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HAP for groups and v.N. algebras

.

Definition (Haagerup 1979)

.

.

.

. ..

.

.

A locally compact group G has the HAP if
∃ positive definite functions ϕn on G such that

(a) ϕn → 1 uniformly on compact subsets;

(b) ϕn ∈ C0(G).

.

Definition (Choda 1983)

.

.

.

. ..

.

.

A finite v.N. algebra M wiht a f.n. tracial state τ has the HAP if
∃ c.c.p. normal maps Φn on M such that

(A) Φn → idM in σ-WOT;

(B) τ ◦ Φn ≤ τ and Tn ∈ K(Hτ) satisfying

Tn(xξτ) = Φn(x)ξτ for x ∈ M.
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Standard form

.

Theorem (Haagerup 1975)

.

.

.

. ..

.

.

Any v.N. algebra is ∗-isomorphic to a v.N. algebra M on a Hilbert space H
such that there exists a conjugate-linear isometric involution J on H and a
self-dual positive cone P in H with the following properties:

(1) J MJ = M′;
(2) Jξ = ξ for any ξ ∈ P;

(3) xJxJ P ⊂ P for any x ∈ M;

(4) JcJ = c∗ for any c ∈ Z(M) := M ∩ M′.

Such a quadruple (M, H, J, P) is called a standard form.

.

Theorem (Ando-Haagerup 2012)

.

.

.

. ..

.

.

The condition (4) can be dropped.
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Standard forms and f.n.s. weights

Let ϕ be a f.n.s. weight on a v.N. algebra M.

nϕ := {x ∈ M | ϕ(x∗x) < ∞}.
Hϕ is the completion of nϕ with respect to ‖x‖2

ϕ := ϕ(x∗x).
Λϕ : nϕ → Hϕ is the canonical injection.
Aϕ := Λϕ(nϕ ∩ n∗ϕ) is the associated left Hilbert algebra with

Λϕ(x) · Λϕ(y) := Λϕ(xy), Λϕ(x)] := Λϕ(x∗).

πϕ is the corresponding representation of M on Hϕ.
Sϕ is the closure of the conjugate-linear operator ξ 7→ ξ] on Hϕ,
which has the polar decomposition

Sϕ = Jϕ∆
1/2
ϕ ,

where Jϕ is the modular involution and ∆ϕ is the modular operator.

Pϕ := {ξ(Jϕξ) | ξ ∈ Aϕ} is the self-dual positive cone.

Then the quadruple (πϕ(M), Hϕ, Jϕ, Pϕ) is a standard form.
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A self-dual positive cone ofMn(M)

Let (M, H, J, P) and (Mn,Mn, Jtrn,M
+
n) be standard forms.

.

Definition

.

.

.

. ..

.

.

[ξi j] ∈ Mn(H) is n-positive if

n∑
i, j=1

xi Jx j Jξi j ∈ P for any x1, . . . , xn ∈ M.

P(n) := {[ξi j] ∈ Mn(H) : n-positive}.

.

Theorem (Schmitt-Wittstock 1982, Miura-Tomiyama 1984)

.

.

.

. ..

.

.

(Mn(M),Mn(H), J ⊗ Jtrn, P(n)) is a standard form.
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HAP for a v.N. algebra

.

Definition

.

.

.

. ..

.

.

Let (M, H, J, P) be a standard form.
A bounded linear operator T : H → H is completely positive (c.p.) if

(T ⊗ idn)P(n) ⊂ P(n) for any n ≥ 1.

.

Definition (O-Tomatsu 2013)

.

.

.

. ..

.

.

A v.N. algebra M has the HAP if
∃ standard form (M, H, J, P);
∃ c.c.p. Tn ∈ K(H) such that Tn → 1H in SOT.

.

Remark

.

.

.

. ..

.

.

The HAP does not depend on the choice of (M, H, J, P).
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Injectivity implies HAP

.

Theorem (Torpe 1981, Junge-Ruan-Xu 2005)

.

.

.

. ..

.

.

A v.N. algebra M is injective
⇐⇒ ∃ finite rank c.c.p. Tn on H such that Tn → 1H in SOT.
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Permanece property

.

Theorem (O-Tomatsu 2013)

.

.

.

. ..

.

.

If pn ∈ M are projections with pn ↗ 1M,
then M has the HAP⇐⇒ pnM pn has the HAP for all n;

⊕
n Mn has the HAP⇐⇒ Mn has the HAP for all n;

M1 ⊗ M2 has the HAP⇐⇒ M1, M2 have the HAP;

M has the HAP⇐⇒ M′ has the HAP.
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Crossed products

.

Theorem (O-Tomatsu 2013)

.

.

.

. ..

.

.

Let α be an action of a locally compact group G on a v.N. algebra M.

If M oα G has the HAP, then M has the HAP;

If G is amenable and M has the HAP, then M oα G has the HAP.

.

Corollary (O-Tomatsu 2013)

.

.

.

. ..

.

.

A v.N. algebra M has the HAP if and only if so does its core M̃ := M oσ R.
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Conditional expactation

.

Theorem (O-Tomatsu 2013)

.

.

.

. ..

.

.

If E : M → N is a (not necessarily normal) conditional expectation and
M has the HAP, then N has the HAP.
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σ-finite v.N. algebras

Let ϕ be a f.n. state on a σ-finite v.N. algebra M.
Let (Hϕ, ξϕ) be the GNS representation and ∆ϕ be the modular operator.

.

Theorem (O-Tomatsu 2013)

.

.

.

. ..

.

.

A σ-finite v.N. algebra M has the HAP if and only if

∃ c.p. compact contractions Tn on Hϕ such that Tn → 1Hϕ in SOT;

∃ c.c.p. normal maps Φn on M such that ϕ ◦ Φn ≤ ϕ and

Tn(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈ M.

.

Remark

.

.

.

. ..

.

.

Our HAP is equivalent to the original definition when M is finite.
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CS-HAP

.

Definition (Caspers-Skalski 2013)
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Equivalence between CS-HAP and OT-HAP

Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core M̃ := M oσ R has the HAP.

So we may assume that M = N⊗B(H), where N is finite.

Then M has the HAP if and only if N has the HAP.

In the case of finite v.N. algebras, CS-HAP and OT-HAP are equivalent to
the original one.

Rui OKAYASU (OKU) HAP and positive cones May. 25. 2014 13 / 22



Equivalence between CS-HAP and OT-HAP

Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core M̃ := M oσ R has the HAP.

So we may assume that M = N⊗B(H), where N is finite.

Then M has the HAP if and only if N has the HAP.

In the case of finite v.N. algebras, CS-HAP and OT-HAP are equivalent to
the original one.

Rui OKAYASU (OKU) HAP and positive cones May. 25. 2014 13 / 22



Equivalence between CS-HAP and OT-HAP

Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core M̃ := M oσ R has the HAP.

So we may assume that M = N⊗B(H), where N is finite.

Then M has the HAP if and only if N has the HAP.

In the case of finite v.N. algebras, CS-HAP and OT-HAP are equivalent to
the original one.

Rui OKAYASU (OKU) HAP and positive cones May. 25. 2014 13 / 22



Equivalence between CS-HAP and OT-HAP

Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core M̃ := M oσ R has the HAP.

So we may assume that M = N⊗B(H), where N is finite.

Then M has the HAP if and only if N has the HAP.

In the case of finite v.N. algebras, CS-HAP and OT-HAP are equivalent to
the original one.

Rui OKAYASU (OKU) HAP and positive cones May. 25. 2014 13 / 22



Equivalence between CS-HAP and OT-HAP

Proof

Let M be a v.N. algebra.

M has the HAP if and only if its core M̃ := M oσ R has the HAP.

So we may assume that M = N⊗B(H), where N is finite.

Then M has the HAP if and only if N has the HAP.

In the case of finite v.N. algebras, CS-HAP and OT-HAP are equivalent to
the original one.

Rui OKAYASU (OKU) HAP and positive cones May. 25. 2014 13 / 22



CS-HAP and OT-HAP

Let M be a σ-finite v.N. algebra M with a f.n. state ϕ.

.

OT-HAP

.

.

.

. ..

.

.
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Araki’s positive cones

Let M be a v.N. algebra M with a f.n.s. weight ϕ.

Recall thatAϕ is the associated left Hilbert algebra.
Consider the following positive cone:

P]ϕ = {ξξ] | ξ ∈ Aϕ} and Pϕ = P\ϕ = {ξ(Jϕξ) | ξ ∈ Aϕ}.

.

Definition (Araki 1974)

.

.

.

. ..

. .

P αϕ := ∆αϕP]ϕ for 0 ≤ α ≤ 1/2.

P 0
ϕ = P ]ϕ and P1/4

ϕ = Pϕ = P \ϕ;

JϕP αϕ = P1/2−α
ϕ ;

P1/2−α
ϕ = {η ∈ Hϕ : 〈η, ξ〉 ≥ 0 for ξ ∈ P αϕ }.
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α-HAP

Let 0 ≤ α ≤ 1/2. Let M be a v.N. algebra with a f.n.s weight ϕ.

.

Definition (O-Tomatsu 2014)

.

.

.

. ..

.

.

A v.N. algebra M has the α-HAP if
∃ contractiions Tn ∈ K(Hϕ) such that

Tn → 1Hϕ in SOT;

Tn is completely positive with respect to P αϕ .

.

Remark

.

.

.

. ..

.

.

It can be proved that the α-HAP does not depend on the choice of ϕ.
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Independency on the choice of positive cones

Let M be a von Neumann algebra.

.

Theorem (O-Tomatsu 2014)

.

.

.

. ..

.

.

The following are equivalent:

(1) M has the OT-HAP, i.e., 1/4-HAP;

(2) M has the CS-HAP;

(3) M has the 0-HAP;

(4) M has the α-HAP for some/all α;
(5) For any f.n.s. weight ϕ, ∃ c.c.p. normal maps Φn on M such that

ϕ ◦ Φn ≤ ϕ;
Φn → idM in σ-WOT;
for any 0 ≤ α ≤ 1/2, the associated c.c.p. operators Tαn are compact
and Tαn → 1Hϕ , where

Tαn (∆αϕΛϕ(x)) = ∆αϕΛϕ(Φn(x)) for x ∈ nϕ.
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Proof of (1) =⇒ (2)

We may assume that M is σ-finite with a f.n. state ϕ.

Take c.c.p. normal maps Φn on M such that

Tn(∆1/4
ϕ xξϕ) := ∆1/4

ϕ Φn(x)ξϕ.

Then T0
n = ∆

−1/4
ϕ Tn∆

1/4
ϕ ∈ B(H) satisfies T0

n(xξϕ) = Φn(x)ξϕ,
but T0

n ∈ K(Hϕ)?
Let gβ(t) :=

√
β/π exp(−βt2) for β > 0.

Define

Uβ :=
∫
R

gβ(t)∆it
ϕ dt and Φn, β, γ := σϕgβ ◦ Φn ◦ σϕgγ .

Then T0
n, β, γ

(xξϕ) := Φn, β, γ(x)ξϕ such that

T0
n, β, γ

= (Uβ∆−1/4
ϕ )Tn(∆1/4

ϕ Uγ) ∈ K(Hϕ),

because Uβ∆
−1/4
ϕ , ∆1/4

ϕ Uγ ∈ B(Hϕ).
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Independency on the choice of positive cones

Let M be a von Neumann algebra.

.

Theorem (O-Tomatsu 2014)

.

.

.

. ..

.

.

The following are equivalent:

(1) M has the OT-HAP, i.e., 1/4-HAP;

(2) M has the CS-HAP;

(3) M has the 0-HAP;

(4) M has the α-HAP for some/all α;
(5) For any f.n.s. weight ϕ, ∃ c.c.p. normal maps Φn on M such that

ϕ ◦ Φn ≤ ϕ;
Φn → idM in σ-WOT;
for any 0 ≤ α ≤ 1/2, the associated c.c.p. operators Tαn are compact
and Tαn → 1Hϕ , where

Tαn (∆αϕΛϕ(x)) = ∆αϕΛϕ(Φn(x)) for x ∈ nϕ.
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Proof of (3) =⇒ (4)

.

Lemma (O-Tomatsu 2014)

.

.

.

. ..

.

.

Let α ∈ [0, 1/4] and T ∈ B(Hϕ) be completely positive with respect to P αϕ .
Then for β ∈ [α, 1/2 − α],

∆
β−α
ϕ T∆α−βϕ can be extended to a bounded operator on Hϕ with the

norm ‖T‖, which is completely positive with respect to Pβϕ.

If T is compact, then so does ∆β−αϕ T∆α−βϕ .

Proof For simplicity, assume that α = 0.

Now suppose that T is bounded (or compact) at the endpoint 0.

Then JϕTJϕ is also bounded (or compact) at the other endpoint 1/2.

Apply the three lines Theorem.
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HAP for non-commutative Lp-spaces

Let 1 < p < ∞ and Lp(M) be Haagerup’s non-commutative Lp-space.

Note that Lp(M) has the natural positive cone Lp(M)+.

.

Definition (O-Tomatsu 2014)

.

.

.

. ..

.

.

A v.N. algebra M has the Lp-HAP if
∃ compact contractiions Tn on Lp(M) such that

Tn → 1Lp(M) in SOT;

Tn is completely positive.

Note that (M, L2(M), ∗ , L2(M)+) is a standard form.

.

Theorem (O-Tomatsu 2014)

.

.

.

. ..

.

.

A v.N. algebra M has the HAP, i.e., L2-HAP
⇐⇒ M has the Lp-HAP for some/all 1 < p < ∞.
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