Locally compact quantum groups 3. Further aspects of Compact Quantum Groups

Matthew Daws

Leeds

Fields, May 2014

CQGs: Recap

• Unital C^* -algebra A with coproduct Δ , satisfying "cancellation":

$$\overline{\mathsf{lin}}\{(a\otimes 1)\Delta(b): a,b\in A\} = \overline{\mathsf{lin}}\{(1\otimes a)\Delta(b): a,b\in A\} = A\otimes A.$$

- There exists an invariant Haar state φ with GNS $(L^2(\mathbb{G}), \pi_{\varphi}, \xi_{\varphi})$.
- Formed "left-regular corepresentation" $U \in M(A \otimes \mathcal{B}_0(L^2(\mathbb{G})))$:

$$U^*(\xi \otimes \pi_{\varphi}(a)\xi_{\varphi}) = (\pi \otimes \pi_{\varphi})(\Delta(a))(\xi \otimes \xi_{\varphi})$$

- Studied category of corepresentations.
- *U* decomposes as direct sum of all the irreducibles.
- $A_0 \subseteq A$ algebra of matrix coefficients.

Is A_0 a *-algebra?

- Typical element $V_{ij} \in A_0$; so is $V_{ij}^* \in A_0$?
- Motivates looking at $\overline{V} := (V_{ii}^*)$. Still a corepresentation:

$$\Delta(V_{ij}^*) = \Delta(V_{ij})^* = \Big(\sum_k V_{ik} \otimes V_{kj}\Big)^* = \sum_k V_{ik}^* \otimes V_{kj}^*.$$

Theorem

Let V be an irreducible corepresentation. Then \overline{V} is equivalent to a unitary corepresentation. In particular, $V_{ii}^* \in A_0$.

Proof.

Show that \overline{V} is a sub-corepresentation of U. Same game: choose $x \in \mathcal{B}(L^2(\mathbb{G}), H_V)$ and set

$$y=(\varphi\otimes \mathsf{id})(\overline{V}^*(1\otimes x)U),$$

argue that if $y \neq 0$ then y^* implements an isomorphism; if y = 0 for all x then derive contradiction.

"F-matrices"

Let $Irr(\mathbb{G})$ be the collection of equivalence classes of irreducible representations of (A, Δ) . Choose representatives u^{α} .

Theorem

For each α there is a positive, invertible, trace 1 matrix \mathbf{F}^{α} with

$$\varphi((u_{ip}^{\beta})^*u_{jq}^{\alpha}) = \begin{cases} F_{ji}^{\alpha} & : \alpha = \beta, p = q, \\ 0 & : otherwise. \end{cases}$$

Sketch proof.

We apply our averaging argument to $x = e_{ij}$ a matrix unit:

$$y = (\varphi \otimes \operatorname{id})((u^{\beta})^*(1 \otimes x)u^{\alpha}) = \cdots = \sum_{p,q} \varphi((u_{ip}^{\beta})^*u_{jq}^{\alpha})e_{pq}.$$

Then y intertwines u^{α} , u^{β} so is 0 if $\alpha \neq \beta$; otherwise $y = F_{ii}^{\alpha} 1$. Then . . .

(ㅁㅏ 4륜ㅏ 4분ㅏ - 분 - 쒸qC

Application: A basis

$$\varphi((u_{ip}^{\beta})^*u_{jq}^{\alpha})=\delta_{\alpha,\beta}\delta_{p,q}F_{ji}^{\alpha}.$$

Theorem

The set $\{u_{ij}^{\alpha}: \alpha \in Irr(\mathbb{G}), 1 \leq i, j \leq n_{\alpha}\}$ is a basis for A_0 .

Proof.

By definition this spans A_0 . If $\sum t_{ij}^{\alpha}u_{ij}^{\alpha}=0$ for some scalars (t_{ij}^{α}) then for any β,p,q ,

$$0 = \sum_{\alpha,i,j} t_{ij}^{\alpha} \varphi((u_{pq}^{\beta})^* u_{ij}^{\alpha}) = \sum_{i} F_{ip}^{\beta} t_{iq}^{\beta}.$$

As F^{β} is invertible, this implies that $t_{iq}^{\beta} = 0$ for all i, q, β , as required.

A Hopf *-algebra

We define $\epsilon: A_0 \to \mathbb{C}$ and $S: A_0 \to A_0$ by

$$\epsilon(u_{ij}^{\alpha}) = \delta_{i,j}, \qquad S(u_{ij}^{\alpha}) = (u_{ji}^{\alpha})^*.$$

Or equivalently, for any (finite-dimensional) unitary corepresentation V,

$$(S \otimes id)(V) = V^*, \qquad (\epsilon \otimes id)(V) = I.$$

Theorem

Then $(A_0, \Delta, \epsilon, S)$ is a Hopf *-algebra.

This gives a purely *algebraic* approach to compact quantum groups: the Hopf *-algebras which can arise are exactly those which are spanned by matrix coefficients of *unitary* corepresentations.

What happens in the commutative case?

V corresponds to a unitary group representation $\pi: G \to \mathbb{M}_n$:

$$V \in C(G) \otimes \mathbb{M}_n \cong C(G, \mathbb{M}_n), \qquad V = (\pi(s))_{s \in G}.$$

$$(\mathrm{id} \otimes \omega_{\xi,\eta})(V) = ((\pi(s)\xi|\eta))_{s \in G} \in C(G),$$

$$(\mathrm{id} \otimes \omega_{\xi,\eta})(V^*) = ((\pi(s^{-1})\xi|\eta))_{s \in G} \in C(G).$$

Such continuous functions are linearly dense in C(G).

$$(\epsilon \otimes id)(V) = I \Leftrightarrow \langle \epsilon, (\pi(s)\xi|\eta)_{s \in G} \rangle = (\xi|\eta)$$

so we conclude that $\epsilon \in C(G)^*$ is the functional: "evaluate at the group identity".

$$(S \otimes \operatorname{id})(V) = V^* \Leftrightarrow S((\pi(s)\xi|\eta)_{s \in G}) = (\pi(s^{-1})\xi|\eta)_{s \in G}$$

so $S: C(G) \to C(G)$ is the *-homomorphism induced by the group inverse. In general ϵ and S are unbounded.

Characters

Theorem

$$\varphi(u_{ip}^{\alpha}(u_{jq}^{\beta})^*) = \delta_{\alpha,\beta}\delta_{i,j}\frac{(F^{\alpha})_{qp}^{-1}}{\mathsf{Tr}((F^{\alpha})^{-1})}.$$

Set $t_{\alpha}=\operatorname{Tr}((F^{\alpha})^{-1})>0$ and define a linear map by

$$f_z:A_0\to\mathbb{C};\qquad u_{ij}^\alpha\mapsto ((F^\alpha)^{-z})_{ij}t_\alpha^{-z/2}.$$

Turn A_0^* into an algebra via $\langle \mu \star \lambda, a \rangle = \langle \mu \otimes \lambda, \Delta(a) \rangle$.

Theorem

Each f_z is a character on A_0 , $f_0 = \epsilon$, $f_z(a^*) = f_{\overline{z}}(a)^*$ and $f_z \star f_w = f_{z+w}$. If we define

$$\sigma(a) = f_1 \star a \star f_1 := (f_1 \otimes \operatorname{id} \otimes f_1) \Delta^2(a) \qquad (a \in A_0),$$

then
$$\varphi(ab) = \varphi(b\sigma(a))$$
. (Note: $\Delta^2 = (\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$).

 φ is not a *trace* but it nearly is.

Properties of Haar state on A

Theorem

 φ is "faithful" on A_0 ($\varphi(a^*a) = 0 \implies a = 0$).

Proof.

If $\varphi(a^*a)=0$ then $\varphi(a^*b)=0$ for all $b\in A_0$ (Cauchy-Schwarz). Set $b=u_{pq}^\beta$ and use an F-matrix argument again.

Theorem

For $a \in A$, $\varphi(a^*a) = 0 \Leftrightarrow \varphi(aa^*) = 0$.

Proof.

- Cauchy-Schwarz $\implies \varphi(a^*b) = 0$ for all $b \in A$.
- Find $(a_n) \subseteq A_0$ converging to a in norm.
- Recall automorphism σ ; then $0 = \lim_n \varphi(a_n^* \sigma(b)) = \lim_n \varphi(ba_n^*) = \varphi(ba^*)$.

Further conclusions

Theorem

 $N_{\varphi}=\{a\in A: \varphi(a^*a)=0\}$ is a two-sided ideal in A. If $\Lambda:A\to L^2(\mathbb{G})$; $a\mapsto \pi_{\varphi}(a)\xi_{\varphi}$ is the GNS map, then $\ker\Lambda=\ker\pi_{\varphi}=\ker\varphi=N_{\varphi}$.

Proof.

- Standard C^* -theory: N_{φ} is a left ideal.
- ullet Previous theorem shows N_{arphi} self-adjoint, so an ideal.
- Cauchy-Schwarz shows $\ker \varphi = \ker N_{\varphi}$ (A is unital!)
- By definition $\ker \Lambda = \mathcal{N}_{\varphi}$ and $\ker \pi_{\varphi} \subseteq \ker \Lambda$
- $\bullet \ \ a \in \mathsf{N}_{\varphi} \implies b^*a \in \mathsf{N}_{\varphi} \implies a^*b \in \mathsf{N}_{\varphi} \implies \pi_{\varphi}(a^*) = 0 \implies \pi_{\varphi}(a) = 0.$

 φ really "looks like" it is a trace!

"Reduced" C^* -algebras

$$\ker \Lambda = \ker \pi_{\varphi} = \ker \varphi = N_{\varphi}.$$

Let $C(\mathbb{G}) = A/N_{\varphi}$ a C^* -algebra; φ drops to $C(\mathbb{G})$ and is faithful.

Theorem

The GNS space for φ on $C(\mathbb{G})$ is isomorphic to $L^2(\mathbb{G})$, and $C(\mathbb{G}) \cong \pi_{\varphi}(A)$. There is a unital *-homomorphism $\Delta : C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ turning $C(\mathbb{G})$ into a compact quantum group.

Proof.

Form the left-regular representation, but this time use $\pi = \pi_{\varphi}$ to get $W \in M(\pi_{\varphi}(A) \otimes \mathcal{B}_0(L^2(\mathbb{G}))) = M(\mathcal{C}(\mathbb{G}) \otimes \mathcal{B}_0(L^2(\mathbb{G})))$ with

$$W^*(1 \otimes \pi_{\varphi}(a))W = (\pi_{\varphi} \otimes \pi_{\varphi})\Delta(a) \qquad (a \in A).$$

So define Δ on $C(\mathbb{G})$ by $\Delta(x) = W^*(1 \otimes x)W$. Density of A_0 in $C(\mathbb{G})$ shows that Δ does map to $C(\mathbb{G}) \otimes C(\mathbb{G})$; similarly cancellation holds for $C(\mathbb{G})$.

< ロ ト → □ ト → 豆 ト → 豆 → りへで

von Neumann algebra

Let $L^{\infty}(\mathbb{G}) = C(\mathbb{G})''$ in $\mathcal{B}(L^2(\mathbb{G}))$. Again define

$$\Delta(x) = W^*(1 \otimes x)W \qquad (x \in L^{\infty}(\mathbb{G})),$$

which by weak*-continuity maps into $L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{G})$.

Theorem

The normal extension of φ to $L^{\infty}(\mathbb{G})$ is faithful.

Proof.

- Let $\varphi(x^*x) = 0$ so $x\varphi_{\xi} = 0$.
- Kaplansky Density: bounded net (a_i) in $C(\mathbb{G})$ with converges strongly to x. For $b, c \in A_0$,

$$(x\sigma(b)\xi_{\varphi}|c\xi_{\varphi}) = \lim_{i} \varphi(c^*a_i\sigma(b)) = \lim_{i} \varphi(bc^*a_i) = \lim_{i} (a_i\xi_{\varphi}|cb^*\xi_{\varphi})$$
$$= (x\xi_{\varphi}|cb^*\xi_{\varphi}) = 0.$$

• Density: $(x\xi|\eta) = 0$ for $\xi, \eta \in L^2(\mathbb{G})$, so x = 0.

Discussion of amenability and $C^*(\Gamma)$

Let Γ be a discrete group, so $\widehat{\Gamma}:=C^*_r(\Gamma)$ is a compact quantum group, $\Delta(\lambda(s))=\lambda(s)\otimes\lambda(s)$

$$\varphi(\lambda(s)) = \delta_{s,e} \implies L^2(\widehat{\Gamma}) = \ell^2(\Gamma).$$

- Could also work with $C^*(\Gamma)$
- Existence of Δ follows from universal property, as $s \mapsto \lambda(s) \otimes \lambda(s)$ is a unitary representation.
- φ is now faithful if and only if Γ is amenable.
- $C_r^*(\Gamma) = C^*(\Gamma)$ if and only if Γ is amenable.
- $A_0 = \mathbb{C}[\Gamma]$ and $\epsilon : \lambda(s) \mapsto 1$ is bounded on $C^*(\Gamma)$.
- ϵ bounded on $C_r^*(\Gamma)$ if and only if Γ is amenable.

Duality

As
$$\Delta(\cdot)=W^*(1\otimes \cdot)W$$
 and $(\Delta\otimes \mathrm{id})(W)=W_{13}W_{23}$,
$$W_{12}^*W_{23}W_{12}=W_{13}W_{23}\implies W_{23}W_{12}=W_{12}W_{13}W_{23}.$$

- This says that W is multiplicative.
- See Baaj-Skandalis, Woronowicz and Sołtan-Woronowicz.
- $\widehat{W} := \sigma W^* \sigma$ is also multiplicative.

$$c_0(\widehat{\mathbb{G}}) = \big\{ (\omega \otimes \mathsf{id})(W) \big\}^{\|\cdot\|} = \big\{ (\mathsf{id} \otimes \omega)(\widehat{W}) \big\}^{\|\cdot\|} \qquad \ell^{\infty}(\widehat{\mathbb{G}}) = c_0(\widehat{\mathbb{G}})''$$

are a C^* -algebra and a von Neumann algbera with a coproduct

$$\widehat{\Delta}(x) = \widehat{W}^*(1 \otimes x)\widehat{W} \qquad (x \in c_0(\mathbb{G}), \ell^{\infty}(\mathbb{G})).$$

But here $\widehat{\Delta}: c_0(\widehat{\mathbb{G}}) \to M(c_0(\widehat{\mathbb{G}}) \otimes c_0(\widehat{\mathbb{G}}))$ is a morphism.

$$W \in L^{\infty}(\mathbb{G})\overline{\otimes}\ell^{\infty}(\widehat{\mathbb{G}}) \qquad W \in M(C(\mathbb{G})\otimes c_0(\widehat{\mathbb{G}})).$$

Identifying $c_0(\widehat{\mathbb{G}})$

$$\varphi((u_{ip}^{\beta})^*u_{jq}^{\alpha}) = \delta_{\alpha,\beta}\delta_{p,q}F_{ji}^{\alpha} \implies (u_{jq}^{\alpha}\xi_{\varphi}|u_{ip}^{\beta}\xi_{\varphi}) = \delta_{\alpha,\beta}\delta_{p,q}F_{ji}^{\alpha}.$$

- For fixed α , $\lim\{u_{iq}^{\alpha}\xi_{\varphi}\}$ is isomorphic to $\mathbb{C}^{n_{\alpha}}\otimes\mathbb{C}^{n_{\alpha}}$.
- So $L^2(\mathbb{G}) \cong \bigoplus_{\alpha \in Irr(\mathbb{G})} \mathbb{C}^{n_\alpha} \otimes \mathbb{C}^{n_\alpha}$.
- Under this isomorphism,

$$W = \sum_{\alpha} \sum_{i,j} u_{ij}^{\alpha} \otimes \mathsf{e}_{ij}^{\alpha}$$

where $e^{lpha}_{ij}\in\mathbb{M}_{n_{lpha}}$ acts on the (e.g.) first variable of $\mathbb{C}^{n_{lpha}}\otimes\mathbb{C}^{n_{lpha}}.$

- Now easy to see that $c_0(\widehat{\mathbb{G}}) = \{(\omega \otimes \operatorname{id})(W)\}^{\|\cdot\|}$ is isomorphic to $\bigoplus_{\alpha} \mathbb{M}_{n_{\alpha}}$.
- So as an algebra $c_0(\widehat{\mathbb{G}})$ is easy; but $\widehat{\Delta}$ is complicated (essentially encodes how $u^{\alpha} \oplus u^{\beta}$ is written as irreducibles.)

Discrete/Compact duality

- ullet is a discrete quantum group. (van Daele: axiomatisation not in terms of compact \mathbb{G} .)
- There are weights $\widehat{\varphi}, \widehat{\psi}$ on $\ell^{\infty}(\widehat{\mathbb{G}})$

$$(\operatorname{id} \otimes \widehat{\varphi}) \widehat{\Delta}(x) = \widehat{\varphi}(x) 1, \qquad (\widehat{\psi} \otimes \operatorname{id}) \widehat{\Delta}(x) = \widehat{\psi}(x) 1.$$

• For $x=(x^{\alpha})\in\ell^{\infty}(\widehat{\mathbb{G}})=\prod_{\alpha}\mathbb{M}_{n_{\alpha}}$,

$$\widehat{\varphi}(x) = \sum_{\alpha} \Lambda_{\alpha}^{2} \mathsf{Tr}_{\alpha} (F^{\alpha} x^{\alpha})$$

where $\Lambda_{\alpha}^2 = \text{Tr}((F^{\alpha})^{-1})$.

• Tomita-Takesaki theory: $\widehat{\nabla}$ on $L^2(\mathbb{G})$ implements the modular automorphism group $\widehat{\sigma}_t(x) = \widehat{\nabla}^{-it}x\widehat{\nabla}^{it}$ and conjugation $\ell^\infty(\widehat{\mathbb{G}}) \to \ell^\infty(\widehat{\mathbb{G}})'; x \mapsto \widehat{J}x^*\widehat{J}$. (Generalises modular function on G and behaviour of VN(G)).

Antipode

- The map $x \mapsto \widehat{\nabla}^{-it} x \widehat{\nabla}^{it}$ also maps $C(\mathbb{G})$ into itself, and implements a continuous automorphism group (τ_t) , the scaling group.
- On A_0 we can express this using the characters f_{it} .
- Recall the antipode

$$S((id \otimes \omega)(W)) = (id \otimes \omega)(W^*).$$

- Define $R(x) = \hat{J}x^*\hat{J}$ for $x \in C(\mathbb{G})$, which also maps $C(\mathbb{G})$ into itself. An anti-*-homomorphism which commutes with (τ_t) .
- We get an (unbounded) analytic extension $\tau_{-i/2}$ and $S = R\tau_{-i/2}$.
- R=S iff $au_t=\mathrm{id}$ iff $\widehat{arphi}=\widehat{\psi}$ iff arphi is tracial iff $\mathbb G$ is a Kac algebra.

Examples/Buzzwords

- Deformations of compact Lie groups: $SU_q(2)$ (Woronowicz). Non-Kac type.
- Quantum permutation groups S_n^+ and quantum orthogonal groups O_n^+ (Wang).
- "Universal quantum groups". (Wang, van Daele).
- Liberation of quantum groups; Easy quantum Groups $S_n \subseteq \mathbb{G} \subseteq O_n^+$ (Banica, Speicher).
- Easy quantum groups now well classified (e.g. Curran, Weber, Raum, Freslon).
- Key tool is to study the representation category Irr(G) and Woronowicz's generalisation of Tannaka-Krein duality.
- Mostly of Kac type: $L^{\infty}(\mathbb{G})$ finite von Neumann algebra, lots of work on von Neumann algebra properties of $L^{\infty}(\mathbb{G})$. (e.g. Brannan, Freslon).
- Next time: what can we say for $L^1(\mathbb{G})$?

Time allowing: S_n^+

Let $(a_{ij})_{i,j=1}^n$ be a matrix of functions on some space X with:

- $a_{ij} = a_{ij}^* = a_{ij}^2$ (so a_{ij} is 0, 1-valued);
- for all i, $\sum_{j} a_{ij} = 1$ and for all j, $\sum_{i} a_{ij} = 1$ (so at each point of X, if we evaluate, we get a permutation matrix).

The maximal commutative C^* -algebra generated by such matrices is just the collection of all permutation matrices, i.e. $C(S_n)$.

- Let $C(S_n^+)$ be the non-commutative C^* -algebra generated by such matrices.
- Universal property: if A any C^* -algebra and $\hat{a}_{ij} \in A$ elements with the relations, there is a unique *-homomorphism $\theta: C(S_n^+) \to A$ with $\theta(a_{ij}) = \hat{a}_{ij}$.
- Apply with $A = C(S_n^+) \otimes C(S_n^+)$ and $\hat{a}_{ij} = \sum_k a_{ik} \otimes a_{kj}$.
- Gives $\Delta: A \rightarrow A \otimes A$ coproduct.
- Can manually check the cancellation conditions.

