

and their amenability notions

Mahmood Alaghmandan Fields institute

May 30, 2014

CONTENTS

Hypergroups

Amenable hypergroups

Leptin's conditions

Amenability of Hypergroup algebra

A locally compact space *H* is a hypergroup if $\exists * : M(H) \times M(H) \rightarrow M(H)$ called convolution:

► $\forall x, y \in H, \delta_x * \delta_y$ is a positive measure with compact support and $\|\delta_x * \delta_y\|_{M(H)} = 1$.

A locally compact space *H* is a hypergroup if $\exists * : M(H) \times M(H) \rightarrow M(H)$ called convolution:

- ∀x, y ∈ H, δ_x * δ_y is a positive measure with compact support and ||δ_x * δ_y||_{M(H)} = 1.
- $(x, y) \mapsto \delta_x * \delta_y$ is a continuous map from $H \times H$ into M(H) equipped with the weak* topology.
- $(x, y) \rightarrow \text{supp}(\delta_x * \delta_y)$ is a continuous mapping from $H \times H$ into $\mathcal{K}(H)$ equipped with the Michael topology.

A locally compact space *H* is a hypergroup if $\exists * : M(H) \times M(H) \rightarrow M(H)$ called convolution:

- ► $\forall x, y \in H, \delta_x * \delta_y$ is a positive measure with compact support and $\|\delta_x * \delta_y\|_{M(H)} = 1$.
- $(x, y) \mapsto \delta_x * \delta_y$ is a continuous map from $H \times H$ into M(H) equipped with the weak* topology.
- $(x, y) \rightarrow \text{supp}(\delta_x * \delta_y)$ is a continuous mapping from $H \times H$ into $\mathcal{K}(H)$ equipped with the Michael topology.

• $\exists e \in H, \delta_e$ is the identity of M(H).

A locally compact space *H* is a hypergroup if $\exists * : M(H) \times M(H) \rightarrow M(H)$ called convolution:

- ∀x, y ∈ H, δ_x * δ_y is a positive measure with compact support and ||δ_x * δ_y||_{M(H)} = 1.
- $(x, y) \mapsto \delta_x * \delta_y$ is a continuous map from $H \times H$ into M(H) equipped with the weak* topology.
- $(x, y) \rightarrow \text{supp}(\delta_x * \delta_y)$ is a continuous mapping from $H \times H$ into $\mathcal{K}(H)$ equipped with the Michael topology.
- $\exists e \in H, \delta_e$ is the identity of M(H).
- ► \exists a homeomorphism $x \to \check{x}$ of *H* called involution such that $(\delta_x * \delta_y) = \delta_{\check{y}} * \delta_{\check{x}}.$
- $e \in \operatorname{supp}(\delta_x * \delta_y)$ if and only if $y = \check{x}$.

HAAR MEASURE Let $f \in C_c(H)$,

$$L_{x}f(y) = \delta_{\tilde{x}} * \delta_{y}(f) =: f(\delta_{\tilde{x}} * \delta_{y}).$$

A positive non-zero Borel measure h is called a Haar measure if

$$h(L_x f) = h(f), \quad \forall f \in C_c(H), x \in H.$$

For a commutative and/or compact and/or discrete hypergroup, the existence of a Haar measure can be proven.

HAAR MEASURE Let $f \in C_c(H)$,

$$L_{x}f(y) = \delta_{\tilde{x}} * \delta_{y}(f) =: f(\delta_{\tilde{x}} * \delta_{y}).$$

A positive non-zero Borel measure h is called a Haar measure if

$$h(L_x f) = h(f), \quad \forall f \in C_c(H), x \in H.$$

For a commutative and/or compact and/or discrete hypergroup, the existence of a Haar measure can be proven.

For $A, B \subseteq H, A * B \subseteq H$ where

$$A * B := \bigcup_{x \in A, \ y \in B} \operatorname{supp}(\delta_x * \delta_y).$$

HYPERGROUP ALGEBRA

For every $f, g \in L^1(H, h)$,

$$f * g = \int_H f(y) L_y g \, dh(y), \ f^*(y) = \overline{f(\tilde{y})}.$$

 $L^{1}(H)(=L^{1}(H,h))$ forms a *-algebra called hypergroup algebra.

FOURIER SPACE OF HYPERGROUPS

[Muruganandam, 07] defined Fourier Stieltjes space of hypergroups, similar to group case, and consequently Fourier space of H, A(H).

$$A(H)^* = VN(H) = \lambda(L^1(H))'' \subseteq \mathcal{B}(L^2(H)).$$

Proposition. [A.'14] For a hypergroup *H*,

```
A(H) := \{ f * \overline{\tilde{g}} : f, g \in L^2(H) \}.
```

And $||u||_{A(H)} = \inf\{||f||_2 ||g||_2\}$ for all $f, g \in L^2(H)$ s.t. $u = f * \tilde{g}$.

FOURIER SPACE OF HYPERGROUPS

[Muruganandam, 07] defined Fourier Stieltjes space of hypergroups, similar to group case, and consequently Fourier space of H, A(H).

$$A(H)^* = VN(H) = \lambda(L^1(H))'' \subseteq \mathcal{B}(L^2(H)).$$

Proposition. [A.'14] For a hypergroup *H*,

$$A(H):=\{f\ast\bar{\tilde{g}}:\,f,g\in L^2(H)\}.$$

And $||u||_{A(H)} = \inf\{||f||_2 ||g||_2\}$ for all $f, g \in L^2(H)$ s.t. $u = f * \tilde{g}$.

The hypergroup *H* is called regular Fourier hypergroup if A(H) is a Banach algebra with respect to pointwise multiplication.

COMMUTATIVE HYPERGROUPS

Let *H* be a commutative hypergroup,

 $\widehat{H} := \{ \alpha \in C_b(H) : \ \alpha(\delta_x * \delta_y) = \alpha(x) \alpha(y), \ \alpha(\check{x}) = \overline{\alpha(x)}, \text{ and } \alpha \neq 0 \}.$

 \widehat{H} is the Gelfand spectrum of $L^1(H)$. \widehat{H} is called the dual of H.

 \widehat{H} is not necessarily a hypergroup any more!

COMMUTATIVE HYPERGROUPS

Let *H* be a commutative hypergroup,

 $\widehat{H} := \{ \alpha \in C_b(H) : \ \alpha(\delta_x * \delta_y) = \alpha(x) \alpha(y), \ \alpha(\check{x}) = \overline{\alpha(x)}, \text{ and } \alpha \neq 0 \}.$

 \widehat{H} is the Gelfand spectrum of $L^1(H)$. \widehat{H} is called the dual of H.

 \widehat{H} is not necessarily a hypergroup any more!

Fourier-Stieltjes transform and Fourier transform defined:

$$\mathcal{F}: M(H) \to C_b(H)$$
 where $\mathcal{F}(\mu)(\alpha) := \int_H \overline{\alpha}(x) d\mu(x).$

 $\mathcal{F}: L^1(H) \to C_0(H)$ where $\mathcal{F}(f)(\alpha) := \int_H f(x)\overline{\alpha}(x)dh(x)$

PLANCHEREL MEASURE

Theorem.

Let *H* be a commutative hypergroup. Then there exists a non-negative measure π on \hat{H} , called Plancherel measure of \hat{H} such that

$$\int_{H} |f(x)|^2 dx = \int_{\widehat{H}} |\widehat{f}(\alpha)|^2 d\pi(\alpha)$$

for all $f \in L^1(H) \cap L^2(H)$.

PLANCHEREL MEASURE

Theorem.

Let *H* be a commutative hypergroup. Then there exists a non-negative measure π on \hat{H} , called Plancherel measure of \hat{H} such that

$$\int_{H} |f(x)|^2 dx = \int_{\widehat{H}} |\widehat{f}(\alpha)|^2 d\pi(\alpha)$$

for all $f \in L^1(H) \cap L^2(H)$.

Note that for an arbitrary hypergroup *H* (unlike group case) the support of the Plancherel measure,

 $\operatorname{supp}(\pi) \neq \widehat{H}.$

EXAMPLE 0. Locally compact groups

Every locally compact group *G*, it is a regular Fourier hypergroup.

EXAMPLE 1.

REPRESENTATIONS OF COMPACT GROUPS

Let *G* be a compact (quantum) group and \widehat{G} the set of all irreducible unitary (co-)representations of *G*.

For each $\pi_1, \pi_2 \in \widehat{G}, \pi_1 \otimes \pi_2 \cong \sigma_1 \oplus \cdots \oplus \sigma_n$ for $\sigma_1, \cdots, \sigma_n \in \widehat{G}$.

Define a convolution on $\ell^1(\widehat{G})$ and make \widehat{G} into a commutative discrete hypergroup which is called the fusion algebra of *G*.

EXAMPLE 1.

REPRESENTATIONS OF COMPACT GROUPS

Let *G* be a compact (quantum) group and \widehat{G} the set of all irreducible unitary (co-)representations of *G*.

For each $\pi_1, \pi_2 \in \widehat{G}, \pi_1 \otimes \pi_2 \cong \sigma_1 \oplus \cdots \oplus \sigma_n$ for $\sigma_1, \cdots, \sigma_n \in \widehat{G}$.

Define a convolution on $\ell^1(\widehat{G})$ and make \widehat{G} into a commutative discrete hypergroup which is called the fusion algebra of *G*.

 $\ell^1(\widehat{G})$ is isometrically isomorphic to $ZA(G) = \{f \in A(G) : f(yxy^{-1}) = f(y) \text{ for all } x, y \in G\}.$

[A. '13]: \widehat{G} is a regular Fourier hypergroup and $A(\widehat{G}) \cong ZL^1(G)$.

EXAMPLE 2.

CONJUGACY CLASS OF $\overline{[FC]}^B$ GROUPS

The space of all orbits in a locally compact group *G* for some relatively compact subgroup *B* of automorphisms of *G* including inner ones denoted by $\text{Conj}_B(G)$.

Conj_{*B*}(*G*) forms a commutative hypergroup. $L^1(\text{Conj}_B(G))$ is isometrically isomorphic to $Z_BL^1(G) = \{f \in L^1(G) : f \circ \beta = f \text{ for all } \beta \in B\}.$

EXAMPLE 2.

CONJUGACY CLASS OF $\overline{[FC]}^B$ GROUPS

The space of all orbits in a locally compact group *G* for some relatively compact subgroup *B* of automorphisms of *G* including inner ones denoted by $\text{Conj}_B(G)$.

Conj_{*B*}(*G*) forms a commutative hypergroup. $L^{1}(\text{Conj}_{B}(G))$ is isometrically isomorphic to $Z_{B}L^{1}(G) = \{f \in L^{1}(G) : f \circ \beta = f \text{ for all } \beta \in B\}.$

 $\operatorname{Conj}_B(G)$ is a regular Fourier hypergroup. (Muruganandam '07)

EXAMPLE 2.

CONJUGACY CLASS OF $\overline{[FC]}^B$ GROUPS

The space of all orbits in a locally compact group *G* for some relatively compact subgroup *B* of automorphisms of *G* including inner ones denoted by $\text{Conj}_B(G)$.

Conj_{*B*}(*G*) forms a commutative hypergroup. $L^{1}(\text{Conj}_{B}(G))$ is isometrically isomorphic to $Z_{B}L^{1}(G) = \{f \in L^{1}(G) : f \circ \beta = f \text{ for all } \beta \in B\}.$

 $\operatorname{Conj}_B(G)$ is a regular Fourier hypergroup. (Muruganandam '07)

When *B* is the set of all inner automorphisms, we use Conj(G). Then $A(\text{Conj}(G)) \cong ZA(G)$.

- ► Conj(*G*) is a compact hypergroup if *G* is compact.
- ► Conj(*G*) is a discrete hypergroup if *G* is discrete.

EXAMPLE 3.

DOUBLE COSET HYPERGROUPS

Let *G* be a locally compact group and *K* be a compact subgroup of *G*.

 $G//K := \{KxK : x \in G\}.$

forms a hypergroup.

 $L^1(G//K) \cong \{ f \in L^1(G) : f \text{ is constant on double cosets of } K \}.$

EXAMPLE 3.

DOUBLE COSET HYPERGROUPS

Let *G* be a locally compact group and *K* be a compact subgroup of *G*.

 $G//K := \{KxK : x \in G\}.$

forms a hypergroup.

 $L^1(G//K) \cong \{ f \in L^1(G) : f \text{ is constant on double cosets of } K \}.$

[Muruganandam '08]: G//K is a regular Fourier hypergroup and

 $A(G//K) \cong \{f \in A(G) : f \text{ is constant on double cosets of } K\}.$

EXAMPLE 4.

POLYNOMIAL HYPERGROUPS

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Let $(a_n)_{n \in \mathbb{N}_0}$ and $(c_n)_{n \in \mathbb{N}_0}$ be sequences of non-zero real numbers and $(b_n)_{n \in \mathbb{N}_0}$ be a sequence of real numbers with the property

$$a_0 + b_0 = 1$$

 $a_n + b_n + c_n = 1, n \ge 1.$

If $(R_n)_{n \in \mathbb{N}_0}$ is a sequence of polynomials defined by

$$\begin{array}{rcl} R_0(x) &=& 1, \\ R_1(x) &=& \frac{1}{a_0}(x-b_0), \\ R_1(x)R_n(x) &=& a_nR_{n+1}(x)+b_nR_n(x)+c_nR_{n-1}(x), \quad n \geq 1, \end{array}$$

EXAMPLE 4.

POLYNOMIAL HYPERGROUPS

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Let $(a_n)_{n \in \mathbb{N}_0}$ and $(c_n)_{n \in \mathbb{N}_0}$ be sequences of non-zero real numbers and $(b_n)_{n \in \mathbb{N}_0}$ be a sequence of real numbers with the property

$$a_0 + b_0 = 1$$

 $a_n + b_n + c_n = 1, n \ge 1.$

If $(R_n)_{n \in \mathbb{N}_0}$ is a sequence of polynomials defined by

$$\begin{array}{rcl} R_0(x) &=& 1, \\ R_1(x) &=& \frac{1}{a_0}(x-b_0), \\ R_1(x)R_n(x) &=& a_nR_{n+1}(x)+b_nR_n(x)+c_nR_{n-1}(x), \quad n \geq 1, \end{array}$$

Then,

$$R_n(x)R_m(x) = \sum_{k=|n-m|}^{n+m} g(n,m;k)R_k(x)$$

where $g(n, m; k) \in \mathbb{R}^+$ for all $|n - m| \le k \le n + m$.

EXAMPLE 4. Polynomial hypergroups

Define * on $\ell^1(\mathbb{N}_0)$ such that

$$\delta_n * \delta_m = \sum_{k=|n-m|}^{n+m} g(n,m;k)\delta_k$$

and $\check{n} = n$.

Then $(\mathbb{N}_0, *, \check{})$ is a discrete commutative hypergroup with the unit element 0 which is called the polynomial hypergroup on \mathbb{N}_0 induced by $(R_n)_{n \in \mathbb{N}_0}$.

CONTENTS

Hypergroups

Amenable hypergroups

Leptin's conditions

Amenability of Hypergroup algebra

LEFT INVARIANT MEAN [Skantharajah '92]:

A linear functional $m \in L^{\infty}(H)^*$ is called a mean if it has norm 1 and is non-negative, i.e. $f \ge 0$ a.e. implies $m(f) \ge 0$.

m is called left invariant mean if $m(L_x f) = m(f)$.

LEFT INVARIANT MEAN [Skantharajah '92]:

A linear functional $m \in L^{\infty}(H)^*$ is called a mean if it has norm 1 and is non-negative, i.e. $f \ge 0$ a.e. implies $m(f) \ge 0$.

m is called left invariant mean if $m(L_x f) = m(f)$.

A hypergroup *H* is called amenable if it has a left invariant mean.

LEFT INVARIANT MEAN [Skantharajah '92]:

A linear functional $m \in L^{\infty}(H)^*$ is called a mean if it has norm 1 and is non-negative, i.e. $f \ge 0$ a.e. implies $m(f) \ge 0$.

m is called left invariant mean if $m(L_x f) = m(f)$.

A hypergroup *H* is called amenable if it has a left invariant mean.

Theorem.

Every commutative and/or compact hypergroup is amenable.

H satisfies (P_r) , $1 \le r < \infty$, if whenever $\epsilon > 0$ and a compact set $E \subseteq H$ are given, then there exists $f \in L^r(H)$, $f \ge 0$, $||f||_r = 1$ such that

 $||L_x f - f||_r < \epsilon \quad (x \in E).$

H satisfies (P_r) , $1 \le r < \infty$, if whenever $\epsilon > 0$ and a compact set $E \subseteq H$ are given, then there exists $f \in L^r(H)$, $f \ge 0$, $||f||_r = 1$ such that

 $||L_x f - f||_r < \epsilon \quad (x \in E).$

[Skantharajah '92]:

Amenablity \Leftrightarrow $(P_1) \Leftarrow (P_2) \Leftrightarrow (P_r)_{1 < r < \infty}$

H satisfies (P_r) , $1 \le r < \infty$, if whenever $\epsilon > 0$ and a compact set $E \subseteq H$ are given, then there exists $f \in L^r(H)$, $f \ge 0$, $||f||_r = 1$ such that

 $||L_x f - f||_r < \epsilon \quad (x \in E).$

[Skantharajah '92]:

Amenablity \Leftrightarrow (P_1) \Leftarrow (P_2) \Leftrightarrow (P_r) $_{1 < r < \infty} \Leftrightarrow 1 \in \text{supp}(\pi)$.

When *H* is commutative.

H satisfies (P_r) , $1 \le r < \infty$, if whenever $\epsilon > 0$ and a compact set $E \subseteq H$ are given, then there exists $f \in L^r(H)$, $f \ge 0$, $||f||_r = 1$ such that

 $||L_x f - f||_r < \epsilon \quad (x \in E).$

[Skantharajah '92]:

Amenablity \Leftrightarrow $(P_1) \leftarrow (P_2) \Leftrightarrow (P_r)_{1 < r < \infty} \Leftrightarrow 1 \in \operatorname{supp}(\pi)$.

When *H* is commutative. Note that $(P_1) \Rightarrow (P_2)$.

CONTENTS

Hypergroups

Amenable hypergroups

Leptin's conditions

Amenability of Hypergroup algebra

LEPTIN CONDITION

[Singh '96]:

(*L*) *H* satisfies the Leptin condition if for every compact subset *K* of *H* and $\epsilon > 0$, $\exists V$ measurable in *H* such that $0 < h(V) < \infty$ and

 $\frac{h(K * V)}{h(V)} < 1 + \epsilon.$
LEPTIN CONDITION

[Singh '96]:

(*L*) *H* satisfies the Leptin condition if for every compact subset *K* of *H* and $\epsilon > 0$, $\exists V$ measurable in *H* such that $0 < h(V) < \infty$ and

 $\frac{h(K * V)}{h(V)} < 1 + \epsilon.$

Theorem. [Singh 96] Let *H* be a hypergroup satisfying (*L*). Then it does (*P_r*) for $1 \le r < \infty$.

LEPTIN HYPERGROUPS

Hypergroups satisfying (L) condition:

- ► Amenable locally compact groups. (Leptin '68)
- ► Some simple polynomial hypergroups. (Singh '96)
- Every compact hypergroup.
- ► *SU*(2). (A. '13)

MODIFIED LEPTIN CONDITION

[A. '14]:

(*L*_D) *H* satisfies the *D*-Leptin condition for some $D \ge 1$ if for every compact subset *K* of *H* and $\epsilon > 0$, $\exists V$ measurable in *H* such that $0 < h(V) < \infty$ and

$$\frac{h(K * V)}{h(V)} < D + \epsilon$$

[A.]:

► Let G be an FD group. Then Conj(G) satisfies the D-Leptin condition for D = |G'|.

[A.]:

- ► Let G be an FD group. Then Conj(G) satisfies the D-Leptin condition for D = |G'|.
- $\widehat{SU(3)}$ satisfies 3⁸-Leptin condition.

[A.]:

- ► Let *G* be an FD group. Then Conj(G) satisfies the *D*-Leptin condition for D = |G'|.
- $\widehat{SU(3)}$ satisfies 3⁸-Leptin condition.
- By [Banica- Vergnioux '09]: dual of connected simply connected compact real Lie group satisfies some *D*-Leptin condition:

[A.]:

- ► Let *G* be an FD group. Then Conj(G) satisfies the *D*-Leptin condition for D = |G'|.
- $\widehat{SU(3)}$ satisfies 3⁸-Leptin condition.
- By [Banica- Vergnioux '09]: dual of connected simply connected compact real Lie group satisfies some *D*-Leptin condition:

	classic computation	BV algorithm
$\widehat{SU(2)}$	1	15
$\widehat{SU(3)}$	$3^8 = 6561$	18240
$\widehat{SU(4)}$?	$\geq 18*10^{14}$

AN APPLICATION OF LEPTIN CONDITION

Theorem. [Choi-Ghahramani '12] Every proper Segal algebra of \mathbb{T}^d is not approximately amenable.

AN APPLICATION OF LEPTIN CONDITION

Theorem. [Choi-Ghahramani '12] Every proper Segal algebra of \mathbb{T}^d is not approximately amenable.

Theorem. [A. '14] Let *G* be a compact group such that \widehat{G} satisfies *D*-Leptin condition. Every proper Segal algebra of *G* is not approximately amenable.

D-LEPTIN AND (P_2) ?

Question.

Let *H* be a hypergroup satisfying (L_D) . Does it satisfy (P_2) ?

D-LEPTIN AND (P_2) ?

Question.

Let *H* be a hypergroup satisfying (L_D) . Does it satisfy (P_2) ?

If *H* is a locally compact group: Yes!

D-LEPTIN AND (P_2) ?

Question.

Let *H* be a hypergroup satisfying (L_D) . Does it satisfy (P_2) ?

If *H* is a locally compact group: Yes!

- 1 (L_D) implies that A(H) has a *D*-bounded approximate identity.
- 2 **Leptin's Theorem:** *A*(*H*) has a bounded approximate identity if and only *H* is amenable
- 3 *H* is amenable if and only if (P_2) .

Proposition. [A. '14]

Let *H* be a regular Fourier hypergroup. If *H* satisfies (L_D) . Then A(H) has a *D*-bounded approximate identity.

Proposition. [A. '14] Let *H* be a regular Fourier hypergroup. If *H* satisfies (L_D) . Then A(H) has a *D*-bounded approximate identity.

Leptin's Theorem for Hypergroups. [A. '14] If *H* is a regular Fourier hypergroup. Then A(H) has a bounded approximate identity if and only if *H* satisfies (P_2).

Proposition. [A. '14]

Let *H* be a regular Fourier hypergroup. If *H* satisfies (L_D) . Then A(H) has a *D*-bounded approximate identity.

Leptin's Theorem for Hypergroups. [A. '14] If *H* is a regular Fourier hypergroup. Then A(H) has a bounded

approximate identity if and only if *H* satisfies (P_2) . Then there is a 1-bounded approximate identity for A(H).

Proposition. [A. '14]

Let *H* be a regular Fourier hypergroup. If *H* satisfies (L_D) . Then A(H) has a *D*-bounded approximate identity.

Leptin's Theorem for Hypergroups. [A. '14] If *H* is a regular Fourier hypergroup. Then A(H) has a bounded approximate identity if and only if *H* satisfies (P_2). Then there is a 1-bounded approximate identity for A(H).

 $(L_D) \Rightarrow (D - b.a.i \Leftrightarrow)(P_2).$

Corollary. [A. '14] Let *G* be a locally compact group. Then G//K satisfies (P_2) for every compact subgroup *K* if and only if *G* is amenable.

Corollary. [A. '14] Let *G* be a locally compact group. Then G//K satisfies (P_2) for every compact subgroup *K* if and only if *G* is amenable.

Proof.

• G//K is a regular Fourier hypergroup and A(G//K) is $f \in A(G)$ which are constant on double cosets of *K*. (Murugunandam '08)

Corollary. [A. '14] Let *G* be a locally compact group. Then G//K satisfies (P_2) for every compact subgroup *K* if and only if *G* is amenable.

- G//K is a regular Fourier hypergroup and A(G//K) is f ∈ A(G) which are constant on double cosets of K. (Murugunandam '08)
- (i) If G is amenable if and only if A(G) has a bounded approximate identity. (Leptin '68)

Corollary. [A. '14] Let *G* be a locally compact group. Then G//K satisfies (P_2) for every compact subgroup *K* if and only if *G* is amenable.

- G//K is a regular Fourier hypergroup and A(G//K) is f ∈ A(G) which are constant on double cosets of K. (Murugunandam '08)
- (i) If *G* is amenable if and only if A(G) has a bounded approximate identity. (Leptin '68)
- (ii) A(G) has a bounded approximate identity if and only if A(G//K) has a bounded approximate identity.

Corollary. [A. '14] Let *G* be a locally compact group. Then G//K satisfies (P_2) for every compact subgroup *K* if and only if *G* is amenable.

- G//K is a regular Fourier hypergroup and A(G//K) is $f \in A(G)$ which are constant on double cosets of *K*. (Murugunandam '08)
- (i) If *G* is amenable if and only if A(G) has a bounded approximate identity. (Leptin '68)
- (ii) A(G) has a bounded approximate identity if and only if A(G//K) has a bounded approximate identity.
- (iii) By Leptin's Theorem, G//K satisfies (P_2) if and only if A(G//K) has a b.a.i.

Let *H* be a regular Fourier hypergroup.

- (m) *H* is amenable.
- (*L*_D) *H* satisfies the *D*-Leptin condition for some $D \ge 1$.
- (B_D) A(H) has a D-bounded approximate identity for some $D \ge 1$.
- (P_2) *H* satisfies (P_2) .
- (P_1) *H* satisfies Reiter condition.

(AM) $L^1(H)$ is an amenable Banach algebra.

CONTENTS

Hypergroups

Amenable hypergroups

Leptin's conditions

Amenability of Hypergroup algebra

AMENABLE HYPERGROUP ALGEBRAS

Theorem. [Johnson '72] *G* is amenable $\Leftrightarrow L^1(G)$ is amenable.

Amenable hypergroup algebras

Theorem. [Johnson '72] *G* is amenable $\Leftrightarrow L^1(G)$ is amenable.

Theorem. [Skantharajah '92] *H* is amenable $\leftarrow L^1(H)$ is amenable.

Amenable hypergroup algebras

Theorem. [Johnson '72] *G* is amenable $\Leftrightarrow L^1(G)$ is amenable.

Theorem. [Skantharajah '92] *H* is amenable $\leftarrow L^1(H)$ is amenable.

Example. [Azimifard-Samei-Spronk '09] $L^1(\text{Conj}(SU(2))) (= ZL^1(SU(2)))$ is not amenable. But Conj(SU(2)) is amenable.

Chebyshev polynomial hypergroup on $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$:

$$\delta_m * \delta_n = \frac{1}{2} \delta_{|n-m|} + \frac{1}{2} \delta_{n+m}.$$

Chebyshev polynomial hypergroup on $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$:

$$\delta_m * \delta_n = \frac{1}{2} \delta_{|n-m|} + \frac{1}{2} \delta_{n+m}.$$

[Lasser '07]: $\ell^1(\mathbb{N}_0)$ is amenable.

Chebyshev polynomial hypergroup on $\mathbb{N}_0=\{0,1,2,3,\ldots\}:$

$$\delta_m * \delta_n = \frac{1}{2} \delta_{|n-m|} + \frac{1}{2} \delta_{n+m}.$$

[Lasser '07]: $\ell^1(\mathbb{N}_0)$ is amenable.

Proof.

► $\ell^1(\mathbb{N}_0)$ is isometrically Banach algebra isomorphic to $Z_{\pm 1}A(\mathbb{T}) = \{f + \check{f} : f \in A(\mathbb{T})\}.$

Chebyshev polynomial hypergroup on $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$:

$$\delta_m * \delta_n = \frac{1}{2} \delta_{|n-m|} + \frac{1}{2} \delta_{n+m}.$$

[Lasser '07]: $\ell^1(\mathbb{N}_0)$ is amenable.

- ► $\ell^1(\mathbb{N}_0)$ is isometrically Banach algebra isomorphic to $Z_{\pm 1}A(\mathbb{T}) = \{f + \check{f} : f \in A(\mathbb{T})\}.$
- *Z*_{±1}*A*(T) is a subalgebra of an amenable Banach algebra (*A*(T)) invariant under a finite subgroup of *Aut*(*A*(T)). [Kepert '94]: *Z*_{±1}*A*(T) is amenable.

Theorem. [Lasser '07] Let \mathbb{N}_0 be a polynomial hypergroup and for each N > 0, $\{x \in \mathbb{N}_0 : h(x) \le N\}$ is finite. Then $\ell^1(\mathbb{N}_0)$ is not amenable.

Example. $\ell^1(\widehat{SU(2)}) (= ZA(SU(2)))$ is not amenable.

Theorem. [Lasser '07] Let \mathbb{N}_0 be a polynomial hypergroup and for each N > 0, $\{x \in \mathbb{N}_0 : h(x) \le N\}$ is finite. Then $\ell^1(\mathbb{N}_0)$ is not amenable.

Example. $\ell^1(\widehat{SU(2)}) (= ZA(SU(2)))$ is not amenable.

Theorem. [A. '14] Let *H* be a commutative discrete hypergroup satisfying (*P*₂) and for each N > 0, { $x \in H : h(x) \le N$ } is finite. Then $\ell^1(H)$ is not amenable.

Theorem. [Lasser '07] Let \mathbb{N}_0 be a polynomial hypergroup and for each N > 0, $\{x \in \mathbb{N}_0 : h(x) \le N\}$ is finite. Then $\ell^1(\mathbb{N}_0)$ is not amenable.

Example. $\ell^1(\widehat{SU(2)}) (= ZA(SU(2)))$ is not amenable.

Theorem. [A. '14] Let *H* be a commutative discrete hypergroup satisfying (*P*₂) and for each N > 0, { $x \in H : h(x) \le N$ } is finite. Then $\ell^1(H)$ is not amenable.

Example. For every tall compact group G, $\ell^1(\widehat{G}) (= ZA(G))$ is not amenable.

Theorem. [Lasser '07] Let \mathbb{N}_0 be a polynomial hypergroup and for each N > 0, $\{x \in \mathbb{N}_0 : h(x) \le N\}$ is finite. Then $\ell^1(\mathbb{N}_0)$ is not amenable.

Example. $\ell^1(\widehat{SU(2)}) (= ZA(SU(2)))$ is not amenable.

Theorem. [A. '14] Let *H* be a commutative discrete hypergroup satisfying (*P*₂) and for each N > 0, { $x \in H : h(x) \le N$ } is finite. Then $\ell^1(H)$ is not amenable.

Example. For every tall compact group G, $\ell^1(\widehat{G}) (= ZA(G))$ is not amenable.

Example. For every FC group such that $|C| \to \infty$, $\ell^1(\text{Conj}(G)) (= Z\ell^1(G))$ is not amenable.

Amenability of $\ell^1(H)$

Conjecture. $\ell^1(H)$ is amenable if and only if $\sup_{x \in H} h(x) < \infty$.

Amenability of $\ell^1(H)$

Conjecture. $\ell^1(H)$ is amenable if and only if $\sup_{x \in H} h(x) < \infty$.

Theorem. [A.-Spronk] Let *G* be a compact group which has an open commutative subgroup. Then $\ell^1(\widehat{G})(=ZA(G))$ is amenable.
Amenability of $\ell^1(H)$

Conjecture. $\ell^1(H)$ is amenable if and only if $\sup_{x \in H} h(x) < \infty$.

Theorem. [A.-Spronk] Let *G* be a compact group which has an open commutative subgroup. Then $\ell^1(\widehat{G})(=ZA(G))$ is amenable.

Theorem. [Azimifard-Samei- Spronk '09] Let *G* be an FD group; then $\ell^1(\text{Conj}(G)) (= Z\ell^1(G))$) is amenable.

Amenability of $\ell^1(H)$

Conjecture. $\ell^1(H)$ is amenable if and only if $\sup_{x \in H} h(x) < \infty$.

Theorem. [A.-Spronk] Let *G* be a compact group which has an open commutative subgroup. Then $\ell^1(\widehat{G})(=ZA(G))$ is amenable.

Theorem. [Azimifard-Samei- Spronk '09] Let *G* be an FD group; then $\ell^1(\text{Conj}(G)) (= Z\ell^1(G))$) is amenable.

Theorem. [A.-Choi-Samei '13] Let *G* be an RDPF group. Then $\ell^1(\text{Conj}(G)) (= Z\ell^1(G))$) is amenable if and only if *G* is FD.

COMPACT HYPERGROUPS

A compact hypergroup satisfies Leptin, so does (P_2) . For a compact hypergroup H, $L^1(H)$ is weakly amenable.

Compact hypergroups

A compact hypergroup satisfies Leptin, so does (P_2) . For a compact hypergroup H, $L^1(H)$ is weakly amenable.

Conjecture. If *G* is a compact group. Then $L^1(\text{Conj}(G)) (= ZL^1(G))$ is amenable if and only if *G* has an open abelian group.

Compact hypergroups

A compact hypergroup satisfies Leptin, so does (P_2) . For a compact hypergroup H, $L^1(H)$ is weakly amenable.

Conjecture. If *G* is a compact group. Then $L^1(\text{Conj}(G)) (= ZL^1(G))$ is amenable if and only if *G* has an open abelian group.

Theorem. [Azimifard-Samei- Spronk '09] If *G* is a non-abelian connected compact group, then $L^1(\text{Conj}(G)) (= ZL^1(G))$ is not amenable.

Hypergroups	Amenable hypergroups	Leptin's conditions	Amenability of Hypergroup algebra
	• • • •		
	Tha	nk You	