Locally compact quantum groups 2. C*-algebras and compact quantum groups

Matthew Daws

Leeds

Fields, May 2014

Obligatory non-commutative topology 2

Theorem (Gelfand)

Let A be a commutative C^* -algebra, and let Φ_A be the collection of characters on A, given the relative weak*-topology. Then Φ_A is a locally compact Hausdorff space, and the map

$$\mathcal{G}: A \to C_0(\Phi_A); \quad \mathcal{G}(a)(\varphi) = \varphi(a),$$

is an isometric isomorphism.

But how do we capture the notion of a continuous map between Φ_A and Φ_B ?

• *-homomorphisms $A \to B$ correspond to *proper* continuous maps $\Phi_B \to (\Phi_A)_{\infty}$, the one-point compactification of Φ_A .

Multiplier algebras

Let A be a C^* -algebra.

• Regard A as acting non-degenerately (so $lin\{a(\xi): a \in A, \xi \in H\}$ is dense in H) on H. Then

$$M(A) = \{ T \in \mathcal{B}(H) : Ta, aT \in A (a \in A) \}.$$

• Regard A as a subalgebra of its bidual A^{**} ; then

$$M(A) = \{x \in A^{**} : xa, ax \in A \ (a \in A)\}.$$

• These are isomorphic (and independent of H).

An abstract way to think of M(A) is as the pairs of maps (L,R) from A to A with aL(b)=R(a)b. A little closed graph argument shows that L and R are bounded, and that

$$L(ab) = L(a)b, \quad R(ab) = aR(b) \qquad (a, b \in A).$$

The involution in this picture is $(L,R)^* = (R^*,L^*)$ where $R^*(a) = R(a^*)^*$, $L^*(a) = L(a^*)^*$. You can move between these pictures by a bounded approximate identity argument.

Multiplier algebras 2

- M(A) is the largest C*-algebra containing A as an essential ideal: if $x \in M(A)$ and axb = 0 for all $a, b \in A$, then x = 0.
- So M(A) is the largest (sensible) unitisation of A.

Applied to $C_0(X)$, unitisations correspond to compactifications of X.

- Indeed, $M(C_0(X))$ is isomorphic to $C^b(X)$ the algebra of all bounded continuous functions on X.
- The character space of $C^b(X)$ is βX , the Stone-Čech compactification.

Morphisms

A morphism $A \to B$ between C^* -algebras is a non-degenerate *-homomorphism $\theta: A \to M(B)$.

• θ is non-degenerate if $\{\theta(a)b : a \in A, b \in B\}$ is linearly dense in B.

The strict topology on M(B) is:

$$x_{\alpha} \to x \quad \Leftrightarrow \quad x_{\alpha}b \to xb, \ bx_{\alpha} \to bx \quad (b \in B).$$

Non-degeneracy is equivalent to:

- For any (or all) bounded approximate identity (e_{α}) in A, the net $(\theta(e_{\alpha}))$ converges strictly to $1 \in M(B)$;
- θ is the restriction of a strictly continuous *-homomorphism $\tilde{\theta}: M(A) \to M(B)$.

We can construct the extension: $\tilde{\theta}(x)\theta(a)b = \theta(xa)b$ and so forth.

Application

Theorem

Let X, Y be locally compact spaces.

- Given a continuous map $\phi: Y \to X$, the map $\theta: C_0(X) \to C^b(Y)$; $f \mapsto f \circ \phi$ is a morphism.
- Any morphism $C_0(X) \to C_0(Y)$ is induced in this way.

So we have some machinery: but it captures exactly what we want!

Compact quantum groups

Let G be a compact semigroup (associative, continuous product).

- Define $\Delta: C(G) \to C(G \times G); \Delta(f)(s,t) = f(st)$ which is a unital *-homomorphism;
- again this is coassociative $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$;
- Every coassociative $\Delta: C(G) \to C(G \times G)$ arises in this way (from some product on G).

How do we capture the notion of a group?

- Write down the identity and inverse, as maps on C(G)?
- Inelegant; doesn't generalise.

Theorem

A compact semigroup G is a group if and only if satisfies cancellation:

$$st = sr \implies t = r$$
, $ts = rs \implies t = r$.

If you're bored: prove this.

Cancellation as density

Theorem

G satisfies cancellation if and only if

$$lin\{(a \otimes 1)\Delta(b) : a, b \in C(G)\}, \qquad lin\{(1 \otimes a)\Delta(b) : a, b \in C(G)\}$$

are dense in $C(G \times G) = C(G) \otimes C(G)$.

Sketch proof.

- Commutative, so these are *-subalgebras, so can apply Stone-Weierstrauss: dense if and only if they separate points;
- $(a \otimes 1)\Delta(b)(s,t) = a(s)b(st);$
- so st = sr if and only if f(s, t) = f(s, r) for all f in the 1st set;
- so separates points if and only if cancellation.

Compact quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C^* -algebra A with a coassociative unital *-homomorphism $\Delta:A\to A\otimes A$ with

$$\{(a\otimes 1)\Delta(b): a,b\in A\}, \qquad \{(1\otimes a)\Delta(b): a,b\in A\}$$

linearly dense in $A \otimes A$.

So if A is commutative, we exactly capture the notion of a compact group.

Let Γ be a discrete group, and $A = C_r^*(\Gamma)$ the reduced group C^* -algebra, say generated by $\{\lambda(s) : s \in \Gamma\}$.

- Exactly as in the last lecture, can construct a coproduct $\Delta: \lambda(s) \mapsto \lambda(s) \otimes \lambda(s)$.
- Cancellation is easy to verify: $(\lambda(st^{-1}) \otimes 1)\Delta(\lambda(t)) = \lambda(s) \otimes \lambda(t)$.
- ullet Every cocommutative $(\Delta = \sigma \Delta)$ compact quantum group is of this form.

Construction of Haar state

- From now on, (A, Δ) is a compact quantum group.
- Turn A^* into a (completely contractive) Banach algebra:

$$\langle \mu \star \lambda, a \rangle = \langle \mu \otimes \lambda, \Delta(a) \rangle$$
 $(\mu, \lambda \in A^*, a \in A).$

Theorem

There is a unique state φ with $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \langle \varphi, a \rangle 1$.

Very sketch proof.

- Equivalent to $\varphi \star \mu = \mu \star \varphi = \langle \mu, 1 \rangle \varphi$.
- If want this for one state μ then $\varphi = \lim \frac{1}{n} (\mu + \mu^2 + \dots + \mu^n)$.

See van Daele, PAMS 1995.

For $a \in C(G)$:

$$(\operatorname{id}\otimes\varphi)\Delta(\mathsf{a})(t)=\int_{\mathcal{G}}\mathsf{a}(ts)\;d\varphi(s),\quad \langle \varphi,\mathsf{a}
angle 1(t)=\int_{\mathcal{G}}\mathsf{a}(s)\;d\varphi(s).$$

Regular representation

Let \mathbb{G} be the "object" which is our compact quantum group.

• Let $L^2(\mathbb{G})$ be the GNS space for the Haar state φ . Let $\pi_{\varphi}, \xi_{\varphi}$ be the representation and the cyclic vector.

Let $\pi:A\to\mathcal{B}(K)$ be some auxiliary non-degenerate *-representation.

Theorem

There is a unitary $U \in \mathcal{B}(K \otimes L^2(\mathbb{G}))$ with

$$U^*(\xi \otimes \pi_{\varphi}(a)\xi_{\varphi}) = (\pi \otimes \pi_{\varphi})(\Delta(a))(\xi \otimes \xi_{\varphi}).$$

(All this theory is due to Woronowicz; some presentation motivated by Maes, van Daele, Timmermann.)

Position, implementation, representations

- We have that U is a multiplier of $\pi(A) \otimes \mathcal{B}_0(L^2(\mathbb{G}))$.
- $\mathcal{B}_0(L^2(\mathbb{G}))$ is the compact operators on $L^2(\mathbb{G})$.
- Also $(\pi \otimes \pi_{\varphi})\Delta(a) = U^*(1 \otimes \pi_{\varphi}(a))U$.

A SOT continuous unitary representation π of a compact group G gives a map

$$G \to \mathcal{B}(H) = M(\mathcal{B}_0(H)); \quad s \mapsto \pi(s).$$

This is continuous for the strict topology; given $f \in C_0(G, \mathcal{B}_0(H))$ the map

$$G \to \mathcal{B}_0(H)$$
; $s \mapsto \pi(s)f(s)$

is continuous. So

$$(\pi(s))_{s\in G}\in M(C_0(G)\otimes \mathcal{B}_0(H)).$$

Given $V \in M(C_0(G) \otimes B_0(H))$ how do we recognise that it's a representation?

Representations continued

$$C^b_{str}(G,\mathcal{B}_0(H)) \cong M(C_0(G) \otimes \mathcal{B}_0(H))$$
$$(\pi(s)) \leftrightarrow V \qquad (s \mapsto f(s)\pi(s)\xi) \leftrightarrow V(f \otimes \xi) \quad (f \in C_0(G), \xi \in H).$$

- $\pi(s)$ unitary for all s corresponds to V being a unitary operator.
- a representation means:

$$(\Delta \otimes \mathsf{id}) V \leftrightarrow (\pi(\mathsf{s}t))_{(\mathsf{s},t) \in \mathsf{G} \times \mathsf{G}} = (\pi(\mathsf{s})\pi(t))_{(\mathsf{s},t) \in \mathsf{G} \times \mathsf{G}} \leftrightarrow V_{13} V_{23}.$$

• This is "leg-numbering notation": $V_{23}=1\otimes V$ acts on the 2nd/3rd components; $V_{13}=\sigma_{12}\,V_{23}\sigma_{12}.$

Definition

A corepresentation of (A, Δ) is $V \in M(A \otimes \mathcal{B}_0(H))$ with $(\Delta \otimes id)(V) = V_{13}V_{23}$.

Left regular representation

Theorem

If $\pi:A\to \mathcal{B}(H)$ is faithful, then $U\in M(\pi(A)\otimes \mathcal{B}_0(L^2(G))$ is a corepresentation.

• π faithful, so $M(\pi(A) \otimes \mathcal{B}_0(L^2(G)) \cong M(A \otimes \mathcal{B}_0(L^2(G)))$.

Theorem

For
$$a,b\in A$$
 set $\xi=\pi_{\varphi}(a)\xi_{\varphi}, \eta=\pi_{\varphi}(b)\xi_{\varphi}$. Then
$$(\operatorname{id}\otimes\omega_{\xi,\eta})(U)=(\operatorname{id}\otimes\varphi)(\Delta(b^*)(1\otimes a))$$

$$(\operatorname{id}\otimes\omega_{\xi,\eta})(U^*)=(\operatorname{id}\otimes\varphi)((1\otimes b^*)\Delta(a))$$

(Here I supress the π).

By cancellation, such slices are hence dense in A.

Finite dimensional corepresentations

- If H finite dimensional then pick a basis, $H \cong \mathbb{C}^n$.
- $\mathcal{B}_0(H) \cong \mathbb{M}_n$ and $M(A \otimes \mathcal{B}_0(H)) \cong A \otimes \mathcal{B}_0(H) \cong \mathbb{M}_n(A)$.
- A unitary $V = (V_{ij})$ is a corepresentation if and only if

$$\Delta(V_{ij}) = \sum_{k=1}^n V_{ik} \otimes V_{kj}.$$

• A subspace $K \subseteq H$ is *invariant* for V if

$$V(1 \otimes p) = (1 \otimes p)V(1 \otimes p)$$

for $p: H \to K$ the orthogonal projection.

- Given $V \in M(A \otimes \mathcal{B}_0(H_V))$ and $W \in M(A \otimes \mathcal{B}_0(H_W))$ an operator $T : H_V \to H_W$ is an intertwiner if $W(1 \otimes T) = (1 \otimes T)V$.
- Hence have notions of being *irreducible*, a *subcorepresentation*, *(unitary) equivalence* and so forth.

Schur's lemma

Theorem (Schur's Lemma)

Let x intertwine corepresentations W, V. The kernel, and the closure of the image, of x are invariant subspaces of W, respectively, V. If

- W and V are irreducible; or
- W and V are finite-dimensional of the same dimension and one is irreducible,

then x = 0 if W, V are not equivalent; if $x \neq 0$ then x is invertible. Then span of such invertibles is one-dimensional.

Averaging with the Haar state

Theorem

Let W, V be corepresentations, and let $x \in \mathcal{B}(H_W, H_V)$. Then

$$y = (\varphi \otimes id)(V^*(1 \otimes x)W) \in \mathcal{B}(H_W, H_V)$$

satisfies $V^*(1 \otimes y)W = 1 \otimes y$. If x compact, so is y.

Proof.

Using
$$(\varphi \otimes id)\Delta(\cdot) = \varphi(\cdot)1$$
,

$$\begin{split} (\varphi \otimes \operatorname{id} \otimes \operatorname{id})(\Delta \otimes \operatorname{id})(V^*(1 \otimes x)W) &= 1 \otimes (\varphi \otimes \operatorname{id})(V^*(1 \otimes x)W) = 1 \otimes y \\ (\Delta \otimes \operatorname{id})(V^*(1 \otimes x)W) &= V_{23}^* V_{13}^*(1 \otimes 1 \otimes x) W_{13} W_{23} \\ (\varphi \otimes \operatorname{id} \otimes \operatorname{id})(V_{23}^* V_{13}^*(1 \otimes 1 \otimes x) W_{13} W_{23}) &= V^*(1 \otimes y)W. \end{split}$$

If V is unitary then $(1 \otimes y)W = V(1 \otimes y)$ so we have an intertwiner.

Applications 1

Theorem

An irreducible unitary corepresentation is finite-dimensional.

Proof.

Let V be the corepresentation.

• Pick a compact $x \in \mathcal{B}_0(H_V)$ and average to a compact intertwiner

$$y = (\varphi \otimes id)(V^*(1 \otimes x)V) \in \mathcal{B}(H_U, H_V)$$

- By Schur, y = 0 or $y \in \mathbb{C}1$.
- y is compact, so if y = t1 for $t \neq 0$ we're done.
- Let x vary through a net of finite-dimensional orthogonal projections to see that y must be non-zero for some choice.

Applications 2

Theorem

Any unitary corepresentation V decomposes as the direct sum of irreducibles.

Sketch proof.

- If V is unitary then if K is an invariant subspace for V so is K^{\perp} .
- So the collection of intertwiners from V to itself is a C^* -algebra B say.
- The previous averaging argument shows that we can find a bounded approximate identity in B consisting of compact operators.
- So *B* is the direct sum of matrix algebras.
- ullet So V decomposes as finite-dimensional corepresentations.
- Can obviously decompose finite-dimensional corepresentations into irreducibles.

Applications 3

Theorem

Let V be an irreducible unitary corepresentation of (A, Δ) . Then V is equivalent to a subrepresentation of U.

Proof.

• Pick any $x \in \mathcal{B}(L^2(\mathbb{G}), H_V)$ and average to an intertwiner

$$y = (\varphi \otimes id)(V^*(1 \otimes x)U).$$

• If y is non-zero, use Schur to conclude y is onto. Also y^* is an intertwiner, injective by Schur, so gives required equivalence.

Continued proof

$$y=(\varphi\otimes \mathrm{id})(V^*(1\otimes x)U).$$

• Maybe y=0 for all x, so test on rank-one maps $x=\theta_{\xi,a\xi_{\varphi}}$, giving

$$\begin{split} 0 &= (yb\xi_{\varphi}|\eta) = \langle \varphi \otimes \omega_{b\xi_{\varphi},\eta}, V^*(1 \otimes \theta_{\xi,\mathsf{a}\xi_{\varphi}})U \rangle \\ &= \varphi \big((\mathsf{id} \otimes \omega_{\xi,\eta})(V^*)(\mathsf{id} \otimes \omega_{b\xi_{\varphi},\mathsf{a}\xi_{\varphi}})(U) \big) \\ &= \varphi \big((\mathsf{id} \otimes \omega_{\xi,\eta})(V^*)(\mathsf{id} \otimes \varphi)(\Delta(\mathsf{a}^*)(1 \otimes b)) \big) \end{split}$$

- Think of $V = (V_{ij}) \in \mathbb{M}_n(A)$.
- By cancellation, and taking ξ, η to be basis vectors, conclude that $0 = \varphi(V_{ii}^*a)$ for all $a \in A$.
- But V is unitary, so taking $a = V_{ij}$ gives

$$0 = \sum_{i} \varphi(V_{ij}^* V_{ij}) = \varphi(1) = 1.$$

Algebra of "matrix elements"

Definition

Let $A_0 \subseteq A$ be the linear span of matrix elements V_{ij} arising from all finite-dimensional (irreducible) unitary corepresentations $V = (V_{ij})$.

- *U* decomposes as a direct sum of (all the) irreducible (finite-dimensional) corepresentations.
- So also $L^2(\mathbb{G})$ decomposes as (finite-dimensional) invariant subspaces.
- Given $\xi, \eta \in L^2(\mathbb{G})$, approximate by vectors with "finite-support".
- So can approximate (id $\otimes \omega_{\xi,\eta}$)(U) by linear combination of matrix elements.
- So A_0 dense in A.
- A_0 is an algebra: tensor product of corepresentations ($V \bigcirc W = V_{12}W_{13}$).
- Is A_0 a *-algebra?