Locally compact quantum groups 1. Locally compact groups from an (operator) algebra perspective

Matthew Daws

Leeds

Fields, May 2014

4 0 8

 QQ

Obligatory non-commutative topology

Theorem (Gelfand)

Let A be a unital commutative C^* -algebra, and let Φ_A be the collection of characters on A, given the relative weak^{*}-topology. Then Φ_A is a compact Hausdorff space, and the map

$$
\mathcal{G}: A \to C(\Phi_A); \quad \mathcal{G}(a)(\varphi) = \varphi(a),
$$

is an isometric isomorphism.

Furthermore, a $*$ -homomorphism $\theta: A \to B$ between unital C^* -algebras is always given by a continuous map $\phi : \Phi_B \to \Phi_A$ with

$$
\mathcal{G}_B \circ \theta \circ \mathcal{G}_A^{-1}(f) = f \circ \phi \qquad (f \in C(\Phi_A)).
$$

So, in principle, studying compact spaces and continuous maps between them is the same as studying commutative C^* -algebras.

 \equiv \cap α

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Some (vague) motivation

- I'm going to come back to the ideas of the previous slide (repeatedly).
- **•** But for now let's just take it as (vague) motivation for looking at various operator algebras.
- \bullet In particular, I'll look both a locally compact space G, for which we have a choice of $C_0(G)$ and $C^b(G)$;
- and at measured spaces (X, μ) where it's natural to look at $L^{\infty}(X)$.
- As the other talks in this series have looked at Banach algebras, I'll start instead there.

4 0 8

D.

 Ω

Locally compact groups

Let G be a locally compact group, and consider $\mathcal{C}_0(G)$, $\mathcal{C}^b(G)$ and $L^\infty(G)$ (left Haar measure). These are two C[∗] -algebras and a von Neumann algebra: they depend only on the topological and measure space properties of G.

 \bullet For example, in the case when G is countable and discrete, these algebras capture nothing of interest about the group.

We turn $L^1(G)$ into a Banach algebra for the convolution product:

$$
(f * g)(s) = \int_G f(t)g(t^{-1}s) dt.
$$

This does remember the structure of G, in the following sense:

Theorem (Wendel)

If $L^1(G)$ and $L^1(H)$ are isometrically isomorphic as Banach algebras, then G is, as a topological group, isomorphic to H.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

At the Operator algebra level

Can we equip $L^{\infty}(G)$ with "extra structure" so that it remembers G? Define a map $\Delta: L^{\infty}(G) \to L^{\infty}(G \times G)$ by

$$
\Delta(F)(s,t)=F(st)\qquad (F\in L^\infty(G), s,t\in G).
$$

This is a unital, injective, ∗-homomorphism which is normal (weak[∗] -continuous).

The pre-adjoint is a map $L^1(G\times G)\to L^1(G).$ As $L^1(G)\otimes L^1(G)$ embeds into $L^1(G\times G)$, we get a bilinear map on $L^1(G)$. This is actually the convolution product, as

$$
\langle F, \Delta_{*}(f \otimes g) \rangle = \langle \Delta(F), f \otimes g \rangle = \int_{G \times G} F(st) f(s) g(t) \, ds \, dt
$$

$$
= \int_{G} F(t) \int_{G} f(s) g(s^{-1} t) \, ds \, dt = \langle F, f * g \rangle.
$$

 $=$ Ω

Interpretation

- We can think of $(L^{\infty}(G), \Delta)$ as an object which remembers G.
- \bullet Indeed, Δ is "co-associative" in that $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$ as maps $L^{\infty}(G) \rightarrow L^{\infty}(G \times G \times G)$, as

 $(\Delta \otimes id)\Delta(F)(s,t,r) = F((st)r), \quad (id \otimes \Delta)\Delta(F)(s,t,r) = F(s(tr)).$

- \bullet A pair (M, Δ) with M a von Neumann algebra and $\Delta : M \rightarrow M \overline{\otimes} M$ coassociative is a "Hopf-von Neumann algebra".
- Not all commutative examples come from $L^{\infty}(G)$.
- Another interpretation is that $L^1(G)$ is a particularly nice Banach algebra: it's dual is a von Neumann algebra, and the dual of the product "respects" the structure of $L^{\infty}(G)$. Compare the notion of an "F-algebra" ("Lau-algebra").

KOD KARD KED KED E VAN

Amenability

- A topologically left invariant mean on G is a state M on $L^{\infty}(G)$ with $\mathsf{M}(f*F)=\mathsf{M}(F)$ for $F\in L^\infty(\mathsf{G})$ and $f\in L^1(\mathsf{G})$ with $f\geq 0, \int f=1.$
- Given $f\in L^1(G)$ let $\widetilde{f}(s)=\nabla(s^{-1})f(s^{-1})$ with ∇ the modular function; then $f\mapsto \tilde f$ is an isometric linear anti-homomorphism on $L^1(G)$.
- We calculate:

$$
f * F(s) = \int f(t)F(t^{-1}s) dt = \int f(t^{-1})\nabla(t^{-1})F(ts) dt = F \cdot \tilde{f},
$$

the module action of $L^1(\mathit{G})$ on $L^\infty(\mathit{G}).$

- Using Δ this is $(\tilde{f} \otimes id)\Delta(F)$.
- So M is a state with, for any $f\in L^1(G), F\in L^\infty(G),$

 $\langle M, (f \otimes id)\Delta(F)\rangle = \langle M, F\rangle\langle 1, f\rangle \Leftrightarrow$ (id $\otimes M)\Delta(F) = \langle M, F\rangle 1.$

Non-commutative: Can't talk about points of course. . .

KOD KARD KED KED B YOUR

Towards the Fourier algebra: group algebras

We let G act on $L^2(G)$ by the left-regular representation:

$$
(\lambda(s)\xi)(t)=\xi(s^{-1}t)\qquad (\xi\in L^2(G), s,t\in G).
$$

The s^{-1} arises to make $G \mapsto B(H)$; $s \mapsto \lambda(s)$ a group homomorphism.

We can integrate this to get a contractive homomorphism $\lambda : L^1(G) \rightarrow B(L^2(G)).$ The action of $L^1(G)$ on $L^2(G)$ is just convolution:

$$
\lambda(f)\xi(t)=\int_G f(s)\lambda(s)\xi(t)=\int_G f(s)\xi(s^{-1}t)\,ds.
$$

Let the norm closure of $L^1(G)$ in $B(L^2(G))$ be $C_r^*(G)$, the (reduced) group C^* -algebra. The weak-operator closure is $VN(G)$, the group von Neumann algebra. Equivalently, $VN(G)$ is $\{\lambda(s): s \in G\}''$.

We can similarly form the right-regular representation $\rho(s)\xi(t)=\xi(ts)\nabla(s)^{1/2}$ leading to right group von Neumann algebra $\mathit{VN}_r(G)$. Then $\mathit{VN}(G)' = \mathit{VN}_r(G)$ and $VN_r(G)' = VN(G)$.

(Particularly short proofs of this may be sent to the speaker on a postcard.)

KOD KARD KED KED B YOUR

As a Hopf von Neumann algebra

We claim that there is a normal, unital injective ∗-homomorphism Δ : VN(G) \rightarrow VN(G \times G) satisfying

 $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s) = \lambda(s,s).$

Here we identify $VN(G) \overline{\otimes} VN(G)$ with $VN(G \times G)$. If Δ exists, then it's uniquely defined by this property.

Define $\hat{W}: L^2(G\times G)\rightarrow L^2(G\times G)$ by

 $\hat{W}\xi(s,t) = \xi(ts,t)$ $(\xi \in L^2(G \times G), \xi, \eta \in G).$

Then \hat{W} is unitary, and

$$
(\hat{W}^*(1 \otimes \lambda(r))\hat{W}\xi)(s,t) = ((1 \otimes \lambda(r))\hat{W}\xi)(t^{-1}s,t)
$$

= $(\hat{W}\xi)(t^{-1}s, r^{-1}t) = \xi(r^{-1}tt^{-1}s, r^{-1}t)$
= $(\lambda(r) \otimes \lambda(r))\xi(s,t).$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA} \rightarrow \overline{BA}

Definition of Λ

So we could define ∆ by

$$
\Delta(x) = \hat{W}^*(1 \otimes x) \hat{W} \qquad (x \in VN(G)).
$$

Then obviously Δ is an injective, unital, normal $*$ -homomorphism, and $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s)$, so by normality, Δ must map into $VN(G \times G)$. Obviously $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

So (VN(G), Δ) is a Hopf von Neumann algebra, and hence the pre-adjoint of Δ turns the predual of $VN(G)$ into a Banach algebra.

- 30

 Ω

The Fourier Algebra

Let $A(G)$ be the predual of $VN(G)$.

- So $A(G)$ is the (unique) Banach space such that $A(G)^* = \textit{VN}(G).$
- As $\{\lambda(s):s\in G\}$ has weak*-dense linear span in $\mathit{VN}(G)$, for $\omega\in\mathit{A}(G)$, the values

$$
\omega(s):=\langle\lambda(s),\omega\rangle\qquad(s\in\mathsf{G})
$$

completely determine ω .

- As $G \to VN(G)$; $s \mapsto \lambda(s)$ is SOT continuous, $s \mapsto \omega(s)$ is continuous.
- We identify ω with this continuous function, and so realise $A(G)$ as a space of continuous functions.
- Another concrete realisation of the predual is as a quotient of the trace-class operators on $L^2(G)$. For $\xi, \eta \in L^2(G)$ let $\omega_{\xi, \eta}$ be the normal functional $VN(G) \ni x \mapsto (x\xi|\eta).$

o Then

$$
\omega_{\xi,\eta}(s)=(\lambda(s)\xi|\eta)=\int_G\xi(s^{-1}t)\overline{\eta(t)}\;dt\;\Longrightarrow\;\omega_{\xi,\eta}\in C_0(G).
$$

 \equiv \cap α

The Fourier Algebra

• So $A(G)$ is a subspace of $C_0(G)$.

- But the norm comes from $A(G)^* = \textit{VN}(G);$ the map $A(G) \to \textit{C}_0(G)$ is norm-decreasing and has dense range.
- \bullet We use the coproduct Δ to turn $A(G)$ into a Banach algebra

$$
\langle \lambda(s), \omega_1 \star \omega_2 \rangle := \langle \Delta(\lambda(s)), \omega_1 \otimes \omega_2 \rangle = \langle \lambda(s) \otimes \lambda(s), \omega_1 \otimes \omega_2 \rangle = \omega_1(s) \omega_2(s).
$$

Here I use " x " for a product, not to denote convolution.

- Indeed, we see that the product is the point-wise product. $A(G) \rightarrow C_0(G)$ is also an algebra homomorphism.
- **•** This is Eymard's Fourier algebra.
- [Walter] If $A(G)$ and $A(H)$ are isometrically isomorphic, then G is isomorphic to (maybe the opposite of) H . If we insist on *completely* isometric, we have that G is isomorphic to H .

= ೨೦೦

For abelian groups

If G is abelian, we can form the Pontryagin dual \tilde{G} :

- the collection of all continuous characters $G \to \mathbb{T}$;
- with group product the pointwise product $(\phi_1 \phi_2)(s) = \phi_1(s) \phi_2(s)$.
- with topology given by uniform convergence on compacta.

We then have the Fourier transform:

$$
\mathcal{F}: L^2(G) \to L^2(\hat{G}); \qquad \mathcal{F}(f)(\phi) = \int_G f(s)\overline{\phi(s)} \; ds
$$

If we normalise the Haar measures correctly, $\mathcal F$ is unitary.

- the dual of $\mathbb Z$ is $\mathbb T$, where $\theta \in [0, 2\pi)$ parameterises the character $\mathbb{Z} \ni n \mapsto e^{in\theta}$;
- the dual of \R is \R , where $x\in\R$ parameterises the character $\R\ni t\mapsto e^{itx}.$ You need a 2π somewhere to get the normalisation correct.

 $=$ Ω

The Fourier Transform

We regard $L^\infty(\hat G)$ as also acting on $L^2(\hat G)$, by multiplication.

Then we have a ∗-isomorphism

$$
VN(G) \to L^{\infty}(\hat{G}) \qquad x \mapsto \mathcal{F} \circ x \circ \mathcal{F}^{-1},
$$

(On integrable functions, this will reduce to (some variant of) the familiar Fourier transform formula.)

This ∗-isomorphism is normal, and so induces an isomorphism $A(G) \cong L^1(\hat{G})$.

Our intuition is that $A(G)$, even for non-abelian G, can be thought of as being the L^1 algebra on the "group" \hat{G} .

 Ω

Amenability for $A(G)$

Theorem (Dunkl–Ramirez, Granirer, Renaud)

For any G there is a state $M\in VN(\mathsf{G})^*$ with $(\mathsf{id}\mathop{\otimes} M)\Delta(x)=\langle M, x\rangle 1$ for $x \in VN(G)$.

So \hat{G} is always amenable.

Theorem (Leptin)

 $A(G)$ has a bounded approximate identity if and only if G is amenable.

Of course, $L^1(G)$ always has a bounded approximate identity.

 QQ

Duality between G and \hat{G}

- \bullet Given a homomorphism $G \to H$ we can define a homomorphism $\hat{H} \to \hat{G}$. These establishes an anti-equivalence of categories.
- Pontryagin duality: $\hat{\hat{\mathsf{G}}}=\mathsf{G}$ in a canonical fashion (biduality functor is naturally equivalent to the identity.)
- We have seen that $A(G)$ behaves "like" it is $L^1(\hat G).$
- **•** Can we make this more precise? Single out a collection of objects, which include $A(G)$ and $L^1(G)$, which has a (bi)duality theory, and forms a category.
- Work of e.g. Takesaki, Tatsuuma, Stinespring, later Enock, Schwarz, Kac, Vainermann lead to "Kac algebras": Hopf von Neumann algebras (M, Δ) with many other "gadgets".
- While this works, it is complicated, and Woronowicz's notion of a *compact* quantum group does not fit into this framework: this is where we next look.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \begin{array}{ccc} \square & \vee & \vee & \square & \vee & \vee & \square & \vee \end{array} \right. & \left. \begin{array}{ccc} \square & \vee & \vee & \vee & \square & \vee \end{array} \right. & \left. \begin{array}{ccc} \square & \vee & \vee & \vee & \square & \vee \end{array} \right. & \left. \begin{array}{ccc} \square & \vee & \vee & \vee & \square & \vee \end{array} \right. & \left. \begin{array}{ccc} \square & \vee & \vee & \vee & \vee & \vee \end{$

Unitary implementing the coproduct

In defining Δ on $VN(G)$ I made use of a unitary \hat{W} . Set

$$
W=\sigma \hat{W}^*\sigma \implies W\xi(s,t)=\xi(s,s^{-1}t),
$$

where $\sigma \in \mathcal{B}(L^2(G\times G))$ is the "swap map" $\sigma(\xi)(s,t)=\xi(t,s).$ For $F\in L^\infty(G)$ acting on $L^2(G)$ by multiplication,

 $W^*(1 \otimes F)W\xi(s,t) = (1 \otimes F)W\xi(s,st) = F(st)W\xi(s,st) = F(st)\xi(s,t),$

and so, again, $W^*(1 \otimes F)W = \Delta(F)$.

KED KARD KED KED E VOOR

Where does W live?

$$
W\xi(s,t)=\xi(s,s^{-1}t)
$$

- \bullet Informally, given a von Neumann algebra M, we think of $L^{\infty}(G)\overline{\otimes}M$ as being bounded measurable functions $G \rightarrow M$.
- **•** Then $s \mapsto \lambda(s)$ is even SOT continuous, so defines $\Lambda \in L^{\infty}(G)\overline{\otimes}VN(G)$ say, which acts on $\xi \otimes \eta$ as

$$
\Lambda(\xi \otimes \eta)(s) = \xi(s)\lambda(s)\eta \text{ under } L^2(G \times G) = L^2(G, L^2(G)),
$$

$$
\implies \Lambda(\xi \otimes \eta)(s, t) = \xi(s)\eta(s^{-1}t) = W(\xi \otimes \eta)(s, t).
$$

- **•** So W "is" the left-regular representation, and $W \in L^{\infty}(G) \overline{\otimes} VM(G)$.
- \bullet More carefully, we could use Tomita's theorem and check that W commutes with $F \otimes \rho(s) \in L^{\infty}(G) \overline{\otimes} V N_r(G)$ so $W \in L^{\infty}(G)' \overline{\otimes} VN_r(G)' = L^{\infty}(G) \overline{\otimes} VN(G).$

 $=$ Ω

Using $W \in L^{\infty}(G) \overline{\otimes}$ VN(G)

The map $\lambda:L^1(G)\rightarrow VN(G)$ is actually

$$
\lambda(f)=(f\otimes \mathrm{id})(W)\qquad (f\in L^1(G)).
$$

This should be true given the informal thinking on the previous slide! If $\xi, \eta \in L^2(G)$ and $f = \xi \overline{\eta} \in L^1(G)$, then f is $\omega_{\xi, \eta}$ restricted to $L^\infty(\mathsf{G})\subseteq \mathcal{B}(L^2(\mathsf{G}))$ and

$$
\left((\omega_{\xi,\eta}\otimes\iota)W\gamma\big|\delta\right) = \left(W(\xi\otimes\gamma)\big|\eta\otimes\delta\right) = \int_{G\times G}\xi(s)\gamma(s^{-1}t)\overline{\eta(s)\delta(t)}\;ds\;dt
$$

$$
= \int_{G\times G}f(s)\gamma(s^{-1}t)\overline{\delta(t)}\;ds\;dt = \left(f*\gamma\big|\delta\right).
$$

Thus indeed $(\omega_{\xi,\eta} \otimes \iota)W = \lambda(f)$.

- 30

 Ω

For the dual

 $W\xi(s,t) = \xi(ts,t)$

Similarly, we calculate $(\omega_{\xi,\eta} \otimes id)(W)$:

$$
\begin{aligned} & \big((\omega_{\xi,\eta} \otimes \mathrm{id}) (\hat{W}) \gamma \big| \delta \big) = \big(\hat{W} (\xi \otimes \gamma) \big| \eta \otimes \delta \big) \\ &= \int_{G \times G} \xi (t \mathfrak{s}) \gamma (t) \overline{\eta(\mathfrak{s}) \delta(t)} \; \text{d}s \; \text{d}t = \int_G (\lambda (t^{-1}) \xi | \eta) \gamma (t) \overline{\delta(t)} \; \text{d}t. \end{aligned}
$$

- So $(\omega_{\xi,\eta} \otimes \mathsf{id})(\hat W)$ is the operator on $L^2(G)$ of multiplication by the continuous function $t\mapsto \omega(t^{-1}) := (\lambda(t^{-1})\xi|\eta).$
- **•** So up to an inverse, this is the embedding of $A(G)$ into $C_0(G) \subseteq L^{\infty}(G)$.
- So W allows us to reconstruct $L^\infty(\mathit{G}),\mathit{VN}(\mathit{G}),$ $L^1(\mathit{G}),$ $A(\mathit{G})$ their products and the maps between them.

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

- 3

 Ω

Summary

- Introduced $L^1(G)$ and $A(G)$ from a von Neumann algebra perspective.
- Motivated, a little, that these are "dual" to each other:
	- \triangleright Both from quite a "formal" level;
	- \blacktriangleright Also at the level of how proofs works.
- **•** Saw how a single unitary operator essentially stores all the information.

What's next:

- We've focused on von Neumann algebras: but arguably the *topology* is more basic than the *measure theory*. So we should be looking at C^* -algebras.
- Haven't yet mentioned quantum groups.

G.

 Ω