Locally compact quantum groups 2. C*-algebras and compact quantum groups

Matthew Daws

Leeds

Fields, May 2014

4.0.3

Matthew Daws (Leeds) **[Compact quantum groups](#page-21-0)** Fields, May 2014 1/22

画

The South Book

同 → →

 QQ

Obligatory non-commutative topology 2

Theorem (Gelfand)

Let A be a commutative C^{*}-algebra, and let Φ_A be the collection of characters on A, given the relative weak * -topology. Then Φ_A is a locally compact Hausdorfl space, and the map

$$
\mathcal{G}: A \to C_0(\Phi_A); \quad \mathcal{G}(a)(\varphi) = \varphi(a),
$$

is an isometric isomorphism.

But how do we capture the notion of a continuous map between Φ_A and Φ_B ?

• *-homomorphisms $A \rightarrow B$ correspond to *proper* continuous maps $\Phi_B \rightarrow (\Phi_A)_{\infty}$, the one-point compactification of Φ_A .

 QQ

→ 何 ト → ヨ ト → ヨ ト

4 D F

Multiplier algebras

Let A be a C[∗] -algebra.

• Regard A as acting non-degenerately (so $\text{lin}\{a(\xi): a \in A, \xi \in H\}$ is dense in H) on H . Then

 $M(A) = \{T \in \mathcal{B}(H) : Ta, aT \in A \ (a \in A)\}.$

Regard A as a subalgebra of its bidual A^{**} ; then

$$
M(A) = \{x \in A^{**} : xa, ax \in A \ (a \in A)\}.
$$

 \bullet These are isomorphic (and independent of H).

An abstract way to think of $M(A)$ is as the pairs of maps (L, R) from A to A with $aL(b) = R(a)b$. A little closed graph argument shows that L and R are bounded, and that

$$
L(ab) = L(a)b, \quad R(ab) = aR(b) \qquad (a, b \in A).
$$

The involution in this picture is $(L, R)^* = (R^*, L^*)$ where $R^*(a) = R(a^*)^*$, $L^*(a) = L(a^*)^*$. You can move between these pictures by a bounded approximate identity argument. **KOD KARD KED KED B YOUR**

Multiplier algebras 2

- $M(A)$ is the largest C^{*}-algebra containing A as an essential ideal: if $x \in M(A)$ and $axb = 0$ for all $a, b \in A$, then $x = 0$.
- \bullet So $M(A)$ is the largest (sensible) unitisation of A.

Applied to $C_0(X)$, unitisations correspond to compactifications of X.

- Indeed, $\mathcal{M}(\mathcal{C}_0(X))$ is isomorphic to $\mathcal{C}^b(X)$ the algebra of all bounded continuous functions on X.
- The character space of $C^b(X)$ is βX , the Stone-Čech compactification.

 QQ

 \mathcal{A} and \mathcal{A} in the set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

Morphisms

A *morphism A* \rightarrow *B* between C*-algebras is a *non-degenerate* *-homomorphism $\theta : A \rightarrow M(B)$.

 \bullet θ is non-degenerate if $\{\theta(a)b : a \in A, b \in B\}$ is linearly dense in B.

The strict topology on $M(B)$ is:

$$
x_{\alpha} \to x \quad \Leftrightarrow \quad x_{\alpha}b \to xb, \ bx_{\alpha} \to bx \quad (b \in B).
$$

Non-degeneracy is equivalent to:

- For any (or all) bounded approximate identity (e_{α}) in A, the net $(\theta(e_{\alpha}))$ converges strictly to $1 \in M(B)$;
- θ is the restriction of a strictly continuous ∗-homomorphism $\tilde{\theta}: M(A) \to M(B).$

We can construct the extension: $\widetilde{\theta}(x)\theta(a)b=\theta(xa)b$ and so forth.

KOD KARD KED KED B YOUR

Application

Theorem

Let X, Y be locally compact spaces.

- Given a continuous map $\phi: Y \to X$, the map $\theta:\mathsf{C}_0(X)\to\mathsf{C}^b(Y)$; $f\mapsto f\circ\phi$ is a morphism.
- Any morphism $C_0(X) \to C_0(Y)$ is induced in this way.

So we have some machinery: but it captures exactly what we want!

 QQ

医下环菌

4 D F

Compact quantum groups

Let G be a compact semigroup (associative, continuous product).

- \bullet Define $\Delta : C(G) \rightarrow C(G \times G); \Delta(f)(s,t) = f(st)$ which is a unital ∗-homomorphism;
- a again this is coassociative $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$;
- \bullet Every coassociative $\Delta : C(G) \rightarrow C(G \times G)$ arises in this way (from some product on G).

How do we capture the notion of a group?

- Write down the identity and inverse, as maps on $C(G)$?
- **Inelegant**; doesn't generalise.

Theorem

A compact semigroup G is a group if and only if satisfies cancellation:

 $st = sr \implies t = r$, $ts = rs \implies t = r$.

If you're bored: prove this.

KOD KARD KED KED B YOUR

Cancellation as density

Theorem

G satisfies cancellation if and only if

 $\ln\{(a\otimes 1)\Delta(b): a, b\in C(G)\}, \qquad \ln\{(1\otimes a)\Delta(b): a, b\in C(G)\}$

are dense in $C(G \times G) = C(G) \otimes C(G)$.

Sketch proof.

- Commutative, so these are ∗-subalgebras, so can apply Stone-Weierstrauss: dense if and only if they separate points;
- \bullet (a \otimes 1) $\Delta(b)(s,t) = a(s)b(st);$
- so $st = sr$ if and only if $f(s, t) = f(s, r)$ for all f in the 1st set;
- so separates points if and only if cancellation.

D.

 200

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Compact quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C^* -algebra A with a coassociative unital ∗-homomorphism ∆ : A → A ⊗ A with

 $\{(a\otimes 1)\Delta(b): a,b\in A\},\qquad \{(1\otimes a)\Delta(b): a,b\in A\}$

linearly dense in $A \otimes A$.

So if A is commutative, we exactly capture the notion of a compact group.

Let Γ be a discrete group, and $A = \mathcal{C}^*_\mathsf{r}(\Gamma)$ the reduced group \mathcal{C}^* -algebra, say generated by $\{\lambda(s): s \in \Gamma\}$.

- Exactly as in the last lecture, can construct a coproduct $\Delta : \lambda(s) \mapsto \lambda(s) \otimes \lambda(s).$
- Cancellation is easy to verify: $(\lambda(st^{-1})\otimes 1)\Delta(\lambda(t))=\lambda(s)\otimes \lambda(t).$
- Every cocommutative ($\Delta = \sigma \Delta$) compact quantum group is of this form.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Construction of Haar state

- From now on, (A, Δ) is a compact quantum group.
- Turn A ∗ into a (completely contractive) Banach algebra:

 $\langle \mu \star \lambda, a \rangle = \langle \mu \otimes \lambda, \Delta(a) \rangle$ $(\mu, \lambda \in A^*, a \in A).$

Theorem

There is a unique state φ with $(\varphi \otimes id)\Delta(a) = (id \otimes \varphi)\Delta(a) = \langle \varphi, a \rangle 1$.

Very sketch proof.

- **Equivalent to** $\varphi \star \mu = \mu \star \varphi = \langle \mu, 1 \rangle \varphi$.
- If want this for one state μ then $\varphi = \lim_{n} \frac{1}{n} (\mu + \mu^2 + \dots + \mu^n)$.

See van Daele, PAMS 1995.

For $a \in C(G)$:

$$
(\mathrm{id}\otimes\varphi)\Delta(a)(t)=\int_G a(ts)\ d\varphi(s),\quad \langle\varphi,a\rangle 1(t)=\int_G a(s)\ d\varphi(s).
$$

Regular representation

Let G be the "object" which is our compact quantum group.

Let $L^2(\mathbb{G})$ be the GNS space for the Haar state φ . Let π_φ,ξ_φ be the representation and the cyclic vector.

Let $\pi : A \to B(K)$ be some auxiliary non-degenerate *-representation.

Theorem

There is a unitary $U \in \mathcal{B}(K \otimes L^2(\mathbb{G}))$ with

$$
U^*(\xi\otimes \pi_{\varphi}(a)\xi_{\varphi})=(\pi\otimes \pi_{\varphi})(\Delta(a))(\xi\otimes \xi_{\varphi}).
$$

(All this theory is due to Woronowicz; some presentation motivated by Maes, van Daele, Timmermann.)

- 30

 Ω

イロト イ押ト イヨト イヨト

Position, implementation, representations

- We have that U is a multiplier of $\pi(A)\otimes {\mathcal B}_0(L^2(\mathbb{G})).$
- $\mathcal{B}_0(L^2(\mathbb{G}))$ is the compact operators on $L^2(\mathbb{G}).$
- Also $(\pi\otimes\pi_{\varphi})\Delta(a)=U^*(1\otimes\pi_{\varphi}(a))U.$

A SOT continuous unitary representation π of a compact group G gives a map

$$
G\to\mathcal{B}(H)=M(\mathcal{B}_0(H));\quad s\mapsto \pi(s).
$$

This is continuous for the strict topology; given $f \in C_0(G, \mathcal{B}_0(H))$ the map

$$
G\to\mathcal{B}_0(H); \quad s\mapsto \pi(s)f(s)
$$

is continuous. So

$$
(\pi(s))_{s\in G}\in M(C_0(G)\otimes \mathcal{B}_0(H)).
$$

Given $\mathsf{V}\in\mathcal{M}\big(\mathcal{C}_0(\mathit{G})\otimes\mathcal{B}_0(\mathit{H})\big)$ how do we recognise that it's a representation?

KED KARD KED KED E VOOR

Representations continued

$$
C_{str}^b(G, B_0(H)) \cong M(C_0(G) \otimes B_0(H))
$$

$$
(\pi(s)) \leftrightarrow V \qquad (s \mapsto f(s)\pi(s)\xi) \leftrightarrow V(f \otimes \xi) \quad (f \in C_0(G), \xi \in H).
$$

 $\bullet \pi(s)$ unitary for all s corresponds to V being a unitary operator.

• a representation means:

$$
(\Delta \otimes \mathsf{id})V \leftrightarrow (\pi(st))_{(s,t) \in G \times G} = (\pi(s)\pi(t))_{(s,t) \in G \times G} \leftrightarrow V_{13}V_{23}.
$$

• This is "leg-numbering notation": $V_{23} = 1 \otimes V$ acts on the 2nd/3rd components; $V_{13} = \sigma_{12} V_{23} \sigma_{12}$.

Definition

A corepresentation of (A, Δ) is $V \in M(A \otimes B_0(H))$ with $(\Delta \otimes id)(V) = V_{13}V_{23}$.

 Ω

イロト イ押ト イヨト イヨト

Left regular representation

Theorem

If $\pi:A\to\mathcal{B}(\mathcal{H})$ is faithful, then $U\in\mathcal{M}(\pi(A)\otimes\mathcal{B}_0(L^2(G))$ is a corepresentation.

 π faithful, so $M(\pi(A) \otimes B_0(L^2(G))) \cong M(A \otimes B_0(L^2(G)))$.

Theorem

For
$$
a, b \in A
$$
 set $\xi = \pi_{\varphi}(a)\xi_{\varphi}, \eta = \pi_{\varphi}(b)\xi_{\varphi}$. Then

$$
(\mathsf{id} \otimes \omega_{\xi,\eta})(U) = (\mathsf{id} \otimes \varphi)(\Delta(b^*)(1 \otimes a))
$$

$$
(\mathsf{id} \otimes \omega_{\xi,\eta})(U^*) = (\mathsf{id} \otimes \varphi)((1 \otimes b^*)\Delta(a))
$$

(Here I supress the π).

• By cancellation, such slices are hence dense in A.

KOD KARD KED KED B YOUR

Finite dimensional corepresentations

- If H finite dimensional then pick a basis, $H \cong \mathbb{C}^n$.
- \bullet $\mathcal{B}_0(H) \cong \mathbb{M}_n$ and $M(A \otimes \mathcal{B}_0(H)) \cong A \otimes \mathcal{B}_0(H) \cong \mathbb{M}_n(A)$.
- A unitary $V = (V_{ij})$ is a corepresentation if and only if

$$
\Delta(V_{ij})=\sum_{k=1}^n V_{ik}\otimes V_{kj}.
$$

A subspace $K \subseteq H$ is *invariant* for V if

$$
V(1\otimes p)=(1\otimes p)V(1\otimes p)
$$

for $p : H \to K$ the orthogonal projection.

- \bullet Given $V \in M(A \otimes \mathcal{B}_0(H_V))$ and $W \in M(A \otimes \mathcal{B}_0(H_W))$ an operator $T: H_V \to H_W$ is an *intertwiner* if $W(1 \otimes T) = (1 \otimes T)V$.
- Hence have notions of being *irreducible*, a *subcorepresentation*, *(unitary)* equivalence and so forth.

 \equiv \cap α

イロト イ押ト イヨト イヨト

Schur's lemma

Theorem (Schur's Lemma)

Let x intertwine corepresentations W, V . The kernel, and the closure of the image, of x are invariant subspaces of W , respectively, V . If

- W and V are irreducible; or
- W and V are finite-dimensional of the same dimension and one is irreducible,

then $x = 0$ if W, V are not equivalent; if $x \neq 0$ then x is invertible. Then span of such invertibles is one-dimensional.

 QQ

→ 何 ▶ → ヨ ▶ → ヨ

4 0 8

Averaging with the Haar state

Theorem

Let W, V be corepresentations, and let $x \in \mathcal{B}(H_W, H_V)$. Then

$$
y=(\varphi\otimes\mathsf{id})(V^*(1\otimes x)W)\in\mathcal{B}(H_W,H_V)
$$

satisfies $V^*(1 \otimes y)W = 1 \otimes y$. If x compact, so is y.

Proof

Using $(\varphi \otimes id)\Delta(\cdot) = \varphi(\cdot)1$,

 $(\varphi \otimes \mathsf{id} \otimes \mathsf{id})(\Delta \otimes \mathsf{id})(V^*(1 \otimes \chi)W) = 1 \otimes (\varphi \otimes \mathsf{id})(V^*(1 \otimes \chi)W) = 1 \otimes \chi$ $(\Delta \otimes id)(V^*(1 \otimes x)W) = V^*_{23}V^*_{13}(1 \otimes 1 \otimes x)W_{13}W_{23}$ $(\varphi \otimes \mathsf{id} \otimes \mathsf{id}) \big(V_{23}^* V_{13}^* (1 \otimes 1 \otimes \chi) W_{13} W_{23} \big) = V^*(1 \otimes \chi) \mathcal{W}.$

If V is unitary then $(1 \otimes y)W = V(1 \otimes y)$ so we have an intertwiner.

 QQ

K ロ > K @ > K 경 > K 경 > 시 경 +

Applications 1

Theorem

An irreducible unitary corepresentation is finite-dimensional.

Proof.

- Let V be the corepresentation.
	- Pick a compact $x \in \mathcal{B}_0(H_V)$ and average to a compact intertwiner

$$
y=(\varphi\otimes\mathsf{id})(V^*(1\otimes x)V)\in\mathcal{B}(H_U,H_V)
$$

- \bullet By Schur, $v = 0$ or $v \in \mathbb{C}1$.
- y is compact, so if $y = t1$ for $t \neq 0$ we're done.
- \bullet Let x vary through a net of finite-dimensional orthogonal projections to see that y must be non-zero for some choice.

 200

イロト イ押 トイヨト イヨ

Applications 2

Theorem

Any unitary corepresentation V decomposes as the direct sum of irreducibles.

Sketch proof.

- If V is unitary then if K is an invariant subspace for V so is $K^\perp.$
- So the collection of intertwiners from V to itself is a C^* -algebra B say.
- **•** The previous averaging argument shows that we can find a bounded approximate identity in B consisting of *compact* operators.
- \bullet So B is the direct sum of matrix algebras.
- So V decomposes as finite-dimensional corepresentations.
- Can obviously decompose finite-dimensional corepresentations into irreducibles.

画

 200

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Applications 3

Theorem

Let V be an irreducible unitary corepresentation of (A, Δ) . Then V is equivalent to a subrepresentation of U.

Proof.

Pick any $x \in \mathcal{B}(L^2(\mathbb{G}),H_V)$ and average to an intertwiner

 $y = (\varphi \otimes id)(V^*(1 \otimes x)U).$

If y is non-zero, use Schur to conclude y is onto. Also y^* is an intertwiner, injective by Schur, so gives required equivalence.

- E

 Ω

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 0 8

Continued proof

$$
y=(\varphi\otimes\mathsf{id})(V^*(1\otimes x)U).
$$

Maybe $y=0$ for all x , so test on rank-one maps $x=\theta_{\xi,a\xi_\varphi}$, giving

$$
\begin{aligned} 0 = (\mathsf{yb}\xi_\varphi|\eta) & = \langle \varphi \otimes \omega_{b\xi_\varphi,\eta}, V^*(1 \otimes \theta_{\xi,a\xi_\varphi}) U\rangle \\ & = \varphi\big((\mathsf{id} \otimes \omega_{\xi,\eta})(V^*)(\mathsf{id} \otimes \omega_{b\xi_\varphi,a\xi_\varphi})(U)\big) \\ & = \varphi\big((\mathsf{id} \otimes \omega_{\xi,\eta})(V^*)(\mathsf{id} \otimes \varphi)(\Delta(a^*)(1 \otimes b))\big) \end{aligned}
$$

- Think of $V = (V_{ii}) \in M_n(A)$.
- **•** By cancellation, and taking ξ, η to be basis vectors, conclude that $0 = \varphi(V_{ij}^*a)$ for all $a \in A$.

• But V is unitary, so taking $a = V_{ii}$ gives

$$
0=\sum_i \varphi(V_{ij}^*V_{ij})=\varphi(1)=1.
$$

4 日下

- 30

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

Algebra of "matrix elements"

Definition

Let $A_0 \subset A$ be the linear span of matrix elements V_{ii} arising from all finite-dimensional (irreducible) unitary corepresentations $V = (V_{ii})$.

- \bullet U decomposes as a direct sum of (all the) irreducible (finite-dimensional) corepresentations.
- So also $L^2(\mathbb{G})$ decomposes as (finite-dimensional) invariant subspaces.
- Given $\xi, \eta \in L^2(\mathbb{G})$, approximate by vectors with "finite-support".
- **•** So can approximate (id ⊗ $\omega_{\xi,\eta}$)(U) by linear combination of matrix elements.
- \bullet So A_0 dense in A.
- A₀ is an algebra: tensor product of corepresentations $(V \cap W = V_{12}W_{13})$.
- \bullet Is A_0 a $*$ -algebra?

KOD KARD KED KED B YOUR