Weighted Fourier algebras of non-compact Lie groups and its spectrum

Hun Hee Lee Seoul National University Jointly with M. Ghandehari, E. Samei and N. Spronk

Fields Institute, May 27th, 2014

Weighted convolution algebras

- ► G: locally compact group ⇒ (L¹(G), *) is a Banach algebra that can distinguish G.
- A measurable function w : G → (0,∞) is called a weight if it is sub-multiplicative i.e.

$$w(st) \leq w(s)w(t), s, t \in G.$$

For a weight w the weighted space L¹(G, w) equipped with the norm ||f||_{L¹(G,w)} = ∫_G w(x) |f(x)| dx is still a Banach algebra w.r.t. the convolution. L¹(G, w) is called a Beurling algebra on G.

• (Examples)
$$G = \mathbb{R}$$
 or \mathbb{Z} , $\alpha \ge 0$, $\rho \ge 1$.
 $w_{\alpha}(x) = (1 + |x|)^{\alpha}$ (Polynomial type weights)
 $w_{\rho}(x) = \rho^{|x|}$ (Exponential type weights).

Reformulation using co-multiplication

 We begin with the co-multiplication (the adjoint of the convolution map)

$$\Gamma: L^{\infty}(G) \to L^{\infty}(G \times G)$$

given by $\Gamma(f)(s, t) = f(st)$. • $(L^1(G, w))^* = L^{\infty}(G, w^{-1})$ with the norm

$$\|f\|_{L^{\infty}(G;w^{-1})}:=\left\|\frac{f}{w}\right\|_{\infty},$$

so that $\Phi: L^\infty(G) o L^\infty(G, w^{-1}), \ f \mapsto \mathit{fw}$ is an isometry.

Reformulation using co-multiplication: continued

Using the convolution again on L¹(G, w) means we will use the same Γ on L[∞](G, w⁻¹). Then, the isometry Φ gives us the modified co-multiplication

$$\widetilde{\mathsf{\Gamma}}: L^\infty(\mathcal{G}) \to L^\infty(\mathcal{G} \times \mathcal{G}), \ f \mapsto \mathsf{\Gamma}(f)\mathsf{\Gamma}(w)(w^{-1} \otimes w^{-1}).$$

- Note that $\Gamma(w)(w^{-1} \otimes w^{-1}) \leq 1$ iff w is a weight.
- We would like to do the same procedure in the dual (i.e. Fourier algebra) setting.

Weighted Fourier algebras of non-compact Lie groups and its spectrum Weighted Fourier algebras

The Fourier algebra A(G)

- G: locally compact group.
- The group von Neumann algebra VN(G) is given by

$$\{\lambda(x): x \in G\}'' \subseteq B(L^2(G)),$$

where $\lambda(x)$ is the left translation (i.e. $\lambda(x)f(y) = f(x^{-1}y)$).

- $\lambda : G \to B(L^2(G))$ is called the **left regular representation**.
- ▶ (Eymard, '64) $A(G) := VN(G)_* = \{f * \check{g} : f, g \in L^2(G)\} \subseteq C_0(G)$, where $\check{g}(x) = g(x^{-1})$.
- ► (A(G), ·) is known to be a commutative Banach algebra distinguishing G, which we call the Fourier algebra on G.

• (Example)
$$G = \mathbb{R}$$

 $(A(\mathbb{R}), \cdot) \cong (L^1(\widehat{\mathbb{R}}), *)$

Weighted Fourier algebra - a refined definition

- ► Recall that w on G gives us M_w a (unbdd) closed, densely defined, positive, invertible operator affilliated to L[∞](G) acting on L²(G).
- For VN(G) ⊆ B(H) we will consider W, a (unbdd) closed, densely defined, positive, invertible operator affiliated to VN(G) acting on H.
- ▶ We consider the weighted spaces $VN(G, W^{-1}) := \{AW : A \in VN(G)\}, \|AW\|_{VN(G, W^{-1})} = \|A\|_{VN(G)}$ and $A(G, W) := \{W^{-1}\phi : \phi \in A(G)\}, \|W^{-1}\phi\|_{A(G, W)} = \|\phi\|_{A(G)}.$
- $\Phi: VN(G) \rightarrow VN(G; W^{-1}), A \mapsto AW$ is an (complete) isometry.

Weighted Fourier algebra: continued

The co-multiplication this time is given by

 $\Gamma: VN(G) \rightarrow VN(G \times G), \ \lambda(x) \mapsto \lambda(x) \otimes \lambda(x).$

 If we use "the same" Γ on VN(G, W⁻¹), then by applying Φ we get a modified co-multiplication

 $\widetilde{\Gamma}: VN(G) \to VN(G \times G), \ A \mapsto \Gamma(A)\Gamma(W)(W^{-1} \otimes W^{-1}).$

• We say W is a weight on the dual of G if $\Gamma(W)$ and $W \otimes W$ are strongly commuting and

$$\left\| \Gamma(W)(W^{-1}\otimes W^{-1}) \right\| \leq 1.$$

- ► Then, A(G, W) is a commutative Banach algebra (under the pointwise multiplication at least when W⁻¹ is bounded).
- ► (Def, Ludwig/Spronk/Turowska '12, L/Samei '12) We call A(G, W) a Beurling-Fourier algebra on G.

Extension of *-homomorphism and tensor product

Let Δ : M ⊆ B(H) → N ⊆ B(K) be a normal *-homorphism between VN-alg's. Let T be a self-adjoint operator on H affiliated to M. Then

$$T=\int_{\mathbb{R}}\lambda\,dE_{T}(\lambda),$$

where E_T is the spectral measure for T with values in \mathcal{M} . We define

$$\Delta(T) := \int_{\mathbb{R}} \lambda \, d(\Delta \circ E_T)(\lambda).$$

- Tensor product of two spectral integrals can be understood as another spectral integral with respect to the tensor product of two spectral measures.
- Two self-adjoint operators are called strongly commuting if their spectral measures commute. Strongly commuting operators have well-behaving joint Borel functional calculus!

Extension of weights

 One serious problem of A(G, W) is to find a nontrivial weight W.

(Extension procedure)

H < G an abelian subgroup and $\phi : \widehat{H} \to (0, \infty)$ a weight. Then the operator $W = i(M_{\phi})$ is a weight on the dual of G, where i is the embedding

$$i: L^{\infty}(\widehat{H}) \cong VN(H) \hookrightarrow VN(G), \ \lambda_{H}(x) \mapsto \lambda_{G}(x).$$

Spectrum of A(G) and A(G, w)

- ► Recall SpecA(G) ≅ G, where SpecA(G) is the space of non-zero multiplicative functionals on A(G).
- ► A natural question: What is SpecA(G, W)? Any connection to the structure of G?
- We guess that SpecA(G, w) is actually coming from the points of the complexification G_ℂ of G.
- For a (real) Lie group G we can associate its (real) Lie algebra g. Then the complexified Lie agebra g_ℂ = g + ig might have its associated (simply connected) Lie group G_ℂ. In this case, we call G_ℂ the **complexification** of G.
- $\mathbb{R}_{\mathbb{C}} = \mathbb{C}$, $\mathbb{T}_{\mathbb{C}} = \mathbb{C} \setminus \{0\}$, $SU(2)_{\mathbb{C}} = SL(2,\mathbb{C})$.
- ► (Ludwig/Spronk/Turowska, '12) Our guess is true for compact groups! Key ingredient is the subalgebra TrigG ⊆ A(G, W) generated by the coefficient functions of irreducible unitary representations.

The case of $\mathbb R$

- Let φ : A(ℝ, w_ρ) ≅ L¹(ℝ̂, w_ρ) → C is multiplicative (w.r.t. ptwise multiplication).
- ▶ We consider a subalgebra $\mathcal{A} = C_c^{\infty}(\widehat{\mathbb{R}})$, which will play the same role as Trig*G* and let $\widehat{\varphi} = \varphi|_{\mathcal{A}}$. Then $\widehat{\varphi}$ is a distribution which is multiplicative w.r.t. **convolution**.
- ▶ In other words, $\tilde{\varphi}$ is a solution to the (distributional) Cauchy functional equation

$$f(x+y)=f(x)f(y),\ x,y\in\mathbb{R},$$

which we know that the solution must be of the form $e^{2\pi i c x}$ for some $c \in \mathbb{C}$.

- (Conclusion) Spec $A(\mathbb{R}, w_{\rho}) \cong \{c \in \mathbb{C} : |Imc| \leq \frac{1}{2\pi} \log \rho\}.$
- Note that $\rho = 1$ recovers $\text{Spec}A(\mathbb{R}) \cong \mathbb{R}$.

The case of \mathbb{R} : continued

(Main ingredients)

- (1) The density of \mathcal{A} in $\mathcal{A}(\mathbb{R}, w_{
 ho})$
- (2) Complex Fourier inversion for the elements in A.
- (Proof) For $f \in \mathcal{A}$ we know that

(*)
$$\varphi(f) = \int_{\mathbb{R}} e^{2\pi i c x} f(x) dx.$$

The Paley-Wiener thm says that $\widehat{f}^{\mathbb{R}}$ extends holomorphically to \mathbb{C} , Thus we have

$$\varphi(f) = \widehat{f}^{\mathbb{R}}(-c).$$

Thus (*) can be understood as the **complex Fourier inversion** for $\hat{f}^{\mathbb{R}}$. For the conclusion we just need to check the norm condition for φ .

The Heisenberg group

•
$$H_1 = \left\{ (x, y, z) = \begin{bmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{bmatrix} : x, y, z \in \mathbb{R} \right\}$$
 be the Heisenberg

group with the Haar measure = the Lebesgue measure on \mathbb{R}^3 .

- ► VN(H₁) and A(H₁) can be described concretely using representation theory of H₁.
- ► For any $r \in \mathbb{R} \setminus \{0\}$ we have the Schrödinger representation $\pi^r(x, y, z)\xi(w) = e^{2\pi i r(-wy+z)}\xi(-x+w), \ \xi \in L^2(\mathbb{R}).$
- The left regular representation decomposes

$$\begin{split} \lambda &\cong \int_{\mathbb{R} \setminus \{0\}}^{\oplus} \pi^r |r| dr \text{ and consequently} \\ \mathcal{VN}(\mathcal{H}_1) &\cong L^{\infty}(\mathbb{R} \setminus \{0\}, |r| dr; \mathcal{B}(L^2(\mathbb{R}))), \\ \mathcal{A}(\mathcal{H}_1) &\cong L^1(\mathbb{R} \setminus \{0\}, |r| dr; \mathcal{S}^1(L^2(\mathbb{R}))), \end{split}$$

where $S^1(\mathcal{H})$ is the trace class on \mathcal{H} .

The Heisenberg group: continued

► (Fourier transform on *H*₁) We define

$$\mathcal{F}^{H_1}: L^1(H_1) o VN(H_1)$$

given by

$$\mathcal{F}^{H_1}(f)(r) = \int_{H_1} f(x,y,z)\pi^r(x,y,z)dxdydz.$$

(Fourier inversion on H₁)
 We define

$$(\mathcal{F}^{H_1})^{-1}: A(H_1) \to L^\infty(H_1)$$

given by for $A = (A(r))_r \in A(H_1)$

$$(\mathcal{F}^{H_1})^{-1}(A)(x,y,z) = \int_{\mathbb{R}\setminus\{0\}} \operatorname{Tr}(A(r)\pi^r(x,y,z))|r|dr.$$

The Heisenberg group: continued 2

• (Complexification of
$$H_1$$
)
 $(H_1)_{\mathbb{C}} = \left\{ \begin{bmatrix} 1 & x & z \\ 1 & y \\ & 1 \end{bmatrix} : x, y, z \in \mathbb{C} \right\}.$

▶ (Weights on H₁)

Let $X = \{(x, 0, 0) : x \in \mathbb{R}\}$. By the extension procedure we get the weight W_X^{ρ} extended from the subgroup X using the weight function $\phi(t) = \rho^{|t|}$, $\rho \ge 1$ on \mathbb{R} . Then

$$W_X^{\rho}(r)\xi = \widehat{\phi} * \xi$$

in distribution sense. From now on $W = W_X^{\rho}$.

Determining the Spec $A(H_1, W)$: the strategy

- ► The same approach as the case of ℝ by using the Euclidean structure behind H₁. First we consider A = F^{ℝ³}(C[∞]_c(ℝ³)).
- If (*) A → A(H₁, W) continuously with dense range, then u ∈ SpecA(H₁, W) is uniquely determined by a point (x̃, ỹ, z̃) ∈ C³ ≅ (H₁)_C using distributional Cauchy functional equation on ℝ³.
- If (**) A has enough elements allowing complex Fourier inversion of F^{H1}, then we have...
- ► (Ghandehari/L./Samei/Spronk, in progress) Let $u = u_{(\tilde{x}, \tilde{y}, \tilde{z})}$ is the character on \mathcal{A} coming from $(\tilde{x}, \tilde{y}, \tilde{z}) \in (H_1)_{\mathbb{C}}$. Then u is bounded on $A(H_1, W_X^{\rho})$ iff (1) $|\text{Im}\tilde{x}| \leq \frac{1}{2\pi} \log \rho$ and (2) $\text{Im}\tilde{y} = \text{Im}\tilde{z} = 0$.
- The conditions (*) is ok, but we were not able to check (**). Instead we found an intermediate space that fills the gap!!

Entire vectors for unitary representations

- G: a simply connected solvable Lie group with the Lie alg. g.
 G_C, g_C: the complexifications.
 exp: g → G holomorphically exdends to exp: g_C → G_C.
- ▶ (Goodman '69)

 $\begin{aligned} \pi: G &\to B(\mathcal{H}(\pi)): \text{ a strongly conti. unitary representation.} \\ v &\in \mathcal{H}(\pi) \text{ is called an entire vector for } \pi \text{ if} \\ G &\to \mathcal{H}(\pi), g \mapsto \pi(g)v \text{ extends holomorphically to } G_{\mathbb{C}} \text{ (i.e. } g \xrightarrow{\exp} G \xrightarrow{\pi} B(\mathcal{H}(\pi)) \text{ extends holomorphically to } \mathfrak{g}_{\mathbb{C}}). \end{aligned}$ We call this extension by π_{ω} and $\mathcal{H}_{\infty}^{\omega}(\pi)$ refers to the linear space of all entire vectors for π .

Entire vectors for π^r

(A characterization of H^ω_∞(π^r), Goodman '69)
 A function f ∈ L²(ℝ) is an entire vector for π^r if and only if f extends to an entire function on C and satisfies

$$\sup_{|\operatorname{Im} z| < t} e^{t|z|} |f(z)| < \infty$$

for any t > 0. Note that the above condition is independent of the parameter r. Moreover, the *n*-th Hermite functions φ_n are entire vectors for π^r .

• We use the same formula for the holomorphic extension π_{ω}^{r} due to the uniqueness of analytic continuation.

Entire vectors for λ on H_1

(A criterion for H^ω_∞(λ), Goodman '71) f ∈ L²(H₁) is an entire vector for λ iff (a) Range(f^{H₁}(r)) ⊆ H^ω_∞(π^r_ω) a.e. and (b) for any M > 0

$$\int_{\mathbb{R}\setminus\{0\}} \sup_{|\tilde{x}|,|\tilde{y}|,|\tilde{z}| < M} ||\pi_{\omega}^{r}(\tilde{x},\tilde{y},\tilde{z})\widehat{f}^{H_{1}}(r)||_{2}^{2} |r|dr < \infty,$$

where the sup is taken over $(\tilde{x}, \tilde{y}, \tilde{z}) \in (H_1)_{\mathbb{C}} \cong \mathbb{C}^3$.

(Complex Fourier inversion, Goodman '71)
 If f ∈ H^ω_∞(λ), then f has the analytic continuation f_ω to (H₁)_C given by the absolutely convergent integral

$$f_{\omega}(\tilde{x}, \tilde{y}, \tilde{z}) = \int_{\mathbb{R} \setminus \{0\}} \mathsf{Tr}(\pi^{r}(\tilde{x}, \tilde{y}, \tilde{z}) \widehat{f}^{H_{1}}(r)) |r| dr$$

for $(\tilde{x}, \tilde{y}, \tilde{z}) \in (H_1)_{\mathbb{C}} \cong \mathbb{C}^3$.

Determining the Spec $A(H_1, W)$: the space \mathcal{K} and \mathcal{B}

We define

 $\mathcal{K}:=\{f:e^{t(|x|+|y|+|z|)}(\partial^{\alpha}f)(x,y,z)\in L^2(\mathbb{R}^3),\,\forall t>0,\,|\alpha|\leq 8\},$

where ∂^{α} refers the partial derivative in the weak sense with the multi-index α , and $\mathcal{B} := \mathcal{F}^{\mathbb{R}^3}(\mathcal{K})$.

The space K is a Fréchet space with a canonical family of semi-norms and the embedding C[∞]_c(ℝ³) → K is continous with dense range. Moreover, A ⊆ B(⊆ A(G, W)).

• The space \mathcal{K} is somewhat unusual, but there is a similar space.

$$\widetilde{\mathcal{K}}=\{g:e^{t|x|}g(x)\in L^2(\mathbb{R}) ext{ for any } t>0\}.$$

By a thm of Paley/Wiener $g \in \widetilde{\mathcal{K}}$ iff $\widehat{g}^{\mathbb{R}}$ extends entirely and satisfies $\sup_{|y| \leq t} \int_{\mathbb{R}} |\widehat{g}^{\mathbb{R}}(x+iy)|^2 dx < \infty$ for any t > 0. Note

that the *n*-th Hermite functions φ_n belong to \mathcal{K} .

Why the space \mathcal{K} and \mathcal{B} ?

- ► First, the term e^{t(|x|+|y|+|z|)} allows us to absorb the exponential functions coming from the weight W^ρ_X.
- Indeed, *F^G(f^{ℝ3})(r)*, *r* ≠ 0 is an integral operator with the kernel *K(w,x) = f^ℝ₁(w − x, −rw, r)*, where *f^ℝ₁* is taking Fourier transform on the 1st variable.

• Moreover
$$W\mathcal{F}^{G}(\widehat{f}^{\mathbb{R}^{3}})(r) = \mathcal{F}^{G}(\widehat{g}^{\mathbb{R}^{3}})(r)$$
 with

$$g(s,t,u)=\rho^{|s|}f(s,t,u).$$

It is clear to see that $g \in \mathcal{K}$.

Why the space \mathcal{K} and \mathcal{B} ?: continued

- \blacktriangleright Secondly, ${\cal K}$ is big enough to include "nice" functions.
- ▶ Let P_{mn} be the rank 1 operator s.t. $P_{mn}\xi = \langle \xi, \varphi_m \rangle \varphi_n$. Then $\{h \otimes P_{mn} : h \in C_c^{\infty}(\mathbb{R} \setminus \{0\})\}$ is dense in $A(H_1)$.
- Now we consider the function f satisfying

$$K(w,x) = \widehat{f}_1^{\mathbb{R}}(w-x,-rw,r) = \varphi_m(w)\varphi_n(x)h(r)$$

for a fixed $h \in C^\infty_c(\mathbb{R} \setminus \{0\})$ and $m, n \ge 0$. Then f is actually given by

$$f(x, y, z) = i^n e^{2\pi i \frac{xy}{z}} \varphi_m(-\frac{y}{z}) \varphi_n(-x) h(z), \ z \neq 0.$$

Then we readily check that $f \in \mathcal{K}$.

• Note that the above $f \notin C_c^{\infty}(\mathbb{R}^3)$.

Determining the Spec $A(H_1, W)$: continued

• (*) The space \mathcal{B} is a subspace of $A(H_1, W)$ and the map

 $\mathcal{F}^{\mathbb{R}^3}:\mathcal{K}(\mathbb{R}^3)\to A(H_1,W)$

is continuous.

- The proof of the above depends on the following Fourier algebra norm estimate.
- ► (Geller '77, modified) There is a constant C > 0 and linear partial differential operators L_k of order ≤ 2k with polynomial coefficients of degree ≤ 2k + 2 such that

$$||\mathcal{F}^{H_1}(F)||_{A(H_1)} \leq C \sum_{k=0}^3 ||L_kF||_{L^2(G)}$$

Geller actually uses the sublaplacian L on H₁ and its power L^k, 0 ≤ k ≤ 3 with L¹-norm estimate, but we can easily transfer it to L²-estimate by putting additional weight.

Determining the Spec $A(H_1, W)$: continued 2

- (**) The space $\mathcal{B} \cap \mathcal{H}^{\omega}_{\infty}(\lambda)$ is a dense subspace of $A(H_1, W)$.
- The proof of the above depends on the fact that h ⊗ P_{mn}, h ∈ C[∞]_c(ℝ\{0}) corresponds to a function in K ∩ H^ω_∞(λ) by the criterion of Goodman.

Determining the Spec $A(H_1, W)$: checking norm conditions

► (⇐) We use complex Fourier inversion

$$f_{\omega}(\tilde{x}, \tilde{y}, \tilde{z}) = \int_{\mathbb{R} \setminus \{0\}} \mathsf{Tr}(\pi^{r}(\tilde{x}, \tilde{y}, \tilde{z}) \widehat{f}^{H_{1}}(r)) |r| dr$$

and check the uniform boundedness of the operators $\pi^r_{\omega}(\tilde{x}, \tilde{y}, \tilde{z})W^{-1}(r)$ directly.

• (\Rightarrow) Use gaussian functions!

Other non-compact Lie groups

- The case of the Euclidean motion group E(2) can be done similarly, but easier!
- The case of ax + b group is still open due to the absence of enough elements allowing complex Fourier inversions, i.e. entire vectors for λ.