions of closability for operators
- Closable multipliers on group algebras the setting

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- Versions of closability for operators
- Closable multipliers on group algebras the setting

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Closable Schur-type multipliers

- Versions of closability for operators
- Closable multipliers on group algebras the setting

- Closable Schur-type multipliers
- **Characterisation results**
- Versions of closability for operators
- Closable multipliers on group algebras the setting

- Closable Schur-type multipliers
- **Characterisation results**
- Embedding results

Let X and Y be Banach spaces and $T: D(T) \rightarrow Y$ be a linear operator, where $D(T)$ is a dense linear subspace of \mathcal{X} .

Let X and Y be Banach spaces and $T: D(T) \rightarrow Y$ be a linear operator, where $D(T)$ is a dense linear subspace of X.

• The operator T is called *closable* if the closure $\overline{Gr T}$ of its graph

$$
\operatorname{Gr} \mathcal{T} = \{(x, \mathcal{T}x) : x \in D(\mathcal{T})\} \subseteq \mathcal{X} \oplus \mathcal{Y}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

is the graph of a linear operator.

Let X and Y be Banach spaces and $T: D(T) \rightarrow Y$ be a linear operator, where $D(T)$ is a dense linear subspace of \mathcal{X} .

• The operator T is called *closable* if the closure $\overline{Gr T}$ of its graph

$$
\operatorname{Gr} T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}
$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}}\subseteq D(T)$, $y\in\mathcal{Y}$, $||x_k||\rightarrow_{k\rightarrow\infty} 0$ and $\|T(x_k) - y\| \rightarrow_{k \to \infty} 0$ imply that y = 0.

KORKAR KERKER EL VOLO

Let X and Y be Banach spaces and $T: D(T) \rightarrow Y$ be a linear operator, where $D(T)$ is a dense linear subspace of \mathcal{X} .

• The operator T is called *closable* if the closure $\overline{Gr T}$ of its graph

$$
\operatorname{Gr} T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}
$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}}\subseteq D(T)$, $y\in\mathcal{Y}$, $||x_k||\rightarrow_{k\to\infty} 0$ and $\|T(x_k) - y\| \rightarrow_{k \to \infty} 0$ imply that y = 0.

• The operator T is called weak** closable if the weak* closure $\overline{\rm Gr\,} \overline{\cal T}^{\dot{w}^*}$ of $\rm Gr\,} {\cal T}$ in ${\cal X}^{**}\oplus {\cal Y}^{**}$ is the graph of a linear operator.

KID KA KERKER KID KO

Let $\mathcal X$ and $\mathcal Y$ be Banach spaces and $\mathcal T:D(\mathcal T)\to\mathcal Y$ be a linear operator, where $D(T)$ is a dense linear subspace of \mathcal{X} .

• The operator T is called *closable* if the closure $\overline{Gr T}$ of its graph

$$
\operatorname{Gr} T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}
$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}}\subseteq D(T)$, $y\in\mathcal{Y}$, $||x_k||\rightarrow_{k\to\infty} 0$ and $||T(x_k) - y|| \rightarrow_{k \to \infty} 0$ imply that y = 0.

• The operator T is called weak** closable if the weak* closure $\overline{\rm Gr\,} \overline{\cal T}^{\dot{w}^*}$ of $\rm Gr\,} {\cal T}$ in ${\cal X}^{**}\oplus {\cal Y}^{**}$ is the graph of a linear operator.

T is weak** closable iff whenever $(x_i)_{i\in J} \subseteq D(T)$ is a net, $y\in\mathcal{Y}^{**}$, $x_j\stackrel{w^*}{\rightarrow}_{j\in J}$ 0 and $\mathcal{T}(x_j)\stackrel{w^*}{\rightarrow}_{j\in J}$ y , we have that $y=0.$

Let X and Y be Banach spaces and $T: D(T) \rightarrow Y$ be a linear operator, where $D(T)$ is a dense linear subspace of X.

• The operator T is called *closable* if the closure $\overline{Gr T}$ of its graph

$$
\operatorname{Gr} T = \{(x, Tx) : x \in D(T)\} \subseteq \mathcal{X} \oplus \mathcal{Y}
$$

is the graph of a linear operator.

T is closable iff $(x_k)_{k\in\mathbb{N}}\subseteq D(T)$, $y\in\mathcal{Y}$, $||x_k||\rightarrow_{k\to\infty} 0$ and $||T(x_k) - y|| \rightarrow_{k \to \infty} 0$ imply that $y = 0$.

• The operator T is called weak** closable if the weak* closure $\overline{\rm Gr\,} \overline{\cal T}^{\dot{w}^*}$ of $\rm Gr\,} {\cal T}$ in ${\cal X}^{**}\oplus {\cal Y}^{**}$ is the graph of a linear operator.

T is weak** closable iff whenever $(x_i)_{i\in J} \subseteq D(T)$ is a net, $y\in\mathcal{Y}^{**}$, $x_j\stackrel{w^*}{\rightarrow}_{j\in J}$ 0 and $\mathcal{T}(x_j)\stackrel{w^*}{\rightarrow}_{j\in J}$ y , we have that $y=0.$

Every weak* closable operator is closable.**KORKAR KERKER EL VOLO** Let X and Y be dual Banach spaces, with specified preduals \mathcal{X}_* and \mathcal{Y}_* , respectively, and $D(\Phi) \subseteq \mathcal{X}$ be a weak* dense subspace.

Let X and Y be dual Banach spaces, with specified preduals \mathcal{X}_* and \mathcal{Y}_* , respectively, and $D(\Phi) \subseteq \mathcal{X}$ be a weak* dense subspace.

 \bullet A linear operator $\mathcal{T}: D(\mathcal{T}) \rightarrow \mathcal{Y}$ is *weak* closable* if the conditions $x_i \in \mathcal{X}, y \in \mathcal{Y}, x_i \rightarrow_{w^*} 0, T(x_i) \rightarrow_{w^*} y$ imply that $v = 0$.

Here, the weak* convergence is in the designated weak* topologies of X and Y .

KORKA SERKER ORA

Let X and Y be dual Banach spaces, with specified preduals \mathcal{X}_* and \mathcal{Y}_* , respectively, and $D(\Phi) \subset \mathcal{X}$ be a weak* dense subspace.

 \bullet A linear operator $\mathcal{T}: D(\mathcal{T}) \rightarrow \mathcal{Y}$ is *weak* closable* if the conditions $x_i \in \mathcal{X}, y \in \mathcal{Y}, x_i \rightarrow_{w^*} 0, T(x_i) \rightarrow_{w^*} y$ imply that $v = 0$.

Here, the weak* convergence is in the designated weak* topologies of X and Y .

Note that, since the $*$ -weak closure of the graph of T contains its norm-closure, each weak* closable operator is closable.

KORKAR KERKER EL VOLO

The domain of the adjoint operator T^* is

 $D(T^*) = \{ g \in \mathcal{Y}^* : \exists f \in \mathcal{X}^* \text{ s. t. } \langle T(x), g \rangle = \langle x, f \rangle \text{ for all } x \in D(T) \}$

KORKA SERKER ORA

 $T^*: D(T^*) \to \mathcal{X}^*$ is defined by letting $T^*(g) = f$, where f is the functional associated with g in the definition of $D(T^*)$.

The domain of the adjoint operator T^* is

 $D(T^*) = \{ g \in \mathcal{Y}^* : \exists f \in \mathcal{X}^* \text{ s. t. } \langle T(x), g \rangle = \langle x, f \rangle \text{ for all } x \in D(T) \}$

 $T^*: D(T^*) \to \mathcal{X}^*$ is defined by letting $T^*(g) = f$, where f is the functional associated with g in the definition of $D(T^*)$.

Proposition

Let X and Y be Banach spaces, $D(T) \subseteq X$, $T : D(T) \rightarrow Y$ be a densely defined linear operator and set $\mathcal{D}=D(\mathcal{T}^*)$. Consider the following conditions:

(i) *T* is weak^{**} closed
\n(ii)
$$
\overline{\mathcal{D}}^{\|\cdot\|} = \mathcal{Y}^*
$$
;
\n(iii) $\overline{\mathcal{D}}^{w^*} = \mathcal{Y}^*$;
\n(iv) *T* is closed
\nThen (i) \Longleftrightarrow (ii) \Longrightarrow (iii) \Longleftrightarrow (iv).

Weak* closability can be characterised analogously:

Proposition

Let $D(T) \subseteq \mathcal{X}$ be a weak* dense subspace and $T : D(T) \rightarrow \mathcal{Y}$ be a linear operator. The following are equivalent: (i) the operator T is weak* closable; (ii) the space

 $D_*(T) = \{ g \in \mathcal{Y}_* : x \to \langle T(x), g \rangle \text{ is w* -cont. on } D(T) \}$ is dense in \mathcal{Y}_{*} .

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let $\psi : G \to \mathbb{C}$ be a measurable function.

Let $\psi: G \to \mathbb{C}$ be a measurable function.

Let

$$
D(\psi)=\{f\in L^1(G):\psi f\in L^1(G)\};
$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(\mathit{G})$, is closable.

KORKA SERKER ORA

Let $\psi: G \to \mathbb{C}$ be a measurable function.

Let

$$
D(\psi)=\{f\in L^1(G):\psi f\in L^1(G)\};
$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(\mathit{G})$, is closable.

Since $\lambda(L^1(G))$ is dense in $C^*_r(G)$ and $\|\lambda(f)\| \leq \|f\|_1$, $f \in L^1(G)$, the space $\lambda(D(\psi))$ is dense in $\,\mathcal{C}_{r}^{*}(G)$ in the operator norm.

KORKAR KERKER EL VOLO

Let $\psi: G \to \mathbb{C}$ be a measurable function.

Let

$$
D(\psi)=\{f\in L^1(G):\psi f\in L^1(G)\};
$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(\mathit{G})$, is closable.

Since $\lambda(L^1(G))$ is dense in $C^*_r(G)$ and $\|\lambda(f)\| \leq \|f\|_1$, $f \in L^1(G)$, the space $\lambda(D(\psi))$ is dense in $\,\mathcal{C}_{r}^{*}(G)$ in the operator norm.

Thus, the operator $S_\psi:\lambda(D(\psi))\to \textit{\textsf{C}}_r^*(\textit{\textsf{G}})$ given by

 $S_{\psi}(\lambda(f)) = \lambda(\psi f)$

is a densely defined operator on $C_r^*(G)$.

Let $\psi: G \to \mathbb{C}$ be a measurable function.

Let

$$
D(\psi)=\{f\in L^1(G):\psi f\in L^1(G)\};
$$

it is easy to see that the operator $f \to \psi f$, $f \in D(\psi)$, viewed as a densely defined operator on $L^1(\mathit{G})$, is closable.

Since $\lambda(L^1(G))$ is dense in $C^*_r(G)$ and $\|\lambda(f)\| \leq \|f\|_1$, $f \in L^1(G)$, the space $\lambda(D(\psi))$ is dense in $\,\mathcal{C}_{r}^{*}(G)$ in the operator norm.

Thus, the operator $S_\psi:\lambda(D(\psi))\to \textit{\textsf{C}}_r^*(\textit{\textsf{G}})$ given by

 $S_{\psi}(\lambda(f)) = \lambda(\psi f)$

is a densely defined operator on $C_r^*(G)$. Recall that $B_\lambda(G)\subseteq B(G)$ is (isometric to) the dual of $C^*_\mathsf{r}(G)$; the duality is given by

$$
\langle \lambda(f),u\rangle=\int_G f(s)u(s)ds,\quad f\in L^1(G), u\in B_\lambda(G).
$$

$$
J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in^{m} B_{\lambda}(G) \}
$$

and

$$
S_{\psi}^*(g)=\psi g, \quad g\in J_{\psi}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}
$$

and

$$
S^*_{\psi}(g) = \psi g, \quad g \in J_{\psi}.
$$

To see this, suppose $g\in D(\mathcal{S}_{\psi}^{*})$; then there exists $u\in B_{\lambda}(G)$ with $\int \psi$ fgdm = \int fudm, $f \in D(\psi)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}
$$

and

$$
S_{\psi}^*(g)=\psi g, \quad g\in J_{\psi}.
$$

To see this, suppose $g\in D(\mathcal{S}_{\psi}^{*})$; then there exists $u\in B_{\lambda}(G)$ with $\int \psi$ fgdm = \int fudm, $f \in D(\psi)$.

Take a sequence $(K_N)_{N \in \mathbb{N}}$ of compacts such that $\cup_N K_N \sim G$ and $|\psi| \leq N$ on K_N . Then $L_1(K_N) \subseteq D(\psi)$.

KORKA SERKER ORA

$$
J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}
$$

and

$$
S_{\psi}^*(g)=\psi g, \quad g\in J_{\psi}.
$$

To see this, suppose $g\in D(\mathcal{S}_{\psi}^{*})$; then there exists $u\in B_{\lambda}(G)$ with $\int \psi$ fgdm = \int fudm, $f \in D(\psi)$.

Take a sequence $(K_N)_{N \in \mathbb{N}}$ of compacts such that $\cup_N K_N \sim G$ and $|\psi| \leq N$ on K_N . Then $L_1(K_N) \subseteq D(\psi)$.

Since $\psi g|_{K_N}$ and $u|_{K_N}$ are elements of $L^\infty(K_N)$, we have $\psi g \sim u$ on K_N , for each N.

KORKAR KERKER EL VOLO

$$
J_{\psi} = \{ g \in B_{\lambda}(G) : \psi g \in {}^{m} B_{\lambda}(G) \}
$$

and

$$
S_{\psi}^*(g)=\psi g, \quad g\in J_{\psi}.
$$

To see this, suppose $g\in D(\mathcal{S}_{\psi}^{*})$; then there exists $u\in B_{\lambda}(G)$ with $\int \psi$ fgdm = \int fudm, $f \in D(\psi)$.

Take a sequence $(K_N)_{N\in\mathbb{N}}$ of compacts such that $\cup_N K_N \sim G$ and $|\psi| \leq N$ on K_N . Then $L_1(K_N) \subseteq D(\psi)$.

Since $\psi g|_{K_N}$ and $u|_{K_N}$ are elements of $L^\infty(K_N)$, we have $\psi g \sim u$ on K_N , for each N.

KORKAR KERKER EL VOLO

Thus, $\psi g \sim u$ and so $\psi g \in {}^{m}B_{\lambda}(G)$.

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

I next formulate a couple of other – one necessary, and one sufficient – conditions for the closability of S_{ψ} .

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

I next formulate a couple of other – one necessary, and one sufficient – conditions for the closability of S_{ψ} .

The null set $null(J)$ of a subset $J \subseteq A(G)$ is

null(J) = { $s \in G : u(s) = 0, \forall u \in J$ }.

KORKAR KERKER EL VOLO

For a closed subset $E \subseteq G$ let $I(E)$ and $J(E)$ be the largest and the smallest closed ideal of $A(G)$ with null set E.

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

- I next formulate a couple of other one necessary, and one sufficient – conditions for the closability of S_{ψ} .
- The null set null(*J*) of a subset $J \subseteq A(G)$ is

$$
\text{null}(J) = \{ s \in G : u(s) = 0, \ \forall \ u \in J \}.
$$

For a closed subset $E \subseteq G$ let $I(E)$ and $J(E)$ be the largest and the smallest closed ideal of $A(G)$ with null set E.

Recall that a closed subset $E\subseteq G$ is called a U-set if $J(E)^{\perp}\cap \mathit C^*_{r}(G)=\{0\}$ and a $\mathit {U}_1$ -set if $I(E)^{\perp}\cap \mathit C^*_{r}(G)=\{0\}.$ U-sets for arbitrary locally compact groups were first studied by Bożejko (1977).

The aforementioned criterion of closability now implies that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$.

I next formulate a couple of other – one necessary, and one sufficient – conditions for the closability of S_{ψ} .

The null set null(*J*) of a subset $J \subseteq A(G)$ is

$$
\mathrm{null}(J) = \{ s \in G : u(s) = 0, \ \forall \ u \in J \}.
$$

For a closed subset $E \subseteq G$ let $I(E)$ and $J(E)$ be the largest and the smallest closed ideal of $A(G)$ with null set E.

Recall that a closed subset $E\subseteq G$ is called a U-set if $J(E)^{\perp}\cap \mathit C^*_{r}(G)=\{0\}$ and a $\mathit {U}_1$ -set if $I(E)^{\perp}\cap \mathit C^*_{r}(G)=\{0\}.$

U-sets for arbitrary locally compact groups were first studied by Bożejko (1977).

The set E is an M-set (resp. M_1 -set) if it is not an U-set (resp. an U_1 -set). **KORKAR KERKER EL VOLO**

Let

$$
I_{\psi} = \{f \in A(G) : \psi f \in A(G)\}.
$$

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

Let

$$
I_{\psi} = \{f \in A(G) : \psi f \in A(G)\}.
$$

A function f belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ on U.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Let

$$
I_{\psi} = \{f \in A(G) : \psi f \in A(G)\}.
$$

A function f belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ on U.

KORK ERKER ADE YOUR

A function f almost belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ almost everywhere on U.
Let

$$
I_{\psi} = \{f \in A(G) : \psi f \in A(G)\}.
$$

A function f belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ on U.

KORK ERKER ADE YOUR

A function f almost belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ almost everywhere on U.

$$
\mathcal{A}(G)^{\rm loc} = \{f : \text{ belongs to } \mathcal{A}(G) \text{ at every point}\}.
$$

Let

$$
I_{\psi} = \{f \in A(G) : \psi f \in A(G)\}.
$$

A function f belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ on U.

A function f almost belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ almost everywhere on U.

$$
A(G)^{\rm loc} = \{f : \text{ belongs to } A(G) \text{ at every point}\}.
$$

If f almost belongs to A(G) at every point then $f \sim g$ for some $g\in A(G)^{\rm loc}.$

KORKA SERKER ORA

Let

$$
I_{\psi} = \{f \in A(G) : \psi f \in A(G)\}.
$$

A function f belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ on U.

A function f almost belongs to $A(G)$ at t if for every open neighbourhood U of t there exists $u \in A(G)$ such that $f = u$ almost everywhere on U.

$$
A(G)^{\rm loc} = \{f : \text{ belongs to } A(G) \text{ at every point}\}.
$$

If f almost belongs to A(G) at every point then $f \sim g$ for some $g\in A(G)^{\rm loc}.$

Proposition

Let $E_\psi\stackrel{def}{=}\{t\in\mathsf{G}:\psi\; \text{does not almost belong to }A(\mathsf{G})\;\text{at}\; t\}.$ Then $null(I_{\psi}) = E_{\psi}$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Yet another approximation property:

Yet another approximation property:

Let us say G possesses property (A) if there exists a net $(u_i) \subseteq A(G)$ such that, for every $g \in B_\lambda(G)$,

 $u_i g \to g$ weakly* in $B_\lambda(G)$.

KORKA SERKER ORA

Yet another approximation property:

Let us say G possesses property (A) if there exists a net $(u_i) \subseteq A(G)$ such that, for every $g \in B_\lambda(G)$,

$$
u_i g \to g
$$
 weakly* in $B_\lambda(G)$.

KORKA SERKER ORA

 \bullet If G is weakly amenable then G has property (A).

Yet another approximation property:

Let us say G possesses property (A) if there exists a net $(u_i) \subseteq A(G)$ such that, for every $g \in B_\lambda(G)$,

$$
u_i g \rightarrow g
$$
 weakly* in $B_\lambda(G)$.

 \bullet If G is weakly amenable then G has property (A).

In fact, if (u_i) is a net in $A(G)$ such that $||u_i||_{\text{cbm}} \leq C$ for all i, and $u_i \rightarrow 1$ uniformly on compact sets then for $g \in B_\lambda(G)$ and $f \in C_c(G)$ we have

$$
\langle \lambda(f), gu_i - g \rangle = \int_G f(t)g(t)(u_i(t) - 1)dt \to 0.
$$

Since $\|gu_i-g\|_{B(G)}\leq (\|u_i\|_{\rm cbm}+1)\|g\|_{B(G)}.$ and $\lambda(\mathcal{C}_{c}(G))$ is dense in $C_r^*(G)$, we are done. 4 D > 4 P + 4 B + 4 B + B + 9 Q O

Theorem

Suppose that G has property (A) and $\psi : G \to \mathbb{C}$ is a measurable function.

KORK STRAIN A BAR SHOP

- If E_{ψ} is a U-set then S_{ψ} is closable;
- If E_{ψ} is an *M*-set then S_{ψ} is not closable.

Theorem

Suppose that G has property (A) and $\psi : G \to \mathbb{C}$ is a measurable function.

- If E_{ψ} is a U-set then S_{ψ} is closable;
- If E_{ψ} is an *M*-set then S_{ψ} is not closable.

To see these statements, note that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$, if and only if there is no non-zero $T \in C_r^*(G)$ such that

$$
\langle T, u \rangle = 0, \quad \text{ for all } u \in J_{\psi}.
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Theorem

Suppose that G has property (A) and $\psi : G \to \mathbb{C}$ is a measurable function.

- If E_{ψ} is a U-set then S_{ψ} is closable;
- If E_{ψ} is an *M*-set then S_{ψ} is not closable.

To see these statements, note that S_{ψ} is closable if and only if J_{ψ} is weak* dense in $B_{\lambda}(G)$, if and only if there is no non-zero $T \in C_r^*(G)$ such that

$$
\langle T, u \rangle = 0, \quad \text{ for all } u \in J_{\psi}.
$$

On the other hand, property (A) implies that the weak* closures of J_{ψ} and I_{ψ} in $B_{\lambda}(G)$ coincide.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Thus, S_ψ is closable if and only if there is no non-zero $\mathcal{T} \in \mathcal{C}^*_\mathcal{r}(G)$ such that

$$
\langle T, u \rangle = 0, \quad \text{ for all } u \in \overline{I_{\psi}}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Thus, S_ψ is closable if and only if there is no non-zero $\mathcal{T} \in \mathcal{C}^*_\mathcal{r}(G)$ such that

$$
\langle T, u \rangle = 0, \quad \text{ for all } u \in \overline{I_{\psi}}.
$$

The statements now follow from the fact that

$$
J(E_{\psi}) \subseteq \overline{I_{\psi}} \subseteq I(E_{\psi}).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Thus, S_ψ is closable if and only if there is no non-zero $\mathcal{T} \in \mathcal{C}^*_\mathcal{r}(G)$ such that

$$
\langle T, u \rangle = 0, \quad \text{ for all } u \in \overline{I_{\psi}}.
$$

The statements now follow from the fact that

$$
J(E_{\psi}) \subseteq \overline{I_{\psi}} \subseteq I(E_{\psi}).
$$

KORKA SERKER ORA

Corollary

Suppose G has property (A). If $\psi : G \to \mathbb{C}$ is a measurable function and $m(E_{\psi}) > 0$ then S_{ψ} is not closable.

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^\infty(X \times Y)$, let $\mathcal{S}_\varphi: L^2(X \times Y) \to L^2(X \times Y)$ be the corresponding multiplication operator

$$
\mathcal{S}_{\varphi}\xi=\varphi\xi.
$$

KORKA SERKER ORA

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^\infty(X \times Y)$, let $\mathcal{S}_\varphi: L^2(X \times Y) \to L^2(X \times Y)$ be the corresponding multiplication operator

$$
\mathcal{S}_{\varphi}\xi=\varphi\xi.
$$

The space $L^2(X\times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}(L^2(X), L^2(Y))$ by

$$
\xi \longrightarrow T_{\xi}
$$
, $T_{\xi}f(y) = \int_{X} \xi(x, y)f(x) d\mu(x)$.

KORKA SERKER ORA

Set $\|\xi\|_{\text{op}} = \|T_{\xi}\|_{\text{op}}$

Schur multipliers

Let (X, μ) and (Y, ν) be standard measure spaces. For a function $\varphi \in L^\infty(X \times Y)$, let $\mathcal{S}_\varphi: L^2(X \times Y) \to L^2(X \times Y)$ be the corresponding multiplication operator

$$
\mathcal{S}_{\varphi}\xi=\varphi\xi.
$$

The space $L^2(X\times Y)$ can be identified with the Hilbert-Schmidt class in $\mathcal{B}(L^2(X), L^2(Y))$ by

$$
\xi \longrightarrow \mathcal{T}_{\xi}, \qquad \mathcal{T}_{\xi}f(y) = \int_X \xi(x,y)f(x)d\mu(x).
$$

Set $\|\xi\|_{\text{op}} = \|T_{\xi}\|_{\text{op}}$ A function $\varphi \in L^{\infty}(X \times Y)$ is called a *Schur multiplier* if there exists $C > 0$ such that

$$
\|S_{\varphi}\xi\|_{\text{op}}\leq C\|\xi\|_{\text{op}},\quad \xi\in L^2(X\times Y).
$$

Local Schur multipliers

The function $\varphi: X \times Y \to \mathbb{C}$ is called a *local Schur multiplier* if there exists a family $\{\alpha_i\times\beta_i\}_{i=1}^\infty$ of measurable rectangles such that

$$
\cup_{i=1}^{\infty} \alpha_i \times \beta_i \cong X \times Y
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

and $\varphi|_{\alpha_i\times\beta_i}$ is a Schur multiplier on $\alpha_i\times\beta_i.$

Local Schur multipliers

The function $\varphi: X \times Y \to \mathbb{C}$ is called a *local Schur multiplier* if there exists a family $\{\alpha_i\times\beta_i\}_{i=1}^\infty$ of measurable rectangles such that

$$
\cup_{i=1}^{\infty} \alpha_i \times \beta_i \cong X \times Y
$$

and $\varphi|_{\alpha_i\times\beta_i}$ is a Schur multiplier on $\alpha_i\times\beta_i.$

Theorem

The measurable function $\varphi : X \times Y \to \mathbb{C}$ is a local Schur multiplier iff $\exists a_k, b_k$ such that

$$
\sum_{k=1}^{\infty}|a_k(x)|^2<\infty \text{ and } \sum_{k=1}^{\infty}|b_k(y)|^2<\infty \text{ a.e.}
$$

and

$$
\varphi(x,y)=\sum_{k=1}^{\infty}a_k(x)b_k(y), \text{ a.e. on } X\times Y.
$$

$$
D(\varphi) = \{ \xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y) \}.
$$

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

$$
D(\varphi) = \{ \xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y) \}.
$$

Let $S_\varphi: D(\varphi) \rightarrow L^2(X \times Y)$ be given by

$$
S_{\varphi}\xi=\varphi\xi.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

$$
D(\varphi) = \{ \xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y) \}.
$$

Let $S_\varphi: D(\varphi) \rightarrow L^2(X \times Y)$ be given by

$$
\mathcal{S}_{\varphi}\xi=\varphi\xi.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

We consider $D(\varphi)$ as a subspace of the space K of all compact operators.

$$
D(\varphi) = \{ \xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y) \}.
$$

Let $S_\varphi: D(\varphi) \rightarrow L^2(X \times Y)$ be given by

$$
\mathcal{S}_{\varphi}\xi=\varphi\xi.
$$

We consider $D(\varphi)$ as a subspace of the space K of all compact operators.

Set $\mathfrak{S}_{\text{cl}}(X, Y) = \{ \varphi : S_{\varphi} \text{ is closable} \}.$

Closability here is considered with respect to the norm topology on K .

KORKA SERKER ORA

$$
D(\varphi) = \{ \xi \in L^2(X \times Y) : \varphi \xi \in L^2(X \times Y) \}.
$$

Let $S_\varphi: D(\varphi) \rightarrow L^2(X \times Y)$ be given by

$$
\mathcal{S}_{\varphi}\xi=\varphi\xi.
$$

We consider $D(\varphi)$ as a subspace of the space K of all compact operators.

Set $\mathfrak{S}_{\text{cl}}(X, Y) = \{ \varphi : S_{\varphi} \text{ is closable} \}.$

Closability here is considered with respect to the norm topology on K .

Call the element of $\mathfrak{S}_{\text{cl}}(X, Y)$ closable multipliers.

Denoting by $\mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ the set of all $\varphi : X \times Y \to \mathbb{C}$ for which the operator S_{φ} is weak** clocable, we have:

Theorem

 $\varphi\in \mathfrak{S}_{{\rm cl}^{**}}(X,Y)$ if and ony if $\varphi=\frac{\varphi_1}{\varphi_2}$ such that φ_1 and φ_2 are $\psi \in \mathcal{C}_{\text{cl}}^{(1)}(\mathcal{X}, T)$ is and only if $\psi = \int_{\mathcal{C}^2}$ such that ψ_1 and ψ_2 is local Schur multipliers with $\varphi_2(x, y) \neq 0$ for (marginally all) $(x, y) \in X \times Y$.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Denoting by $\mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ the set of all $\varphi : X \times Y \to \mathbb{C}$ for which the operator S_{φ} is weak** clocable, we have:

Theorem

 $\varphi\in \mathfrak{S}_{{\rm cl}^{**}}(X,Y)$ if and ony if $\varphi=\frac{\varphi_1}{\varphi_2}$ such that φ_1 and φ_2 are $\psi \in \mathcal{C}_{\text{cl}}^{(1)}(\mathcal{X}, T)$ is and only if $\psi = \int_{\mathcal{C}^2}$ such that ψ_1 and ψ_2 is local Schur multipliers with $\varphi_2(x, y) \neq 0$ for (marginally all) $(x, y) \in X \times Y$.

Note that

 $\mathfrak{S}(X, Y) \subseteq$ {local Schur multipliers} $\subseteq \mathfrak{S}_{\mathrm{cl}}(*(X, Y) \subseteq \mathfrak{S}_{\mathrm{cl}}(X, Y)$.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Denoting by $\mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ the set of all $\varphi : X \times Y \to \mathbb{C}$ for which the operator S_{φ} is weak** clocable, we have:

Theorem

 $\varphi\in \mathfrak{S}_{{\rm cl}^{**}}(X,Y)$ if and ony if $\varphi=\frac{\varphi_1}{\varphi_2}$ such that φ_1 and φ_2 are $\psi \in \mathcal{C}_{\text{cl}}^{(1)}(\mathcal{X}, T)$ is and only if $\psi = \int_{\mathcal{C}^2}$ such that ψ_1 and ψ_2 is local Schur multipliers with $\varphi_2(x, y) \neq 0$ for (marginally all) $(x, y) \in X \times Y$.

Note that

 $\mathfrak{S}(X, Y) \subseteq \{$ local Schur multipliers $\} \subseteq \mathfrak{S}_{\mathrm{cl}^{**}}(X, Y) \subseteq \mathfrak{S}_{\mathrm{cl}}(X, Y)$.

KORKAR KERKER EL VOLO

All inclusions but the middle one are known to be proper.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

KORKA SERKER ORA

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if $\kappa \subseteq (M \times Y) \cup (X \times N)$, where M and N are null.

KORKA SERKER ORA

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if $\kappa \subseteq (M \times Y) \cup (X \times N)$, where M and N are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if

 $\kappa \subseteq (M \times Y) \cup (X \times N)$, where M and N are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\cup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

KORKA SERKER ORA

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if

 $\kappa \subset (M \times Y) \cup (X \times N)$, where M and N are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\cup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

KORKA SERKER ORA

(iv) κ is called ω -closed if κ^c is ω -open.

(i) κ is called *marginally null* (denoted $\kappa \simeq \emptyset$) if

 $\kappa \subseteq (M \times Y) \cup (X \times N)$, where M and N are null.

(ii) κ is said to be *marginally equivalent* to another subset $\kappa' \subseteq X \times Y$ if $\kappa \Delta \kappa'$ is marginally null.

(iii) κ is called ω -open if κ is marginally equivalent to subset of the form $\cup_{i=1}^{\infty} \kappa_i$, where the sets κ_i are rectangles.

(iv) κ is called ω -closed if κ^c is ω -open.

(v) An operator $T \in \mathcal{B}(L^2(X), L^2(Y))$ is supported on κ if

$$
(\alpha \times \beta) \cap \kappa \simeq \emptyset \Rightarrow P(\beta) \mathit{TP}(\alpha) = 0,
$$

where $P(\alpha)$ is the projection from $L^2(X)$ onto $L^2(\alpha).$

$$
\mathcal{D}_X=\{M_f: f\in L^\infty(X)\};
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

similarly \mathcal{D}_Y .

$$
\mathcal{D}_X=\{M_f: f\in L^\infty(X)\};
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

similarly \mathcal{D}_Y .

 $\mathcal{U}\subseteq \mathcal{B}(\mathsf{L}^2(X),\mathsf{L}^2(Y))$ masa-bimodule if $\mathcal{D}_Y\mathcal{U}\mathcal{D}_X\subseteq \mathcal{U}.$

$$
\mathcal{D}_X=\{M_f: f\in L^\infty(X)\};
$$

similarly \mathcal{D}_Y .

$$
\mathcal{U} \subseteq \mathcal{B}(L^2(X), L^2(Y))
$$
 mass-bimodule if $\mathcal{D}_Y \mathcal{U} \mathcal{D}_X \subseteq \mathcal{U}$.

The weak* closed masa-bimodules are precisely the weak* closed invariant spaces of Schur multipliers.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
\mathcal{D}_X=\{M_f: f\in L^\infty(X)\};
$$

similarly \mathcal{D}_Y .

$$
\mathcal{U} \subseteq \mathcal{B}(L^2(X), L^2(Y))
$$
 mass-bimodule if $\mathcal{D}_Y \mathcal{U} \mathcal{D}_X \subseteq \mathcal{U}$.

The weak* closed masa-bimodules are precisely the weak* closed invariant spaces of Schur multipliers.

Theorem (Arveson)

Given an ω -closed subset $\kappa \subseteq X \times Y$, there exists a maximal weak* closed masa-bimodule $\mathfrak{M}_{\text{max}}(\kappa)$ and a minimal weak* closed masa-bimodule $\mathfrak{M}_{\text{min}}(\kappa)$ with support κ .
Given a measurable $\varphi : X \times Y \to \mathbb{C}$, let

$$
D^*(\varphi) = \{ h \in L^2(X) \hat{\otimes} L^2(Y) : \varphi h \in L^2(X) \hat{\otimes} L^2(Y) \}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Given a measurable $\varphi : X \times Y \to \mathbb{C}$, let

$$
D^*(\varphi) = \{ h \in L^2(X) \hat{\otimes} L^2(Y) : \varphi h \in L^2(X) \hat{\otimes} L^2(Y) \}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Note that $D^*(\varphi)$ is the domain of the adjoint S^*_φ .

Given a measurable $\varphi : X \times Y \to \mathbb{C}$, let

$$
D^*(\varphi)=\{h\in L^2(X)\hat{\otimes}L^2(Y):\varphi h\in L^2(X)\hat{\otimes}L^2(Y)\}.
$$

Note that $D^*(\varphi)$ is the domain of the adjoint S^*_φ .

Let $\kappa_\varphi \subseteq X \times Y$ be the zero set of $D^*(\varphi)$:

$$
\kappa_{\varphi} \cong \{(x,y) : h(x,y) = 0, \text{ for all } h \in D^*(\varphi)\}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Given a measurable $\varphi : X \times Y \to \mathbb{C}$, let

$$
D^*(\varphi) = \{ h \in L^2(X) \hat{\otimes} L^2(Y) : \varphi h \in L^2(X) \hat{\otimes} L^2(Y) \}.
$$

Note that $D^*(\varphi)$ is the domain of the adjoint S^*_φ .

Let $\kappa_\varphi \subseteq X \times Y$ be the zero set of $D^*(\varphi)$:

$$
\kappa_{\varphi} \cong \{(x,y) : h(x,y) = 0, \text{ for all } h \in D^*(\varphi) \}.
$$

Theorem

Let $\varphi: X \times Y \to \mathbb{C}$ be measurable.

(i) If $\mathfrak{M}_{\max}(\kappa_{\varphi})$ does not contain a compact operator then φ is a closable multiplier;

(ii) If $\mathfrak{M}_{\text{min}}(\kappa_{\varphi})$ contains a compact operator then φ is not a closable multiplier.

Let (X, μ) and (Y, ν) be standard measure spaces, $H_1 = L^2(X)$, $H_2 = L^2(Y)$, K the space of all compact operators from H_1 to H_2 .

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Definition

An ω -closed set $\kappa \subset X \times Y$ is called

(i) an operator M-set if $K \cap \mathfrak{M}_{\max}(\kappa) \neq \{0\};$

(ii) an operator M₁-set if $K \cap \mathfrak{M}_{\text{min}}(\kappa) \neq \{0\}.$

Let (X, μ) and (Y, ν) be standard measure spaces, $H_1 = L^2(X)$, $H_2 = L^2(Y)$, K the space of all compact operators from H_1 to H_2 .

Definition

An ω -closed set $\kappa \subset X \times Y$ is called

(i) an operator M-set if $K \cap \mathfrak{M}_{\max}(\kappa) \neq \{0\};$

(ii) an operator M₁-set if $K \cap \mathfrak{M}_{\text{min}}(\kappa) \neq \{0\}.$

Studied first by Froelich (1988) in relation with problems in invariant subspace theory.

KORK ERKER ADE YOUR

Let (X, μ) and (Y, ν) be standard measure spaces, $H_1 = L^2(X)$, $H_2 = L^2(Y)$, K the space of all compact operators from H_1 to H_2 .

Definition

An ω -closed set $\kappa \subset X \times Y$ is called

(i) an operator M-set if
$$
\mathcal{K} \cap \mathfrak{M}_{\text{max}}(\kappa) \neq \{0\};
$$

(ii) an operator M₁-set if $K \cap \mathfrak{M}_{\text{min}}(\kappa) \neq \{0\}.$

Studied first by Froelich (1988) in relation with problems in invariant subspace theory.

KORKAR KERKER EL VOLO

The space ${\mathcal K}$ is a suitable substitute of $\mathcal{C}_{\mathsf{r}}^*(G)$ because

$$
\mathcal{K}(L^2(G)) = \overline{\{M_a \mathcal{T}M_b : a \in C_0(G), T \in C^*_r(G)\}}^{\|\cdot\|}.
$$

The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

- The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.
- \bullet It follows from the characterisation of $\mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ that it is a subalgebra of $C_{\omega}(X \times Y)$, too.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.
- \bullet It follows from the characterisation of $\mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ that it is a subalgebra of $C_{\omega}(X \times Y)$, too.
- \bullet $\mathfrak{S}_{\mathrm{cl}}(X, Y)$ is also an algebra but for a different reason:

Proposition

If U_1 and U_2 are weak* dense $L^{\infty}(G)$ -invariant subspaces of $T(X, Y)$ then the intersection $U_1 \cap U_2$ is weak* dense in $T(X, Y)$, too.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

- The set of all local Schur multipliers is a subalgebra of $C_{\omega}(X \times Y)$.
- \bullet It follows from the characterisation of $\mathfrak{S}_{\mathrm{cl}^{**}}(X, Y)$ that it is a subalgebra of $C_{\omega}(X \times Y)$, too.
- \bullet $\mathfrak{S}_{\mathrm{cl}}(X, Y)$ is also an algebra but for a different reason:

Proposition

If U_1 and U_2 are weak* dense $L^{\infty}(G)$ -invariant subspaces of $T(X, Y)$ then the intersection $U_1 \cap U_2$ is weak* dense in $T(X, Y)$, too.

Proof for "+" : $D^*(\varphi_1) \cap D^*(\varphi_2) \subseteq D^*(\varphi_1 + \varphi_2)$.

It is well-known that triangular truncation on $\ell^2(\mathbb{N})$ is unbounded.

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

It is well-known that triangular truncation on $\ell^2(\mathbb{N})$ is unbounded.

Equip [0, 1] with Lebesgue measure and let

$$
\Delta = \{(x,y) \in [0,1] \times [0,1] : x \leq y\}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

It is well-known that triangular truncation on $\ell^2(\mathbb{N})$ is unbounded.

Equip [0, 1] with Lebesgue measure and let

$$
\Delta = \{(x,y) \in [0,1] \times [0,1] : x \leq y\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Proposition

 χ_{Λ} is closable but not weak** closable.

 $D^*(\chi_\Delta)$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

 $D^*(\chi_\Delta)$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

Thus, $\kappa_{v} \subset \Lambda$.

 $D^*(\chi_\Delta)$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

Thus, $\kappa_{v} \subset \Lambda$.

However, Λ does not support a compact operator and hence, by the above criterion, χ_{Λ} is closable.

 χ_{Λ} cannot be weak** closable since it is not equivalent to an ω -continuous function.

 $D^*(\chi_\Delta)$ contains the characteristic functions of measurable rectangles $\alpha \times \beta$ disjoint from the diagonal $\Lambda = \{(x, x) : x \in [0, 1]\}.$

Thus, $\kappa_{v} \subset \Lambda$.

However, Λ does not support a compact operator and hence, by the above criterion, χ_{Λ} is closable.

 χ_{Λ} cannot be weak** closable since it is not equivalent to an ω -continuous function.

Indeed, if $\chi_{\Lambda} \sim \varphi$, and φ is ω -continuous, then φ has to be 1 on the interiour Δ^o of Δ and 0 on Δ^c . Since Λ is in the ω -closure of both Δ^o and Δ^c , φ must be both 1 and 0 m.a.e. on Λ , a contradiction.

Passage from HA to OT

Theorem

Let $E \subseteq G$ be a closed set.

(i) E is an M-set if and only if E^* is an operator M-set;

(ii) E is an M_1 -set if and only if E^* is an operator M_1 -set.

KORK ERKER ADE YOUR

Passage from HA to OT

Theorem

Let $E \subseteq G$ be a closed set.

```
(i) E is an M-set if and only if E^* is an operator M-set;
```
(ii) E is an M_1 -set if and only if E^* is an operator M_1 -set.

Theorem

Let G be a second countable locally compact group satisfying property (A), $\psi : G \to \mathbb{C}$ be a measurable function and $\varphi = N(\psi)$. The following are equivalent:

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

- the operator S_{ψ} is closable;
- • the operator S_{φ} is closable.

Passage from HA to OT

Theorem

Let $E\subseteq G$ be a closed set.

```
(i) E is an M-set if and only if E^* is an operator M-set;
```
(ii) E is an M_1 -set if and only if E^* is an operator M_1 -set.

Theorem

Let G be a second countable locally compact group satisfying property (A), $\psi : G \to \mathbb{C}$ be a measurable function and $\varphi = N(\psi)$. The following are equivalent:

- the operator S_{ψ} is closable;
- the operator S_{φ} is closable.

Corollary

The set $\mathrm{Clos}(G)$ of all closable multipliers on $\mathcal{C}^*_r(G)$ is an algebra with respect to pointwise addition and multi[pli](#page-91-0)[ca](#page-93-0)[ti](#page-89-0)[o](#page-90-0)[n](#page-92-0)[.](#page-93-0)

Theorem (A symbolic calculus)

For $\varphi \in \mathcal{T}(G)$ let $\mathsf{E}_{\varphi}:\mathcal{B}(\mathsf{L}^2(G)) \rightarrow \mathrm{VN}(G)$ be the bounded linear trasformation with the property

 $\langle E_{\varphi}(T), u \rangle = \langle T, \varphi N(u) \rangle, \quad u \in A(G), T \in B(L^2(G)).$

KORK ERKER ADE YOUR

Then E_φ maps $\mathcal K$ into $\mathcal C_r^*(G)$.

The map $\varphi \to E_{\varphi}$ is a contractive $\mathfrak{S}(G, G)$ -module map from $T(G)$ into $CB^{w^*}(B(L^2(G)), VN(G))$.

If $\mathcal{T} \neq 0$ then $\mathit{\mathsf{E}}_{\mathsf{a} \otimes \mathsf{b}}(\mathcal{T}) \neq 0$ for some $\mathsf{a}, \mathsf{b} \in \mathsf{L}^2(\mathsf{G}).$

$N(\psi)$ closable $\Rightarrow \psi$ closable

Proof.

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $\, \mathcal{T} \in \mathcal{C}^{*}_{r}(\mathit{G})$ that annihilates $\, I_{\psi}.$ Let $A = M_{f}$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S^*_\varphi).$

$N(\psi)$ closable $\Rightarrow \psi$ closable

Proof.

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $\, \mathcal{T} \in \mathcal{C}^{*}_{r}(\mathit{G})$ that annihilates $\, I_{\psi}.$ Let $A = M_{f}$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S^*_\varphi).$

Since $D(S_\varphi^*)$ is invariant under $\mathfrak{S}(G)$, it suffices to show that $\mathcal T$ annihilates $D(S^*_\varphi).$

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $\, \mathcal{T} \in \mathcal{C}^{*}_{r}(\mathit{G})$ that annihilates $\, I_{\psi}.$ Let $A = M_{f}$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S^*_\varphi).$

Since $D(S_\varphi^*)$ is invariant under $\mathfrak{S}(G)$, it suffices to show that $\mathcal T$ annihilates $D(S^*_\varphi).$

Let $h\in D(S_\varphi^*)$. A direct verification shows that

$$
\langle T, h \rangle = \langle T, P(h) \rangle
$$

(check first in the case $T = \lambda(f)$).

Let $\varphi = N(\psi)$ be a closable multiplier. If ψ is not closable, there exists a non-zero $\, \mathcal{T} \in \mathcal{C}^{*}_{r}(\mathit{G})$ that annihilates $\, I_{\psi}.$ Let $A = M_{f}$ be such that $f \in C_0(G)$ and $AT \neq 0$. It suffices to show that AT annihilates $D(S^*_\varphi).$

Since $D(S_\varphi^*)$ is invariant under $\mathfrak{S}(G)$, it suffices to show that $\mathcal T$ annihilates $D(S^*_\varphi).$

Let $h\in D(S_\varphi^*)$. A direct verification shows that

$$
\langle T, h \rangle = \langle T, P(h) \rangle
$$

(check first in the case $T = \lambda(f)$).

Since $\varphi h \in \mathcal{T}(G)$, $\psi P(h) = P(\varphi h) \in A(G)$ and hence $P(h) \in I_{\psi}$. Thus, $\langle T, P(h) \rangle = 0$ and hence $\langle T, h \rangle = 0$.

イロン イ伊ン イヨン イヨン

 Ω

ψ closable $\Rightarrow N(\psi)$ closable

Proof.

Suppose that S_ψ is a closable operator but $S_{{\sf{N}}(\psi)}$ is not.

ψ closable $\Rightarrow N(\psi)$ closable

Proof.

Suppose that S_ψ is a closable operator but $S_{{\sf{N}}(\psi)}$ is not.

There exists $0\neq\mathcal{T}\in\mathcal{K}\cap D(\mathcal{S}^*_\varphi)^\perp$

Suppose that S_ψ is a closable operator but $S_{{\sf{N}}(\psi)}$ is not.

There exists $0\neq\mathcal{T}\in\mathcal{K}\cap D(\mathcal{S}^*_\varphi)^\perp$

There exist $a,b\in L^2(G)$ such that $E_{a\otimes b}(\mathcal T)\neq 0.$

Suppose that S_ψ is a closable operator but $S_{{\sf{N}}(\psi)}$ is not.

There exists $0\neq\mathcal{T}\in\mathcal{K}\cap D(\mathcal{S}^*_\varphi)^\perp$

There exist $a,b\in L^2(G)$ such that $E_{a\otimes b}(\mathcal T)\neq 0.$

Suppose that $u \in J_{\psi}$; then

$$
\varphi(a\otimes b)N(u)=(a\otimes b)N(\psi u)\in\mathcal{T}(G)
$$

and hence $(a \otimes b)N(u) \in D(S^*_\varphi)$.

Suppose that S_ψ is a closable operator but $S_{{\sf{N}}(\psi)}$ is not.

There exists $0\neq\mathcal{T}\in\mathcal{K}\cap D(\mathcal{S}^*_\varphi)^\perp$

There exist $a,b\in L^2(G)$ such that $E_{a\otimes b}(\mathcal T)\neq 0.$

Suppose that $u \in J_{\psi}$; then

$$
\varphi(a\otimes b)N(u)=(a\otimes b)N(\psi u)\in\mathcal{T}(G)
$$

and hence $(a \otimes b)N(u) \in D(S^*_\varphi)$.

Thus

$$
\langle E_{a\otimes b}(T),u\rangle=\langle T,(a\otimes b)N(u)\rangle=0.
$$

Suppose that S_ψ is a closable operator but $S_{{\sf{N}}(\psi)}$ is not.

There exists $0\neq\mathcal{T}\in\mathcal{K}\cap D(\mathcal{S}^*_\varphi)^\perp$

There exist $a,b\in L^2(G)$ such that $E_{a\otimes b}(\mathcal T)\neq 0.$

Suppose that $u \in J_{\psi}$; then

$$
\varphi(a\otimes b)N(u)=(a\otimes b)N(\psi u)\in T(G)
$$

and hence $(a \otimes b)N(u) \in D(S^*_\varphi)$.

Thus

$$
\langle E_{a\otimes b}(T),u\rangle=\langle T,(a\otimes b)N(u)\rangle=0.
$$

But $E_{a\otimes b}(\mathcal{T})\in \mathcal{C}^*_\mathsf{r}(\mathsf{G})$ and we are done by the closability criterion.

$$
c * d = 0
$$
 but
$$
c * \overline{d} \neq 0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

$$
c * d = 0
$$
 but
$$
c * \overline{d} \neq 0.
$$

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$.

KORK ERKER ADE YOUR

$$
c * d = 0
$$
 but
$$
c * \overline{d} \neq 0.
$$

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$.

KORK ERKER ADE YOUR

Choose $h_k \in L^1(\mathbb{T})$, $k \in \mathbb{N}$, with $\|\lambda(h_k) - F\| \to 0$

$$
c * d = 0
$$
 but
$$
c * \overline{d} \neq 0.
$$

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$.

Choose $h_k \in L^1(\mathbb{T})$, $k \in \mathbb{N}$, with $\|\lambda(h_k) - F\| \to 0$

It follows that $\lambda(fh_n) \rightarrow f \cdot F$ in the operator norm. Similarly, $\lambda(\overline{f} h_n) \rightarrow \overline{f} \cdot F$ in the operator norm.

KORKAR KERKER EL VOLO
Let $c = (c_n)_{n \in \mathbb{Z}} \in \ell^p(\mathbb{Z})$, $p > 2$, and $d = (d_n)_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ be such that

$$
c * d = 0
$$
 but
$$
c * \overline{d} \neq 0.
$$

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$.

Choose $h_k \in L^1(\mathbb{T})$, $k \in \mathbb{N}$, with $\|\lambda(h_k) - F\| \to 0$

It follows that $\lambda(fh_n) \rightarrow f \cdot F$ in the operator norm. Similarly, $\lambda(\overline{f} h_n) \rightarrow \overline{f} \cdot F$ in the operator norm.

Let
$$
\psi(t) = \frac{f(t)}{f(t)}
$$
 if $f(t) \neq 0$ and $\psi(t) = 0$ if $f(t) = 0$.

KORKAR KERKER EL VOLO

Let $c = (c_n)_{n \in \mathbb{Z}} \in \ell^p(\mathbb{Z})$, $p > 2$, and $d = (d_n)_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ be such that

$$
c * d = 0 \text{ but } c * \overline{d} \neq 0.
$$

(Here $\overline{d} = (\overline{d_n})_{n \in \mathbb{Z}}$.)

Let $f \in A(\mathbb{T})$ have Fourier transform d and $F \in VN(\mathbb{T})$ have Fourier transform c. Since $c \in c_0(\mathbb{Z})$, we have that $F \in C_r^*(\mathbb{T})$.

Choose $h_k \in L^1(\mathbb{T})$, $k \in \mathbb{N}$, with $\|\lambda(h_k) - F\| \to 0$

It follows that $\lambda(fh_n) \rightarrow f \cdot F$ in the operator norm. Similarly, $\lambda(\overline{f} h_n) \rightarrow \overline{f} \cdot F$ in the operator norm.

KORKAR KERKER EL VOLO

Let
$$
\psi(t) = \frac{\overline{f}(t)}{f(t)}
$$
 if $f(t) \neq 0$ and $\psi(t) = 0$ if $f(t) = 0$.
Then $\lambda(h_n) \to 0$ while $S_{\psi}(\lambda(h_n)) \to \overline{f} \cdot F \neq 0$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Let $X \subseteq \mathbb{T}$ be a closed set of positive Lebesgue measure and $S \subseteq X$ be a dense subset of Lebesgue measure zero.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of S.

KORK ERKER ADE YOUR

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of S.

By Riemann's Localisation Principle, if a function g belongs locally to $A(G)$ at t then its Fourier series converges at t.

KORK ERKER ADE YOUR

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of S.

By Riemann's Localisation Principle, if a function g belongs locally to $A(G)$ at t then its Fourier series converges at t.

KORKAR KERKER EL VOLO

Thus, $S \subset E_h$.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of S.

By Riemann's Localisation Principle, if a function g belongs locally to $A(G)$ at t then its Fourier series converges at t.

KORK ERKER ADE YOUR

Thus, $S \subset E_h$.

Since E_h is closed, $X \subseteq E_h$.

There exists $h \in C(\mathbb{T})$ whose Fourier series diverges at every point of S.

By Riemann's Localisation Principle, if a function g belongs locally to $A(G)$ at t then its Fourier series converges at t.

KORKAR KERKER EL VOLO

Thus, $S \subset E_h$.

Since E_h is closed, $X \subseteq E_h$.

Since E_h has positive measure, S_h is not closable.

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

In fact, E_{χ_F} is the set of boundary points of F , and hence E_{χ_F} is contained in the set of all endpoints of intervals whose union is F.

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

In fact, E_{χ_F} is the set of boundary points of F , and hence E_{χ_F} is contained in the set of all endpoints of intervals whose union is F.

In particular, E_{χ_F} is countable. However:

Theorem (Bożejko, 1977)

Every closed countable set in a locally compact non-discrete group is a U-set.

KORKAR KERKER EL VOLO

Let $F \subseteq \mathbb{R}$ be a closed set which is the union of countably many intervals.

Then χ_F is a closable multiplier on $C_r^*(\mathbb{R})$.

In fact, E_{χ_F} is the set of boundary points of F , and hence E_{χ_F} is contained in the set of all endpoints of intervals whose union is F.

In particular, E_{χ_F} is countable. However:

Theorem (Bożejko, 1977)

Every closed countable set in a locally compact non-discrete group is a U-set.

Thus, χ_F is a closable multiplier.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let $\psi : G \to \mathbb{C}$ be a continuous function.

Let $\psi: G \to \mathbb{C}$ be a continuous function.

There are two natural domains one may consider for a multiplier corresponding to ψ :

KORKA SERKER ORA

Let $\psi: G \to \mathbb{C}$ be a continuous function.

There are two natural domains one may consider for a multiplier corresponding to ψ :

•
$$
D(\psi) = {\lambda(f) : f \in L^1(G), \psi f \in L^1(G)}, S_{\psi}(\lambda(f)) = \lambda(\psi f),
$$

and

KORKA SERKER ORA

Let $\psi: G \to \mathbb{C}$ be a continuous function.

There are two natural domains one may consider for a multiplier corresponding to ψ :

•
$$
D(\psi) = {\lambda(f) : f \in L^1(G), \psi f \in L^1(G)}, S_{\psi}(\lambda(f)) = \lambda(\psi f),
$$

and

KORKA SERKER ORA

•
$$
\text{VN}_0(G) = \text{span}\{\lambda_s : s \in G\}, S'_\psi(\lambda_s) = \psi(s)\lambda_s.
$$

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

KORK STRAIN A BAR SHOP

(i) the operator S_{ψ} is weak* closable;

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_ψ is weak* closable;

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_ψ is weak* closable;

(iii) the function ψ belongs locally to $A(G)$ at every point;

KOD KAR KED KED E YORA

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_ψ is weak* closable;
- (iii) the function ψ belongs locally to $A(G)$ at every point;
- (iv) the function φ is a local Schur multiplier on $\mathcal{K}(L^2(G))$;

KORKARYKERKE POLO

Let $\psi : G \to \mathbb{C}$ be a continuous function and $\varphi = N(\psi)$. The following are equivalent:

- (i) the operator S_{ψ} is weak* closable;
- (ii) the operator S'_ψ is weak* closable;
- (iii) the function ψ belongs locally to $A(G)$ at every point;
- (iv) the function φ is a local Schur multiplier on $\mathcal{K}(L^2(G))$;

KORKARYKERKE POLO

(v) the operator S_{φ} is weak** closable;

Distinguishing different types of closability

Let $\psi : G \to \mathbb{C}$ be a continuous function. Then

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Distinguishing different types of closability

Let $\psi : G \to \mathbb{C}$ be a continuous function. Then

 S_{ψ} weak** closable $\Longrightarrow S_{\psi}$ weak* closable $\Longrightarrow S_{\psi}$ closable.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Let $\psi : G \to \mathbb{C}$ be a continuous function. Then

 S_{ψ} weak** closable $\Longrightarrow S_{\psi}$ weak* closable $\Longrightarrow S_{\psi}$ closable.

These implications are proper:

There exists $\psi\in A(G)^{\rm loc}$ such that \mathcal{S}_{ψ} is not weak** closable.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Let $\psi : G \to \mathbb{C}$ be a continuous function. Then

 S_{ψ} weak** closable $\Longrightarrow S_{\psi}$ weak* closable $\Longrightarrow S_{\psi}$ closable.

These implications are proper:

There exists $\psi\in A(G)^{\rm loc}$ such that \mathcal{S}_{ψ} is not weak** closable.

Indeed, let $f \in B(\mathbb{R})$ such that $1/f \notin B(\mathbb{R})$, and let $\psi = 1/f$. Then $\psi \in A(\mathbb{R})^{\rm loc}$ but J_{ψ} is contained in the ideal of $B(\mathbb{R})$ generated by f and hence is not dense in $B(\mathbb{R})$.

There exists $\psi \not\in A(G)^{\rm loc}$ for which \mathcal{S}_{ψ} is closable.

Indeed, this will be the case whenever E_{ψ} is a non-empty U-set. Continuous functions with this property are *e.g.* those odd ψ which are smooth on $(-\pi, \pi) \setminus \{0\}$, $\psi(0) = \psi(\pi) = 0$, $\psi'(\pi) = 0$, and $\int_0^1\psi(t)/t dt$ diverges. For such ψ , we have $E_\psi=\{0\}.$

THANK YOU VERY MUCH

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C