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Closability for operators

Let X and Y be Banach spaces and T : D(T )→ Y be a linear
operator, where D(T ) is a dense linear subspace of X .

The operator T is called closable if the closure GrT of its
graph

GrT = {(x ,Tx) : x ∈ D(T )} ⊆ X ⊕ Y

is the graph of a linear operator.

T is closable iff (xk)k∈N ⊆ D(T ), y ∈ Y, ‖xk‖ →k→∞ 0 and
‖T (xk)− y‖ →k→∞ 0 imply that y = 0.

The operator T is called weak** closable if the weak* closure

GrT
w∗

of GrT in X ∗∗⊕Y∗∗ is the graph of a linear operator.

T is weak** closable iff whenever (xj)j∈J ⊆ D(T ) is a net,

y ∈ Y∗∗, xj
w∗
→j∈J 0 and T (xj)

w∗
→j∈J y , we have that y = 0.

Every weak* closable operator is closable.
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Closability for operators

Let X and Y be dual Banach spaces, with specified preduals X∗
and Y∗, respectively, and D(Φ) ⊆ X be a weak* dense subspace.

A linear operator T : D(T )→ Y is weak* closable if the
conditions xi ∈ X , y ∈ Y, xi →w∗ 0, T (xi )→w∗ y imply that
y = 0.

Here, the weak* convergence is in the designated weak*
topologies of X and Y.

Note that, since the *-weak closure of the graph of T contains its
norm-closure, each weak* closable operator is closable.
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Closability for operators

The domain of the adjoint operator T ∗ is

D(T ∗) = {g ∈ Y∗ : ∃f ∈ X ∗ s. t. 〈T (x), g〉 = 〈x , f 〉 for all x ∈ D(T )}

T ∗ : D(T ∗)→ X ∗ is defined by letting T ∗(g) = f , where f is the
functional associated with g in the definition of D(T ∗).

Proposition

Let X and Y be Banach spaces, D(T ) ⊆ X , T : D(T )→ Y be a
densely defined linear operator and set D = D(T ∗). Consider the
following conditions:
(i) T is weak** closable;

(ii) D‖·‖ = Y∗;
(iii) Dw∗

= Y∗;
(iv) T is closable.
Then (i)⇐⇒(ii)=⇒(iii)⇐⇒(iv).
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Closability for operators

Weak* closability can be characterised analogously:

Proposition

Let D(T ) ⊆ X be a weak* dense subspace and T : D(T )→ Y be
a linear operator. The following are equivalent:

(i) the operator T is weak* closable;

(ii) the space
D∗(T ) = {g ∈ Y∗ : x → 〈T (x), g〉 is w* -cont. on D(T )} is dense
in Y∗.



Closable multipliers on group C*-algebras – the setting

Let ψ : G → C be a measurable function.

Let
D(ψ) = {f ∈ L1(G ) : ψf ∈ L1(G )};

it is easy to see that the operator f → ψf , f ∈ D(ψ), viewed as a
densely defined operator on L1(G ), is closable.

Since λ(L1(G )) is dense in C ∗r (G ) and ‖λ(f )‖ ≤ ‖f ‖1, f ∈ L1(G ),
the space λ(D(ψ)) is dense in C ∗r (G ) in the operator norm.

Thus, the operator Sψ : λ(D(ψ))→ C ∗r (G ) given by

Sψ(λ(f )) = λ(ψf )

is a densely defined operator on C ∗r (G ).

Recall that Bλ(G ) ⊆ B(G ) is (isometric to) the dual of C ∗r (G ); the
duality is given by

〈λ(f ), u〉 =

∫
G
f (s)u(s)ds, f ∈ L1(G ), u ∈ Bλ(G ).
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The domain of the adjoint of Sψ

The domain of the dual S∗ψ of the operator Sψ : λ(D(ψ))→ C ∗r (G )
is

Jψ = {g ∈ Bλ(G ) : ψg ∈m Bλ(G )}

and
S∗ψ(g) = ψg , g ∈ Jψ.

To see this, suppose g ∈ D(S∗ψ); then there exists u ∈ Bλ(G ) with∫
ψfgdm =

∫
fudm, f ∈ D(ψ).

Take a sequence (KN)N∈N of compacts such that ∪NKN ∼ G and
|ψ| ≤ N on KN . Then L1(KN) ⊆ D(ψ).

Since ψg |KN
and u|KN

are elements of L∞(KN), we have ψg ∼ u
on KN , for each N.

Thus, ψg ∼ u and so ψg ∈m Bλ(G ).
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Conditions related to the closability of Sψ

The aforementioned criterion of closability now implies that Sψ is
closable if and only if Jψ is weak* dense in Bλ(G ).

I next formulate a couple of other – one necessary, and one
sufficient – conditions for the closability of Sψ.

The null set null(J) of a subset J ⊆ A(G ) is

null(J) = {s ∈ G : u(s) = 0, ∀ u ∈ J}.

For a closed subset E ⊆ G let I (E ) and J(E ) be the largest and
the smallest closed ideal of A(G ) with null set E .

Recall that a closed subset E ⊆ G is called a U-set if
J(E )⊥ ∩ C ∗r (G ) = {0} and a U1-set if I (E )⊥ ∩ C ∗r (G ) = {0}.
U-sets for arbitrary locally compact groups were first studied by
Bożejko (1977).

The set E is an M-set (resp. M1-set) if it is not an U-set (resp. an
U1-set).
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Conditions related to the closability of Sψ

Let
Iψ = {f ∈ A(G ) : ψf ∈ A(G )}.

A function f belongs to A(G ) at t if for every open neighbourhood
U of t there exists u ∈ A(G ) such that f = u on U.

A function f almost belongs to A(G ) at t if for every open
neighbourhood U of t there exists u ∈ A(G ) such that f = u
almost everywhere on U.

A(G )loc = {f : belongs to A(G ) at every point}.
If f almost belongs to A(G ) at every point then f ∼ g for some
g ∈ A(G )loc.

Proposition

Let Eψ
def
= {t ∈ G : ψ does not almost belong to A(G ) at t}.

Then null(Iψ) = Eψ.
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Conditions related to the closability of Sψ

Yet another approximation property:

Let us say G possesses property (A) if there exists a net
(ui ) ⊆ A(G ) such that, for every g ∈ Bλ(G ),

uig → g weakly* in Bλ(G ).

If G is weakly amenable then G has property (A).

In fact, if (ui ) is a net in A(G ) such that ‖ui‖cbm ≤ C for all i ,
and ui → 1 uniformly on compact sets then for g ∈ Bλ(G ) and
f ∈ Cc(G ) we have

〈λ(f ), gui − g〉 =

∫
G
f (t)g(t)(ui (t)− 1)dt → 0.

Since ‖gui − g‖B(G) ≤ (‖ui‖cbm + 1)‖g‖B(G), and λ(Cc(G )) is
dense in C ∗r (G ), we are done.
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Conditions related to the closability of Sψ

Theorem

Suppose that G has property (A) and ψ : G → C is a measurable
function.

If Eψ is a U-set then Sψ is closable;

If Eψ is an M-set then Sψ is not closable.

To see these statements, note that Sψ is closable if and only if Jψ
is weak* dense in Bλ(G ), if and only if there is no non-zero
T ∈ C ∗r (G ) such that

〈T , u〉 = 0, for all u ∈ Jψ.

On the other hand, property (A) implies that the weak* closures of
Jψ and Iψ in Bλ(G ) coincide.
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Conditions related to the closability of Sψ

Thus, Sψ is closable if and only if there is no non-zero T ∈ C ∗r (G )
such that

〈T , u〉 = 0, for all u ∈ Iψ.

The statements now follow from the fact that

J(Eψ) ⊆ Iψ ⊆ I (Eψ).

Corollary

Suppose G has property (A). If ψ : G → C is a measurable
function and m(Eψ) > 0 then Sψ is not closable.
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Schur multipliers

Let (X , µ) and (Y , ν) be standard measure spaces.

For a function ϕ ∈ L∞(X × Y ), let Sϕ : L2(X × Y )→ L2(X × Y )
be the corresponding multiplication operator

Sϕξ = ϕξ.

The space L2(X × Y ) can be identified with the Hilbert-Schmidt
class in B(L2(X ), L2(Y )) by

ξ −→ Tξ, Tξf (y) =

∫
X
ξ(x , y)f (x)dµ(x).

Set ‖ξ‖op = ‖Tξ‖op
A function ϕ ∈ L∞(X × Y ) is called a Schur multiplier if there
exists C > 0 such that

‖Sϕξ‖op ≤ C‖ξ‖op, ξ ∈ L2(X × Y ).
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Local Schur multipliers

The function ϕ : X × Y → C is called a local Schur multiplier if
there exists a family {αi × βi}∞i=1 of measurable rectangles such
that

∪∞i=1αi × βi ∼= X × Y

and ϕ|αi×βi is a Schur multiplier on αi × βi .

Theorem

The measurable function ϕ : X × Y → C is a local Schur
multiplier iff ∃ ak , bk such that

∞∑
k=1

|ak(x)|2 <∞ and
∞∑
k=1

|bk(y)|2 <∞ a.e.

and

ϕ(x , y) =
∞∑
k=1

ak(x)bk(y), a.e. on X × Y .
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Closable multipliers of Schur type

For a measurable function ϕ : X × Y → C, let

D(ϕ) = {ξ ∈ L2(X × Y ) : ϕξ ∈ L2(X × Y )}.

Let Sϕ : D(ϕ)→ L2(X × Y ) be given by

Sϕξ = ϕξ.

We consider D(ϕ) as a subspace of the space K of all compact
operators.

Set Scl(X ,Y ) = {ϕ : Sϕ is closable}.

Closability here is considered with respect to the norm topology on
K.

Call the element of Scl(X ,Y ) closable multipliers.
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Weak** closable multipliers

Denoting by Scl∗∗(X ,Y ) the set of all ϕ : X × Y → C for which
the operator Sϕ is weak** clocable, we have:

Theorem

ϕ ∈ Scl∗∗(X ,Y ) if and ony if ϕ = ϕ1
ϕ2

such that ϕ1 and ϕ2 are
local Schur multipliers with ϕ2(x , y) 6= 0 for (marginally all)
(x , y) ∈ X × Y .

Note that

S(X ,Y ) ⊆ {local Schur multipliers} ⊆ Scl∗∗(X ,Y ) ⊆ Scl(X ,Y ).

All inclusions but the middle one are known to be proper.
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Pseudo-topologies and supports

W. Arveson (1974), J. Erdos, A. Katavolos, V.S. Shulman (1998)
Let κ ⊆ X × Y .

(i) κ is called marginally null (denoted κ ' ∅) if
κ ⊆ (M × Y ) ∪ (X × N), where M and N are null.

(ii) κ is said to be marginally equivalent to another subset
κ′ ⊆ X × Y if κ∆κ′ is marginally null.

(iii) κ is called ω-open if κ is marginally equivalent to subset of the
form ∪∞i=1κi , where the sets κi are rectangles.

(iv) κ is called ω-closed if κc is ω-open.

(v) An operator T ∈ B(L2(X ), L2(Y )) is supported on κ if

(α× β) ∩ κ ' ∅ ⇒ P(β)TP(α) = 0,

where P(α) is the projection from L2(X ) onto L2(α).
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Masa-bimodules

If f ∈ L∞(X ), let Mf ∈ B(L2(X )) be the operator of multiplication
by f . Set

DX = {Mf : f ∈ L∞(X )};

similarly DY .

U ⊆ B(L2(X ), L2(Y )) masa-bimodule if DYUDX ⊆ U .

The weak* closed masa-bimodules are precisely the weak* closed
invariant spaces of Schur multipliers.

Theorem (Arveson)

Given an ω-closed subset κ ⊆ X × Y , there exists a maximal
weak* closed masa-bimodule Mmax(κ) and a minimal weak*
closed masa-bimodule Mmin(κ) with support κ.
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Conditions related to closability of multipliers

Given a measurable ϕ : X × Y → C, let

D∗(ϕ) = {h ∈ L2(X )⊗̂L2(Y ) : ϕh ∈ L2(X )⊗̂L2(Y )}.

Note that D∗(ϕ) is the domain of the adjoint S∗ϕ.

Let κϕ ⊆ X × Y be the zero set of D∗(ϕ):

κϕ ∼= {(x , y) : h(x , y) = 0, for all h ∈ D∗(ϕ)}.

Theorem

Let ϕ : X × Y → C be measurable.

(i) If Mmax(κϕ) does not contain a compact operator then ϕ is a
closable multiplier;

(ii) If Mmin(κϕ) contains a compact operator then ϕ is not a
closable multiplier.
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Theorem

Let ϕ : X × Y → C be measurable.

(i) If Mmax(κϕ) does not contain a compact operator then ϕ is a
closable multiplier;

(ii) If Mmin(κϕ) contains a compact operator then ϕ is not a
closable multiplier.
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Sets of operator multiplicity

Let (X , µ) and (Y , ν) be standard measure spaces, H1 = L2(X ),
H2 = L2(Y ), K the space of all compact operators from H1 to H2.

Definition

An ω-closed set κ ⊆ X × Y is called

(i) an operator M-set if K ∩Mmax(κ) 6= {0};

(ii) an operator M1-set if K ∩Mmin(κ) 6= {0}.

Studied first by Froelich (1988) in relation with problems in
invariant subspace theory.

The space K is a suitable substitute of C ∗r (G ) because

K(L2(G )) = {MaTMb : a ∈ C0(G ),T ∈ C ∗r (G )}‖·‖.
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Structure in Scl(X ,Y )

The set of all local Schur multipliers is a subalgebra of
Cω(X × Y ).

It follows from the characterisation of Scl∗∗(X ,Y ) that it is a
subalgebra of Cω(X × Y ), too.

Scl(X ,Y ) is also an algebra but for a different reason:

Proposition

If U1 and U2 are weak* dense L∞(G )-invariant subspaces of
T (X ,Y ) then the intersection U1 ∩ U2 is weak* dense in T (X ,Y ),
too.

Proof for “+” : D∗(ϕ1) ∩ D∗(ϕ2) ⊆ D∗(ϕ1 + ϕ2).
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An example: triangular truncation

It is well-known that triangular truncation on `2(N) is unbounded.

Equip [0, 1] with Lebesgue measure and let

∆ = {(x , y) ∈ [0, 1]× [0, 1] : x ≤ y}.

Proposition

χ∆ is closable but not weak** closable.



An example: triangular truncation

It is well-known that triangular truncation on `2(N) is unbounded.

Equip [0, 1] with Lebesgue measure and let

∆ = {(x , y) ∈ [0, 1]× [0, 1] : x ≤ y}.

Proposition

χ∆ is closable but not weak** closable.



An example: triangular truncation

It is well-known that triangular truncation on `2(N) is unbounded.

Equip [0, 1] with Lebesgue measure and let

∆ = {(x , y) ∈ [0, 1]× [0, 1] : x ≤ y}.

Proposition

χ∆ is closable but not weak** closable.



An example: triangular truncation

Proof.

D∗(χ∆) contains the characteristic functions of measurable
rectangles α× β disjoint from the diagonal
Λ = {(x , x) : x ∈ [0, 1]}.

Thus, κχ∆
⊆ Λ.

However, Λ does not support a compact operator and hence, by
the above criterion, χ∆ is closable.

χ∆ cannot be weak** closable since it is not equivalent to an
ω-continuous function.

Indeed, if χ∆ ∼ ϕ, and ϕ is ω-continuous, then ϕ has to be 1 on
the interiour ∆o of ∆ and 0 on ∆c . Since Λ is in the ω-closure of
both ∆o and ∆c , ϕ must be both 1 and 0 m.a.e. on Λ, a
contradiction.
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Passage from HA to OT

Theorem

Let E ⊆ G be a closed set.
(i) E is an M-set if and only if E ∗ is an operator M-set;

(ii) E is an M1-set if and only if E ∗ is an operator M1-set.

Theorem

Let G be a second countable locally compact group satisfying
property (A), ψ : G → C be a measurable function and ϕ = N(ψ).
The following are equivalent:

the operator Sψ is closable;

the operator Sϕ is closable.

Corollary

The set Clos(G ) of all closable multipliers on C ∗r (G ) is an algebra
with respect to pointwise addition and multiplication.
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About the proof

Theorem (A symbolic calculus)

For ϕ ∈ T (G ) let Eϕ : B(L2(G ))→ VN(G ) be the bounded linear
trasformation with the property

〈Eϕ(T ), u〉 = 〈T , ϕN(u)〉, u ∈ A(G ),T ∈ B(L2(G )).

Then Eϕ maps K into C ∗r (G ).

The map ϕ→ Eϕ is a contractive S(G ,G )-module map from
T (G ) into CBw∗

(B(L2(G )),VN(G )).

If T 6= 0 then Ea⊗b(T ) 6= 0 for some a, b ∈ L2(G ).



N(ψ) closable ⇒ ψ closable

Proof.

Let ϕ = N(ψ) be a closable multiplier. If ψ is not closable, there
exists a non-zero T ∈ C ∗r (G ) that annihilates Iψ. Let A = Mf be
such that f ∈ C0(G ) and AT 6= 0. It suffices to show that AT
annihilates D(S∗ϕ).

Since D(S∗ϕ) is invariant under S(G ), it suffices to show that T
annihilates D(S∗ϕ).

Let h ∈ D(S∗ϕ). A direct verification shows that

〈T , h〉 = 〈T ,P(h)〉

(check first in the case T = λ(f )).

Since ϕh ∈ T (G ), ψP(h) = P(ϕh) ∈ A(G ) and hence P(h) ∈ Iψ.
Thus, 〈T ,P(h)〉 = 0 and hence 〈T , h〉 = 0.
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ψ closable ⇒ N(ψ) closable

Proof.
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Thus
〈Ea⊗b(T ), u〉 = 〈T , (a⊗ b)N(u)〉 = 0.

But Ea⊗b(T ) ∈ C ∗r (G ) and we are done by the closability
criterion.
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An example: a non-closable multiplier on C ∗r (T)

Let c = (cn)n∈Z ∈ `p(Z), p > 2, and d = (dn)n∈Z ∈ `1(Z) be such
that

c ∗ d = 0 but c ∗ d 6= 0.

(Here d = (dn)n∈Z.)

Let f ∈ A(T) have Fourier transform d and F ∈ VN(T) have
Fourier transform c . Since c ∈ c0(Z), we have that F ∈ C ∗r (T).

Choose hk ∈ L1(T), k ∈ N, with ‖λ(hk)− F‖ → 0

It follows that λ(fhn)→ f · F in the operator norm. Similarly,
λ(f hn)→ f · F in the operator norm.

Let ψ(t) = f (t)
f (t) if f (t) 6= 0 and ψ(t) = 0 if f (t) = 0.

Then λ(fhn)→ 0 while Sψ(λ(fhn))→ f · F 6= 0.
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An example: a continuous non-closable multiplier on C ∗r (T)

Let X ⊆ T be a closed set of positive Lebesgue measure and
S ⊆ X be a dense subset of Lebesgue measure zero.

There exists h ∈ C (T) whose Fourier series diverges at every point
of S .

By Riemann’s Localisation Principle, if a function g belongs locally
to A(G ) at t then its Fourier series converges at t.

Thus, S ⊆ Eh.

Since Eh is closed, X ⊆ Eh.

Since Eh has positive measure, Sh is not closable.
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A class of examples: idempotent closable multipliers on
C ∗r (R)

Let F ⊆ R be a closed set which is the union of countably many
intervals.

Then χF is a closable multiplier on C ∗r (R).

In fact, EχF
is the set of boundary points of F , and hence EχF

is
contained in the set of all endpoints of intervals whose union is F .

In particular, EχF
is countable. However:

Theorem (Bożejko, 1977)

Every closed countable set in a locally compact non-discrete group
is a U-set.

Thus, χF is a closable multiplier.
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Theorem (Bożejko, 1977)

Every closed countable set in a locally compact non-discrete group
is a U-set.

Thus, χF is a closable multiplier.



A class of examples: idempotent closable multipliers on
C ∗r (R)

Let F ⊆ R be a closed set which is the union of countably many
intervals.

Then χF is a closable multiplier on C ∗r (R).

In fact, EχF
is the set of boundary points of F , and hence EχF

is
contained in the set of all endpoints of intervals whose union is F .

In particular, EχF
is countable. However:

Theorem (Bożejko, 1977)
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Closable multipliers on VN(G )

The natural notion of closability for multipliers on VN(G ) is that
of weak* closability.

Let ψ : G → C be a continuous function.

There are two natural domains one may consider for a multiplier
corresponding to ψ:

D(ψ) = {λ(f ) : f ∈ L1(G ), ψf ∈ L1(G )}, Sψ(λ(f )) = λ(ψf ),

and

VN0(G ) = span{λs : s ∈ G}, S ′ψ(λs) = ψ(s)λs .
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Weak* and weak** closability

Theorem

Let ψ : G → C be a continuous function and ϕ = N(ψ). The
following are equivalent:

(i) the operator Sψ is weak* closable;

(ii) the operator S ′ψ is weak* closable;

(iii) the function ψ belongs locally to A(G ) at every point;

(iv) the function ϕ is a local Schur multiplier on K(L2(G ));

(v) the operator Sϕ is weak** closable;
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Distinguishing different types of closability

Let ψ : G → C be a continuous function. Then

Sψ weak** closable =⇒ Sψ weak* closable =⇒ Sψ closable.

These implications are proper:

There exists ψ ∈ A(G )loc such that Sψ is not weak** closable.

Indeed, let f ∈ B(R) such that 1/f 6∈ B(R), and let ψ = 1/f .
Then ψ ∈ A(R)loc but Jψ is contained in the ideal of B(R)
generated by f and hence is not dense in B(R).

There exists ψ 6∈ A(G )loc for which Sψ is closable.

Indeed, this will be the case whenever Eψ is a non-empty U-set.
Continuous functions with this property are e.g. those odd ψ
which are smooth on (−π, π) \ {0}, ψ(0) = ψ(π) = 0, ψ′(π) = 0,

and
∫ 1

0 ψ(t)/tdt diverges. For such ψ, we have Eψ = {0}.
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