Locally compact quantum groups 3. Further aspects of Compact Quantum Groups

Matthew Daws

Leeds

Fields, May 2014

4 0 8

Matthew Daws (Leeds) [Compact quantum groups 2](#page-18-0) Fields, May 2014 1/19

 QQ

CQGs: Recap

Unital C^* -algebra A with coproduct Δ , satisfying "cancellation":

 $\overline{\lim}$ {(a ⊗ 1) Δ (b) : a, b ∈ A} = $\overline{\lim}$ {(1 ⊗ a) Δ (b) : a, b ∈ A} = A ⊗ A.

- There exists an invariant Haar state φ with GNS $(L^2(\mathbb{G}), \pi_\varphi, \xi_\varphi)$.
- Formed "left-regular corepresentation" $\mathcal{U}\in \mathcal{M}(A\otimes \mathcal{B}_0(L^2(\mathbb{G})))$:

$$
U^*(\xi\otimes \pi_\varphi(a)\xi_\varphi)=(\pi\otimes \pi_\varphi)(\Delta(a))(\xi\otimes \xi_\varphi)
$$

- Studied category of corepresentations.
- \bullet U decomposes as direct sum of all the irreducibles.
- \bullet $A_0 \subset A$ algebra of matrix coefficients.

- 30

 Ω

Is A_0 a $*$ -algebra?

- Typical element $V_{ij}\in A_0$; so is $V_{ij}^*\in A_0$?
- Motivates looking at $\overline{V} := (V_{ij}^*)$. Still a corepresentation:

$$
\Delta(V_{ij}^*)=\Delta(V_{ij})^*=\Big(\sum_k V_{ik}\otimes V_{kj}\Big)^*=\sum_k V_{ik}^*\otimes V_{kj}^*.
$$

Theorem

Let V be an irreducible corepresentation. Then \overline{V} is equivalent to a unitary corepresentation. In particular, $V_{ij}^* \in A_0$.

Proof.

Show that \overline{V} is a sub-corepresentation of U. Same game: choose $x \in \mathcal{B}(L^2(\mathbb{G}),H_V)$ and set

$$
y=(\varphi\otimes\mathsf{id})(\overline{V}^*(1\otimes x)U),
$$

argue that if $y \neq 0$ then y^* implements an isomorphism; if $y = 0$ for all x then derive contradiction.

"F-matrices"

Let $Irr(\mathbb{G})$ be the collection of equivalence classes of irreducible representations of (A, Δ) . Choose representatives u^{α} .

Theorem

For each α there is a positive, invertible, trace 1 matrix F^{α} with

$$
\varphi((u_{ip}^{\beta})^* u_{jq}^{\alpha}) = \begin{cases} F_{ji}^{\alpha} & \colon \alpha = \beta, p = q, \\ 0 & \colon \text{otherwise.} \end{cases}
$$

Sketch proof.

We apply our averaging argument to $x = e_{ii}$ a matrix unit:

$$
y = (\varphi \otimes id)((u^{\beta})^*(1 \otimes x)u^{\alpha}) = \cdots = \sum_{p,q} \varphi((u_{ip}^{\beta})^* u_{jq}^{\alpha}) e_{pq}.
$$

Then y intertwines u^{α}, u^{β} so is 0 if $\alpha \neq \beta$; otherwise $y = F_{ji}^{\alpha} 1$. Then \dots

画

 QQ

イロト イ部 トメ ヨ トメ ヨト

Application: A basis

$$
\varphi((u_{ip}^{\beta})^*u_{jq}^{\alpha})=\delta_{\alpha,\beta}\delta_{p,q}F_{ji}^{\alpha}.
$$

Theorem

The set $\{u_{ij}^{\alpha} : \alpha \in \text{Irr}(\mathbb{G}), 1 \le i, j \le n_{\alpha}\}$ is a basis for A_0 .

Proof.

By definition this spans A_0 . If $\sum t_{ij}^\alpha u_{ij}^\alpha = 0$ for some scalars (t_{ij}^α) then for any β , p, q,

$$
0=\sum_{\alpha,i,j}t_{ij}^{\alpha}\varphi((u_{pq}^{\beta})^*u_{ij}^{\alpha})=\sum_i F_{ip}^{\beta}t_{iq}^{\beta}.
$$

As \mathcal{F}^β is invertible, this implies that $t_{i\bm{q}}^\beta = 0$ for all i, q, β , as required.

 Ω

メタメ メミメ メミメ

4 0 8

A Hopf ∗-algebra

We define $\epsilon : A_0 \to \mathbb{C}$ and $S : A_0 \to A_0$ by

$$
\epsilon(u_{ij}^{\alpha})=\delta_{i,j}, \qquad S(u_{ij}^{\alpha})=(u_{ji}^{\alpha})^*.
$$

Or equivalently, for any (finite-dimensional) unitary corepresentation V,

$$
(S \otimes id)(V) = V^*, \qquad (\epsilon \otimes id)(V) = I.
$$

Theorem

Then $(A_0, \Delta, \epsilon, S)$ is a Hopf \ast -algebra.

This gives a purely *algebraic* approach to compact quantum groups: the Hopf ∗-algebras which can arise are exactly those which are spanned by matrix coefficients of unitary corepresentations.

 QQ

- 4母 ト 4 ヨ ト 4 ヨ ト

4 D F

What happens in the commutative case?

V corresponds to a unitary group representation $\pi: G \to M_n$:

$$
V \in C(G) \otimes M_n \cong C(G, M_n), \qquad V = (\pi(s))_{s \in G}.
$$

\n
$$
(\mathrm{id} \otimes \omega_{\xi,\eta})(V) = ((\pi(s)\xi|\eta))_{s \in G} \in C(G),
$$

\n
$$
(\mathrm{id} \otimes \omega_{\xi,\eta})(V^*) = ((\pi(s^{-1})\xi|\eta))_{s \in G} \in C(G).
$$

Such continuous functions are linearly dense in $C(G)$.

$$
(\epsilon \otimes id)(V) = I \Leftrightarrow \langle \epsilon, (\pi(s)\xi|\eta)_{s \in G} \rangle = (\xi|\eta)
$$

so we conclude that $\epsilon \in C(G)^*$ is the functional: "evaluate at the group identity".

$$
(\mathsf{S}\otimes \mathsf{id})(\mathsf{V})=\mathsf{V}^*\;\Leftrightarrow\;\mathsf{S}\big((\pi(\mathsf{s})\xi|\eta)_{\mathsf{s}\in\mathsf{G}}\big)=(\pi(\mathsf{s}^{-1})\xi|\eta)_{\mathsf{s}\in\mathsf{G}}
$$

so $S: C(G) \to C(G)$ is the *-homomorphism induced by the group inverse. In general ϵ and S are unbounded.

 Ω

イロト イ押ト イヨト イヨト

Characters

Theorem

$$
\varphi\big(u_{i\rho}^{\alpha}(u_{jq}^{\beta})^*\big)=\delta_{\alpha,\beta}\delta_{i,j}\frac{(\digamma^{\alpha})_{qp}^{-1}}{\text{Tr}((\digamma^{\alpha})^{-1})}.
$$

Set $t_\alpha = \textsf{Tr}((F^\alpha)^{-1}) > 0$ and define a linear map by

$$
f_z: A_0 \to \mathbb{C}; \qquad u_{ij}^{\alpha} \mapsto ((F^{\alpha})^{-z})_{ij} t_{\alpha}^{-z/2}.
$$

Turn A_0^* into an algebra via $\langle \mu \star \lambda, a \rangle = \langle \mu \otimes \lambda, \Delta(a) \rangle$.

Theorem

Each f_z is a character on A_0 , $f_0 = \epsilon$, $f_z(a^*) = f_{\overline{z}}(a)^*$ and $f_z \star f_w = f_{z+w}$. If we define

$$
\sigma(a) = f_1 \star a \star f_1 := (f_1 \otimes \mathrm{id} \otimes f_1) \Delta^2(a) \qquad (a \in A_0),
$$

then $\varphi(ab) = \varphi(b\sigma(a))$. (Note: $\Delta^2 = (\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$).

 φ is not a *trace* but it nearly is.

KOD KARD KED KED B YOUR

Properties of Haar state on A

Theorem

$$
\varphi \text{ is "faithful" on } A_0 \ (\varphi(a^*a) = 0 \implies a = 0).
$$

Proof.

If $\varphi(a^*a)=0$ then $\varphi(a^*b)=0$ for all $b\in A_0$ (Cauchy-Schwarz). Set $b=u_{\rho q}^\beta$ and use an F-matrix argument again.

Theorem

For
$$
a \in A
$$
, $\varphi(a^*a) = 0 \Leftrightarrow \varphi(aa^*) = 0$.

Proof.

- Cauchy-Schwarz $\implies \varphi(a^*b) = 0$ for all $b \in A$.
- Find $(a_n) \subseteq A_0$ converging to a in norm.
- Recall automorphism σ ; then $0 = \lim_{n} \varphi(a_n^*\sigma(b)) = \lim_{n} \varphi(ba_n^*) = \varphi(ba^*)$.

Further conclusions

Theorem

$$
N_{\varphi} = \{a \in A : \varphi(a^*a) = 0\} \text{ is a two-sided ideal in } A. \text{ If}
$$

$$
\Lambda : A \to L^2(\mathbb{G}); a \mapsto \pi_{\varphi}(a)\xi_{\varphi} \text{ is the GNS map, then } \ker \Lambda = \ker \pi_{\varphi} = \ker \varphi = N_{\varphi}.
$$

Proof.

- Standard C^* -theory: N_φ is a left ideal.
- Previous theorem shows N_{φ} self-adjoint, so an ideal.
- Cauchy-Schwarz shows ker $\varphi = \ker N_{\varphi}$ (A is unital!)
- **•** By definition ker $\Lambda = N_{\varphi}$ and ker $\pi_{\varphi} \subseteq$ ker Λ

 $a \in N_{\varphi} \implies b^* a \in N_{\varphi} \implies a^* b \in N_{\varphi} \implies \pi_{\varphi}(a^*) = 0 \implies \pi_{\varphi}(a) = 0.$

 φ really "looks like" it is a trace!

D.

 Ω

イロト イ押ト イヨト イヨト

"Reduced" C ∗ -algebras

$$
\ker \Lambda = \ker \pi_{\varphi} = \ker \varphi = N_{\varphi}.
$$

Let $C(\mathbb{G}) = A/N_{\varphi}$ a C^* -algebra; φ drops to $C(\mathbb{G})$ and is faithful.

Theorem

The GNS space for φ on $C(\mathbb{G})$ is isomorphic to $L^2(\mathbb{G})$, and $C(\mathbb{G}) \cong \pi_{\varphi}(A)$. There is a unital *-homomorphism $\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ turning $C(\mathbb{G})$ into a compact quantum group.

Proof

Form the left-regular representation, but this time use $\pi = \pi_{\varphi}$ to get $W \in M(\pi_{\varphi}(A) \otimes B_0(L^2(\mathbb{G}))) = M(C(\mathbb{G}) \otimes B_0(L^2(\mathbb{G})))$ with

$$
W^*(1\otimes \pi_{\varphi}(a))W=(\pi_{\varphi}\otimes \pi_{\varphi})\Delta(a) \qquad (a\in A).
$$

So define Δ on $C(\mathbb{G})$ by $\Delta(x) = W^*(1 \otimes x)W$. Density of A_0 in $C(\mathbb{G})$ shows that Δ does map to $C(\mathbb{G})\otimes C(\mathbb{G})$; similarly cancellation holds for $C(\mathbb{G})$.

 \Rightarrow

 QQQ

イロト イ部 トイヨ トイヨト

von Neumann algebra

Let $L^{\infty}(\mathbb{G})=C(\mathbb{G})^{\prime\prime}$ in $\mathcal{B}(L^{2}(\mathbb{G}))$. Again define

$$
\Delta(x) = W^*(1 \otimes x)W \qquad (x \in L^{\infty}(\mathbb{G})),
$$

which by weak*-continuity maps into $L^\infty(\mathbb{G})\overline{\otimes} L^\infty(\mathbb{G}).$

Theorem

The normal extension of φ to $L^{\infty}(\mathbb{G})$ is faithful.

Proof.

• Let
$$
\varphi(x^*x) = 0
$$
 so $x\varphi_{\xi} = 0$.

• Kaplansky Density: bounded net (a_i) in $C(\mathbb{G})$ with converges strongly to x. For $b, c \in A_0$,

$$
\begin{aligned} \left(x\sigma(b)\xi_{\varphi}|c\xi_{\varphi}\right) &= \lim_{i} \varphi(c^*a_i\sigma(b)) = \lim_{i} \varphi(bc^*a_i) = \lim_{i} (a_i\xi_{\varphi}|cb^*\xi_{\varphi})\\ &= \left(x\xi_{\varphi}|cb^*\xi_{\varphi}\right) = 0. \end{aligned}
$$

Density: $(x\xi|\eta) = 0$ for $\xi, \eta \in L^2(\mathbb{G})$, so $x = 0$.

Discussion of amenability and $C^*(\Gamma)$

Let Γ be a discrete group, so $\Gamma := C_r^*(\Gamma)$ is a compact quantum group, $\Delta(\lambda(s)) = \lambda(s) \otimes \lambda(s)$

$$
\varphi(\lambda(s)) = \delta_{s,e} \implies L^2(\widehat{\Gamma}) = \ell^2(\Gamma).
$$

- Could also work with $C^*(\Gamma)$
- Existence of Δ follows from universal property, as $s \mapsto \lambda(s) \otimes \lambda(s)$ is a unitary representation.
- \bullet φ is now faithful if and only if Γ is amenable.
- $C_r^*(\Gamma) = C^*(\Gamma)$ if and only if Γ is amenable.
- $A_0 = \mathbb{C}[\Gamma]$ and $\epsilon : \lambda(s) \mapsto 1$ is bounded on $C^*(\Gamma)$.
- ϵ bounded on $C_r^*(\Gamma)$ if and only if Γ is amenable.

Duality

As
$$
\Delta(\cdot) = W^*(1 \otimes \cdot)W
$$
 and $(\Delta \otimes id)(W) = W_{13}W_{23}$,

$$
W_{12}^* W_{23} W_{12} = W_{13}W_{23} \implies W_{23}W_{12} = W_{12}W_{13}W_{23}.
$$

- \bullet This says that W is multiplicative.
- See Baaj–Skandalis, Woronowicz and Soltan–Woronowicz.
- $\bullet \ \widehat{W}:=\sigma W^*\sigma$ is also multiplicative.

$$
c_0(\widehat{\mathbb{G}}) = \{ (\omega \otimes \mathsf{id})(W) \}^{\|\cdot\|} = \{ (\mathsf{id} \otimes \omega)(\widehat{W}) \}^{\|\cdot\|} \qquad \ell^{\infty}(\widehat{\mathbb{G}}) = c_0(\widehat{\mathbb{G}})^{\prime\prime}
$$

are a C^* -algebra and a von Neumann algbera with a coproduct

$$
\widehat{\Delta}(x) = \widehat{W}^*(1 \otimes x) \widehat{W} \qquad (x \in c_0(\mathbb{G}), \ell^{\infty}(\mathbb{G})).
$$

But here $\widehat{\Delta}: c_0(\widehat{\mathbb{G}}) \to M(c_0(\widehat{\mathbb{G}}) \otimes c_0(\widehat{\mathbb{G}}))$ is a morphism.

$$
W\in L^\infty(\mathbb{G})\overline{\otimes} \ell^\infty(\widehat{\mathbb{G}}) \qquad W\in M(C(\mathbb{G})\otimes c_0(\widehat{\mathbb{G}})).
$$

 Ω

Identifying $c_0(\widehat{\mathbb{G}})$

$$
\varphi((u_{ip}^{\beta})^* u_{jq}^{\alpha}) = \delta_{\alpha,\beta} \delta_{p,q} F_{ji}^{\alpha} \implies (u_{jq}^{\alpha} \xi_{\varphi} | u_{ip}^{\beta} \xi_{\varphi}) = \delta_{\alpha,\beta} \delta_{p,q} F_{ji}^{\alpha}.
$$

- For fixed α , $\text{lin}\{u^\alpha_{jq}\xi_\varphi\}$ is isomorphic to $\mathbb{C}^{n_\alpha}\otimes\mathbb{C}^{n_\alpha}.$
- So $L^2(\mathbb{G}) \cong \bigoplus_{\alpha \in \text{Irr}(\mathbb{G})} \mathbb{C}^{n_{\alpha}} \otimes \mathbb{C}^{n_{\alpha}}$.
- Under this isomorphism,

$$
W=\sum_{\alpha}\sum_{i,j}u_{ij}^{\alpha}\otimes e_{ij}^{\alpha}
$$

where $e_{ij}^\alpha\in\mathbb{M}_{n_\alpha}$ acts on the (e.g.) first variable of $\mathbb{C}^{n_\alpha}\otimes\mathbb{C}^{n_\alpha}.$

- Now easy to see that $c_0(\widehat{\mathbb{G}})=\big\{(\omega\otimes\mathsf{id})(\mathcal{W})\big\}^{\|\cdot\|}$ is isomorphic to $\bigoplus_{\alpha}\mathbb{M}_{n_\alpha}.$
- \bullet So as an algebra $c_0(\widehat{\mathbb{G}})$ is easy; but $\widehat{\Delta}$ is complicated (essentially encodes how $u^\alpha\mathbb{O} u^\beta$ is written as irreducibles.)

KOD KARD KED KED E VAN

Discrete/Compact duality

 $\hat{\mathbb{G}}$ is a discrete quantum group. (van Daele: axiomatisation not in terms of compact G.)

• There are *weights*
$$
\widehat{\varphi}, \widehat{\psi}
$$
 on $\ell^{\infty}(\widehat{\mathbb{G}})$

$$
(\mathrm{id}\otimes\widehat{\varphi})\widehat{\Delta}(x)=\widehat{\varphi}(x)1,\qquad (\widehat{\psi}\otimes\mathrm{id})\widehat{\Delta}(x)=\widehat{\psi}(x)1.
$$

For $x = (x^{\alpha}) \in \ell^{\infty}(\widehat{\mathbb{G}}) = \prod_{\alpha} \mathbb{M}_{n_{\alpha}}$

$$
\widehat{\varphi}(x) = \sum_{\alpha} \Lambda_{\alpha}^{2} \text{Tr}_{\alpha}(F^{\alpha} x^{\alpha})
$$

where $\Lambda^2_\alpha = \text{Tr}((F^\alpha)^{-1}).$

Tomita-Takesaki theory: $\widehat{\nabla}$ on $L^2(\mathbb{G})$ implements the modular automorphism group $\widehat{\sigma}_t(x) = \widehat{\nabla}^{-it} x \widehat{\nabla}^{it}$ and conjugation $\ell^{\infty}(\widehat{\mathbb{G}}) \to \ell^{\infty}(\widehat{\mathbb{G}})'; x \mapsto \widehat{J} x^* \widehat{J}.$
(Coneralises modular function on G and behaviour of $V\!N\!U(G)$) (Generalises modular function on G and behaviour of $VN(G)$).

 Ω

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

Antipode

- The map $x \mapsto \widehat{\nabla}^{-it} x \widehat{\nabla}^{it}$ also maps $C(\mathbb{G})$ into itself, and implements a continuous automorphism group (τ_t) , the scaling group.
- \bullet On A_0 we can express this using the characters f_{it} .
- Recall the antipode

$$
S((\mathsf{id} \otimes \omega)(W)) = (\mathsf{id} \otimes \omega)(W^*).
$$

- Define $R(x) = \hat{J}x^*\hat{J}$ for $x \in C(\mathbb{G}),$ which also maps $C(\mathbb{G})$ into itself. An anti-∗-homomorphism which commutes with (τ_t) .
- We get an (unbounded) analytic extension $\tau_{-i/2}$ and $S = R\tau_{-i/2}$.
- $R = S$ iff $\tau_t = id$ iff $\hat{\varphi} = \hat{\psi}$ iff φ is tracial iff G is a Kac algebra.

 Ω

イロト イ押ト イヨト イヨト

Examples/Buzzwords

- \bullet Deformations of compact Lie groups: $SU_a(2)$ (Woronowicz). Non-Kac type.
- Quantum permutation groups S_n^+ and quantum orthogonal groups O_n^+ (Wang).
- "Universal quantum groups". (Wang, van Daele).
- Liberation of quantum groups; Easy quantum Groups $S_n\subseteq \mathbb{G}\subseteq O_n^+$ (Banica, Speicher).
- Easy quantum groups now well classified (e.g. Curran, Weber, Raum, Freslon).
- \bullet Key tool is to study the representation category Irr(\mathbb{G}) and Woronowicz's generalisation of Tannaka-Krein duality.
- Mostly of Kac type: L[∞](G) finite von Neumann algebra, lots of work on von Neumann algebra properties of $L^{\infty}(\mathbb{G})$. (e.g. Brannan, Freslon).
- Next time: what can we say for $L^1(\mathbb{G})$?

KOD KARD KED KED B YOUR

Time allowing: S_n^+ n

Let $(a_{ij})_{i,j=1}^n$ be a matrix of functions on some space X with:

- $a_{ij} = a_{ij}^* = a_{ij}^2$ (so a_{ij} is 0, 1-valued);
- for all i , $\sum_{j}a_{ij}=1$ and for all j , $\sum_{i}a_{ij}=1$ (so at each point of X , if we evaluate, we get a permutation matrix).

The maximal commutative C^* -algebra generated by such matrices is just the collection of all permutation matrices, i.e. $C(S_n)$.

- Let $C(S_n^+)$ be the non-commutative C^* -algebra generated by such matrices.
- Universal property: if A any C^* -algebra and $\hat{a}_{ij} \in A$ elements with the relations, there is a unique $*$ -homomorphism $\theta: \mathcal{C}(\mathcal{S}^+_n) \to A$ with $\theta(a_{ii}) = \hat{a}_{ii}$.
- Apply with $A = \mathit{C}(S_n^+) \otimes \mathit{C}(S_n^+)$ and $\hat{a}_{ij} = \sum_k a_{ik} \otimes a_{kj}.$
- \bullet Gives $\Delta: A \rightarrow A \otimes A$ coproduct.
- **Can manually check the cancellation conditions.**

KOD KARD KED KED B YOUR