Haagerup property for arbitrary von Neumann algebras

Martijn Caspers (WWU Münster) joint with Adam Skalski (IMPAN/Warsaw University)

related to work by R. Okayasu, R. Tomatsu

May 30, 2014

KORK ERKER ADAM ADA

Equivalent notions of the Haagerup property

[Introduction](#page-1-0)

- [HAP for von](#page-3-0)
- HAP for
-
-
-

A group *G* has the Haagerup property if:

There exists a net of positive definite normalized functions in $C_0(G)$ converging to 1 pointwise

KOD CONTRACT A BOAR KOD A CO

- *G* admits a proper affine action on a real Hilbert space
- There exists a real, proper, conditionally negative function on *G*

Examples

[Introduction](#page-1-0)

- [HAP for von](#page-3-0)
- HAP for
-
-
-
- **Amenable groups**
- F_n (Haagerup, '78/'79)
- *SL*(2, Z) $\mathcal{L}_{\mathcal{A}}$
- Haagerup property + Property (T) implies compactness \Box

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

HAP for von Neumann algebras

[HAP for von](#page-3-0) Neumann algebras

HAP for

Definition Haagerup property (Choda '83, Jolissaint '02)

A finite von Neumann algebra (M, τ) has HAP if there exists a net $(\Phi_i)_i$ of cp $\mathsf{maps}\ \mathsf{\Phi}_i : \mathsf{M} \to \mathsf{M}$ such that:

- τ Φ*ⁱ* ≤ τ
- The map $\mathcal{T}_i: x\Omega_\tau \mapsto \Phi_i(x)\Omega_\tau$ is compact
- $T_i \rightarrow 1$ strongly

Remark:

In the definition (M,τ) has HAP than Φ_i 's can be chosen unital and such that $\tau \circ \Phi_i = \tau$.

HAP for groups versus HAP for vNA's

[HAP for von](#page-3-0) Neumann algebras

HAP for

Theorem (Choda '83)

A discrete group *G* has HAP \Leftrightarrow The group von Neumann algebra $\mathcal{L}(G)$ has HAP

Idea of the proof: (Haagerup)

- \Rightarrow φ_i the positive definite functions \Rightarrow $\Phi_i:\mathcal{L}(G)\to\mathcal{L}(G):\lambda(f)\mapsto\lambda(\varphi_if).$
- $\Leftarrow \Phi_i$ cp maps \Rightarrow use the 'averaging technique':

$$
\varphi_i(s)=\tau(\lambda(s)^*\Phi_i(\lambda(s)).
$$

HAP for von Neumann algebras

[HAP for von](#page-3-0) Neumann algebras

HAP for

Definition Haagerup property

A σ -finite von Neumann algebra (M, φ) has HAP if there exists a net $(\Phi_i)_i$ of cp $maps \Phi_i : M \to M$ such that:

- $\Box \varphi \circ \Phi_i \leq \varphi$
- The map $\mathcal{T}_i: x\Omega_\varphi \mapsto \Phi_i(x)\Omega_\varphi$ is compact
- $T_i \rightarrow 1$ strongly

HAP for von Neumann algebras

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Definition Haagerup property (MC, Skalski)

An arbitrary von Neumann algebra (M, φ) with nsf weight φ has HAP if there exists a net $(\Phi_i)_i$ of cp maps $\Phi_i: M \to M$ such that:

- $\Box \varphi \circ \Phi_i \leq \varphi$
- The map $\mathcal{T}_i: \Lambda_{\varphi}(x) \mapsto \Lambda_{\varphi}(\Phi_i(x))$ is compact
- $T_i \rightarrow 1$ strongly

Remark:

 \blacksquare In our approach it is essential to treat weights instead of states.

Motivating examples

-
- [HAP for von](#page-3-0)
- HAP for [arbitrary von](#page-6-0) Neumann algebras
-
-
-

Brannan '12: Free orthogonal and free unitary quantum groups have HAP. Kac case \Rightarrow Semi-finite.

- De Commer, Freslon, Yamashita '13: Non-Kac case of this result ⇒ Non-semi-finite.
- Houdayer, Ricard '11: Free Araki-Woods factors.

Problems arising?

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

[Quantum](#page-24-0)

Definition Haagerup property

An arbitrary von Neumann algebra (M, φ) with nsf weight φ has HAP if there exists a net $(\Phi_i)_i$ of cp maps $\Phi_i: M \to M$ such that:

KORKARA KERKER DAGA

- $\Box \varphi \circ \Phi_i \leq \varphi$
- The map $\,_{i}:\Lambda_{\varphi}(x) \mapsto \Lambda_{\varphi}(\Phi_{i}(x))$ is compact
- $T_i \rightarrow 1$ strongly

Questions:

- Does the definition depend on the choice of the weight?
- Can the maps Φ_i be taken ucp and φ -preserving?
- Can we always assume that $\Phi_i \circ \sigma_t^{\varphi} = \sigma_t^{\varphi} \circ \Phi_i$?

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, φ) has HAP iff (M, ψ) has HAP.

Idea of the proof:

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, φ) has HAP iff (M, ψ) has HAP.

Idea of the proof:

Treat the semi-finite case using Radon-Nikodym derivatives.

$$
\varphi(h\,\cdot\,h)=\psi(\,\cdot\,)
$$

Let φ have cp maps Φ_i . Then formally,

$$
\Phi'_i(\cdot) := h^{-1} \Phi_i(h \cdot h) h^{-1},
$$

will yield the cp maps for ψ .

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, φ) has HAP iff (M, ψ) has HAP.

Idea of the proof:

Treat the semi-finite case using Radon-Nikodym derivatives.

$$
\varphi(h\,\cdot\,h)=\psi(\,\cdot\,)
$$

Let φ have cp maps Φ_i . Then formally,

$$
\Phi'_i(\cdot) := h^{-1} \Phi_i(h \cdot h) h^{-1},
$$

KORK STRAIN A STRAIN A STRAIN

will yield the cp maps for ψ .

Let α be any φ -preserving action of R on (M, φ) . If $(M \rtimes R, \hat{\varphi})$ has HAP then (M, φ) has HAP.

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

[Quantum](#page-24-0)

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, φ) has HAP iff (M, ψ) has HAP.

Idea of the proof:

Treat the semi-finite case using Radon-Nikodym derivatives.

$$
\varphi(h\,\cdot\,h)=\psi(\,\cdot\,)
$$

Let φ have cp maps Φ_i . Then formally,

$$
\Phi'_i(\cdot) := h^{-1} \Phi_i(h \cdot h) h^{-1},
$$

KORKARA KERKER DAGA

will yield the cp maps for ψ .

- Let α be any φ -preserving action of R on (M, φ) . If $(M \rtimes R, \hat{\varphi})$ has HAP then (M, φ) has HAP.
- Use crossed product duality to conclude the converse.

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

[Quantum](#page-24-0)

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, φ) has HAP iff (M, ψ) has HAP.

Idea of the proof:

Treat the semi-finite case using Radon-Nikodym derivatives.

$$
\varphi(h\,\cdot\,h)=\psi(\,\cdot\,)
$$

Let φ have cp maps Φ_i . Then formally,

$$
\Phi'_i(\cdot) := h^{-1} \Phi_i(h \cdot h) h^{-1},
$$

KORKARA KERKER DAGA

will yield the cp maps for ψ .

- Let α be any φ -preserving action of R on (M, φ) . If $(M \rtimes R, \hat{\varphi})$ has HAP then (M, φ) has HAP.
- Use crossed product duality to conclude the converse.
- Conclude from the semi-finite case (Step 1).

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

[Quantum](#page-24-0)

Crossed products

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Consequence

Let α be any action of a group *G* on *M*.

- If $M \rtimes_{\alpha} G$ has HAP then so has M
- If *M* has HAP and *G* amenable then $M \rtimes_{\alpha} G$ has HAP

Crossed products

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Consequence

Let α be any action of a group *G* on *M*.

- If $M \rtimes_{\alpha} G$ has HAP then so has M
- If *M* has HAP and *G* amenable then $M \rtimes_{\alpha} G$ has HAP

Comments:

- $M \rtimes_{\alpha} G$ has HAP implies that *G* has HAP in case *G* discrete
- $\mathbb{Z}^2 \rtimes \text{SL}(2,\mathbb{Z})$ does not have HAP whereas $\text{SL}(2,\mathbb{Z})$ has HAP and is weakly amenable

KOD CONTRACT A BOAR KOD A CO

Markov property

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Let *M* be a von Neumann algebra with normal state φ . We say that a map $\Phi : M \to M$ is *Markov* if it is a ucp φ -preserving map.

Theorem (MC, A. Skalski)

The following are equivalent:

- (M, φ) has HAP
- (M, φ) has HAP and the cp maps Φ_i are Markov

Corollary: If (M_1, φ_1) and (M_2, φ_2) have HAP then so does the free product $(M_1 \star M_2, \varphi_1 \star \varphi_2)$. (following Boca '93).

KORKARYKERKE PORCH

Modular HAP

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

We say that (M, φ) has the modular HAP if the cp maps Φ_i commute with $\sigma_t, t \in \mathbb{R}$.

Theorem (MC, Skalski)

 (M, φ) is the von Neumann algebra of a compact quantum group with Haar state φ . TFAE:

- (M, φ) has HAP
- (M, φ) has the modular HAP

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Questions:

- Does the definition depend on the choice of the weight? NO $\mathcal{L}_{\mathcal{A}}$
- $\mathcal{L}_{\mathcal{A}}$ Can the maps Φ_i be taken ucp and φ -preserving (Markov)? YES if φ is a state.

KORKARYKERKE PORCH

Can we always assume that $\Phi_i \circ \sigma_t^{\varphi} = \sigma_t^{\varphi} \circ \Phi_i$? YES in every known example.

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0) Neumann algebras

Questions:

- Does the definition depend on the choice of the weight? NO \sim
- Can the maps Φ_i be taken ucp and φ -preserving (Markov)? YES if φ is a **The Contract of the Contract o** state.

KORKARYKERKE PORCH

Can we always assume that $\Phi_i \circ \sigma_t^{\varphi} = \sigma_t^{\varphi} \circ \Phi_i$? YES in every known example.

Question: Can we find Markov maps in case (*B*(*H*), Tr)?

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

[Equivalent](#page-20-0) notions

■ Haagerup property via standard forms (Okayasu-Tomatsu) see also [COST, C.R. Adad. Sci. Paris 2014]

Symmetric Haagerup property

An arbitrary von Neumann algebra (M, φ) with nsf weight φ has symmetric HAP if there exists a net $(\Phi_i)_i$ of cp maps $\Phi_i: M \rightarrow M$ such that:

KORK STRAIN A STRAIN A STRAIN

- $\Box \varphi \circ \Phi_i \leq \varphi$
- The map $\, \mathcal{T}_i : D^{\frac{1}{4}}_\varphi \! \times \! \! D^{\frac{1}{4}}_\varphi \mapsto D^{\frac{1}{4}}_\varphi \Phi_i (x) D^{\frac{1}{4}}_\varphi$ is compact
- $T_i \rightarrow 1$ strongly

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

[Equivalent](#page-20-0) notions

■ Haagerup property via standard forms (Okayasu-Tomatsu) see also [COST, C.R. Adad. Sci. Paris 2014]

Symmetric Haagerup property

An arbitrary von Neumann algebra (M, φ) with nsf weight φ has symmetric HAP if there exists a net $(\Phi_i)_i$ of cp maps $\Phi_i: M \rightarrow M$ such that:

KORKARA KERKER DAGA

- $\Box \varphi \circ \Phi_i \leq \varphi$
- The map $\, \mathcal{T}_i : D^{\frac{1}{4}}_\varphi \! \times \! \! D^{\frac{1}{4}}_\varphi \mapsto D^{\frac{1}{4}}_\varphi \Phi_i (x) D^{\frac{1}{4}}_\varphi$ is compact
- \blacksquare *T_i* \rightarrow 1 strongly or Φ *i* \rightarrow 1 in the point σ -weak topology

[HAP for von](#page-3-0)

HAP for

[Equivalent](#page-20-0) notions

[Quantum](#page-24-0)

Let $(\Phi_t)_{t\geq 0}$ be a semigroup of cp maps on M . $(\Phi_t)_{t\geq 0}$ is called <mark>Markov</mark> if $\Phi_t, t\geq 0$ is Markov. It is called KMS-symmetric if $\mathcal{T}_t:D^{\frac{1}{4}}_\varphi\rtimes D^{\frac{1}{4}}_\varphi\mapsto D^{\frac{1}{4}}_\varphi\rtimes D^{\frac{1}{4}}_\varphi$ is self-adjoint. It is called immediately L^2 -compact if $T_t, t > 0$ is compact.

Theorem: HAP via Markov semigroups (MC, Skalski)

M von Neumann algebra with normal state φ . TFAE:

 (M, φ) has HAP.

Definition

There exists an immediately *L* 2 -compact KMS-symmetric Markov semigroup $(\Phi_t)_{t>0}$ on *M*.

KORK ERKER ADAM ADA

Comment: Proof via symmetric HAP + ideas of Jolissaint-Martin '04/Cipriani Sauvageot '03.

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

[Equivalent](#page-20-0) notions

The next result describes the Haagerup property in terms of quantum Dirichlet forms. This is the non-commutative analogue of the existence of a conditionally negative definite function on a discrete group.

Theorem (MC, Skalski)

M von Neumann algebra with normal state φ . The following are equivalent:

- *M* has HAP
- $L^2(M,\varphi)$ admits an orthonormal basis $\{e_n\}_n$ and a non-decreasing sequence of non-negative numbers $\{\lambda_n\}_n$ such that $\lim_n \lambda_n \to \infty$ and

$$
Q(\xi) = \sum_{n=1}^{\infty} \lambda_n |\langle e_n, \xi \rangle|^2, \qquad \xi \in \text{Dom}(Q),
$$

KORK ERKER ADAM ADA

where $\text{Dom}(Q) = \{ \xi \in L^2(M, \varphi) \mid \sum_n \lambda_n |\langle e_n, \xi \rangle|^2 < \infty \}$ defines a conservative completely Dirichlet form.

[HAP for von](#page-3-0)

HAP for

[Quantum](#page-24-0) groups

Locally compact quantum groups (Kustermans, Vaes)

A **von Neumann algebraic quantum group** G consists of:

- a von Neumann algebra *L*∞(G);
- a comultiplication, i.e. a unital normal ∗-homomorphism
	- $\Delta: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$ such that $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta;$
- two normal semi-finite faithful Haar weights $\varphi,\psi:L^\infty(\mathbb{G})^+\to[0,\infty]$, i.e.

$$
(\iota \otimes \varphi) \Delta(x) = \varphi(x) \mathbf{1}, \qquad \forall x \in L^{\infty}(\mathbb{G})^+,
$$

$$
(\psi \otimes \iota) \Delta(x) = \psi(x) \mathbf{1}, \qquad \forall x \in L^{\infty}(\mathbb{G})^+.
$$

KORKARA KERKER DAGA

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

[Quantum](#page-24-0) groups

Locally compact quantum groups (Kustermans, Vaes)

A **von Neumann algebraic quantum group** G consists of:

- a von Neumann algebra *L*∞(G);
- a comultiplication, i.e. a unital normal ∗-homomorphism
	- $\Delta: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \otimes L^{\infty}(\mathbb{G})$ such that $(\Delta \otimes \iota)\Delta = (\iota \otimes \Delta)\Delta;$
- two normal semi-finite faithful Haar weights $\varphi,\psi:L^\infty(\mathbb{G})^+\to[0,\infty]$, i.e.

$$
(\iota \otimes \varphi) \Delta(x) = \varphi(x) \mathbf{1}, \qquad \forall x \in L^{\infty}(\mathbb{G})^+,
$$

$$
(\psi \otimes \iota) \Delta(x) = \psi(x) \mathbf{1}, \qquad \forall x \in L^{\infty}(\mathbb{G})^+.
$$

KORK ERKER ADAM ADA

Classical examples:

- *L*∞(*G*) with $\Delta_G(f)(x, y) = f(xy)$ and $\varphi(f) = \int f(x) d_i x$ Haar measure.
- *VN*(*G*), $\Delta(\lambda_x) = \lambda_x \otimes \lambda_x$, $\varphi(\lambda_f) = f(e)$ Plancherel weight.

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

[Quantum](#page-24-0) groups

Haagerup property for quantum groups (Daws, Fima, Skalski, White)

A quantum group G has the Haagerup property if:

- \bullet $c_0(\mathbb{G})$ admits an approximate unit build from 'positive definite functions' [DS]
- G admits a mixing representation weakly containing the trivial representation

KORK ERKER ADAM ADA

G admits a proper real cocycle

[DS] Daws, Salmi: Completely positive definite functions and Bochner's theorem for locally compact quantum groups, '13.

Open question: *G* has HAP if and only if *L*∞(*Ĝ*) has HAP

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

[Quantum](#page-24-0) groups

Theorem (MC)

The quantum group $SU_q(1,1)$ (=non-compact+non-discrete+non-amenable) has the following properties:

- HAP
- **Weakly amenable**
- Coamenable

Comment: Proof based on Plancherel decomposition of the left multiplicative unitary by Groenevelt-Koelink-Kustermans '10 + De Canniere-Haagerup '85.

KOD CONTRACT A BOAR KOD A CO

Theorem Groenevelt-Koelink-Kustermans (+ MC)

Part of the unitary corep's that are weakly contained in the left regular representation of $SU_q(1,1)$ and which admit $\mathbb T$ -invariant vectors are partly indexed by the following topological space (black part). (In fact [G-K-K] find a complete Plancherel decomposition.)

KOD CONTRACT A BOAR KOD A CO

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

[Quantum](#page-24-0) groups

[HAP for von](#page-3-0)

HAP for

[Quantum](#page-24-0) groups

Definition: weak amenability

A quantum group G is called weakly amenable if there exists a net $a_i \in A(\mathbb{G})$ such that,

$$
||a_i x - x||_{A(\mathbb{G})} \to 0, \qquad x \in A(\mathbb{G}),
$$

and $||a_i||_{M_0(A(\mathbb{G}))} \leq \Lambda$.

[HAP for von](#page-3-0)

HAP for

[Quantum](#page-24-0) groups

Definition: weak amenability

A quantum group G is called weakly amenable if there exists a net $a_i \in A(G)$ such that,

$$
||a_i x - x||_{A(\mathbb{G})} \to 0, \qquad x \in A(\mathbb{G}),
$$

and $||a_i||_{M_0(A(\mathbb{G}))} \leq \Lambda$.

One can find a sequence $a_i \in A(\mathbb{G})^+$ commuting with the scaling group τ $\mathcal{L}_{\mathcal{A}}$ such that,

$$
||a_i x - x||_{C_0(\mathbb{G})} \to 0, \qquad x \in A(\mathbb{G}),
$$

and $||a_i||_{M_0(A(\mathbb{G}))} \leq \Lambda$.

[HAP for von](#page-3-0)

HAP for

[Quantum](#page-24-0) groups

Definition: weak amenability

A quantum group G is called weakly amenable if there exists a net $a_i \in A(G)$ such that,

$$
||a_i x - x||_{A(\mathbb{G})} \to 0, \qquad x \in A(\mathbb{G}),
$$

and $||a_i||_{M_0(A(\mathbb{G}))} \leq \Lambda$.

One can find a sequence $a_i \in A(\mathbb{G})^+$ commuting with the scaling group τ $\mathcal{L}_{\mathcal{A}}$ such that,

$$
||a_i x - x||_{C_0(\mathbb{G})} \to 0, \qquad x \in A(\mathbb{G}),
$$

and $||a_i||_{M_0(A(\mathbb{G}))} \leq \Lambda$.

Then work to turn $C_0(\mathbb{G})$ -norm to $A(\mathbb{G})$ -norm.

[HAP for von](#page-3-0)

HAP for

[Quantum](#page-24-0) groups

Definition: weak amenability

A quantum group G is called weakly amenable if there exists a net $a_i \in A(\mathbb{G})$ such that,

$$
||a_i x - x||_{A(\mathbb{G})} \to 0, \qquad x \in A(\mathbb{G}),
$$

and $||a_i||_{M_0(A(\mathbb{G}))} \leq \Lambda$.

One can find a sequence $a_i \in A(\mathbb{G})^+$ commuting with the scaling group τ $\mathcal{L}_{\mathcal{A}}$ such that,

$$
||a_i x - x||_{C_0(\mathbb{G})} \to 0, \qquad x \in A(\mathbb{G}),
$$

and $||a_i||_{M_0(A(\mathbb{G}))} \leq \Lambda$.

Then work to turn $C_0(\mathbb{G})$ -norm to $A(\mathbb{G})$ -norm. Remark:

 $\Vert \cdot \Vert_{\mathcal{C}_0(\mathbb{G})} \leq \Vert \cdot \Vert_{A(\mathbb{G})}$

KORKARA KERKER DAGA

[HAP for von](#page-3-0)

HAP for

Homological [properties of](#page-33-0) quantum groups

Definition:

■ Let *A* be a completely contractive Banach algebra and *X* a cb *A* − *A*-bimodule. A cb map *D* : $A \rightarrow X$ is a derivation if the Leibniz rule holds:

$$
D(ab) = aD(b) + D(a)b.
$$

Derivations $D_x(a) = ax - xa$ with $x \in X$ are called inner.

Definition:

A is operator amenable if every cb derivation $D: A \rightarrow X^*$ is inner for every ch $A - A$ -bimodule X .

[HAP for von](#page-3-0)

HAP for

Homological [properties of](#page-33-0) quantum groups

Let $\mathbb G$ be a compact quantum group. $L^1(\mathbb G)$ is a cc Banach algebra with convolution product ∆∗.

Theorem (Z.-J. Ruan '96): Let G be a compact Kac algebra. The following are equivalent:

KORKARYKERKE PORCH

 $1 \quad L^1(\mathbb{G})$ is operator amenable;

- $2 \mid L^1(\mathbb{G})$ is coamenable (it has a bounded approximate identity);
- 3 G is amenable.

[HAP for von](#page-3-0)

HAP for

Homological [properties of](#page-33-0) quantum groups

Let $\mathbb G$ be a compact quantum group. $L^1(\mathbb G)$ is a cc Banach algebra with convolution product ∆∗.

Theorem (Z.-J. Ruan '96): Let G be a compact Kac algebra. The following are equivalent:

- $1 \quad L^1(\mathbb{G})$ is operator amenable;
- $2 \mid L^1(\mathbb{G})$ is coamenable (it has a bounded approximate identity);
- 3 G is amenable.

Theorem (R. Tomatsu '06): In Ruan's theorem also $(2) \Leftrightarrow (3)$, without the assumption that G is Kac.

KORKARYKERKE PORCH

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

Homological [properties of](#page-33-0) quantum groups

Let $\mathbb G$ be a compact quantum group. $L^1(\mathbb G)$ is a cc Banach algebra with convolution product ∆∗.

Theorem (Z.-J. Ruan '96): Let G be a compact Kac algebra. The following are equivalent:

- $1 \quad L^1(\mathbb{G})$ is operator amenable;
- $2 \mid L^1(\mathbb{G})$ is coamenable (it has a bounded approximate identity);
- 3 G is amenable.

Theorem (R. Tomatsu '06): In Ruan's theorem also $(2) \Leftrightarrow (3)$, without the assumption that G is Kac.

Question 1: In Ruan's theorem, also (1) \Leftrightarrow (2), without the assumption that \mathbb{G} is Kac?

KORKARYKERKE PORCH

[HAP for von](#page-3-0)

HAP for

Homological [properties of](#page-33-0) quantum groups

Theorem (MC, H.H. Lee, E. Ricard)

Let $\mathbb G$ be a compact quantum group. If $L^1(\mathbb G)$ is operator amenable, then it is of Kac type.

KOD KOD KED KED E VAN

Corollary: Let G be a compact quantum group. Then, *L* 1 (G) is operator amenable if and only if $\hat{\mathbb{G}}$ is amenable and \mathbb{G} is of Kac type.

[HAP for von](#page-3-0)

HAP for [arbitrary von](#page-6-0)

Homological [properties of](#page-33-0) quantum groups

Theorem (MC, H.H. Lee, E. Ricard)

Let $\mathbb G$ be a compact quantum group. If $L^1(\mathbb G)$ is operator amenable, then it is of Kac type.

Corollary: Let G be a compact quantum group. Then, *L* 1 (G) is operator amenable if and only if $\hat{\mathbb{G}}$ is amenable and \mathbb{G} is of Kac type.

Comment: Proof uses operator spaces in an essential way: manipulations with column and row Hilbert spaces.

KOD KOD KED KED E VAN