.. . **associated with a von Neumann algebra Haagerup Approximation Property and positive cones**

joint with Reiji TOMATSU

May 29, 2014 Workshop on Operator Spaces, Locally Compact Quantum Groups and Amenability Fields Institute

Supported by JSPS KAKENHI Grant Number 25800065.

HAP for groups and v.N. algebras

Definition (Haagerup 1979)

A locally compact group *G* has the **HAP** if ∃ positive definite functions ϕ*ⁿ* on *G* such that

(a) $\varphi_n \to 1$ uniformly on compact subsets;

(b) $\varphi_n \in C_0(G)$.

HAP for groups and v.N. algebras

Definition (Haagerup 1979)

A locally compact group *G* has the **HAP** if \exists positive definite functions φ_n on G such that

- (a) $\varphi_n \to 1$ uniformly on compact subsets;
- (b) $\varphi_n \in C_0(G)$.

Definition (Choda 1983)

A finite v.N. algebra M wiht a f.n. tracial state τ has the **HAP** if ∃ c.c.p. normal maps Φ*ⁿ* on *M* such that

- (A) $\Phi_n \to \mathrm{id}_M$ in σ -WOT;
- (B) $\tau \circ \Phi_n \leq \tau$ and $T_n \in \mathbb{K}(H_\tau)$ satisfying

 $T_n(x\xi_\tau) = \Phi_n(x)\xi_\tau$ for $x \in M$.

Standard form

Theorem (Haagerup 1975)

Any v.N. algebra is ∗-isomorphic to a v.N. algebra *M* on a Hilbert space *H* such that there exists a conjugate-linear isometric involution *J* on *H* and a self-dual positive cone *P* in *H* with the following properties:

- (1) $JMJ = M';$
- (2) $J\xi = \xi$ for any $\xi \in P$;
- (3) $xJxJP \subset P$ for any $x \in M$;
- (4) $JcJ = c^*$ for any $c \in Z(M) := M \cap M'$.

Such a quadruple (*M*, *H*, *J*, *P*) is called a **standard form**.

Standard form

Theorem (Haagerup 1975)

Any v.N. algebra is ∗-isomorphic to a v.N. algebra *M* on a Hilbert space *H* such that there exists a conjugate-linear isometric involution *J* on *H* and a self-dual positive cone *P* in *H* with the following properties:

- (1) $JMJ = M';$
- (2) $J\xi = \xi$ for any $\xi \in P$;
- (3) $xJxJP \subset P$ for any $x \in M$;
- (4) $JcJ = c^*$ for any $c \in Z(M) := M \cap M'$.

Such a quadruple (*M*, *H*, *J*, *P*) is called a **standard form**.

Let φ be a f.n.s. weight on a v.N. algebra M .

Let φ be a f.n.s. weight on a v.N. algebra M .

 $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$

Let φ be a f.n.s. weight on a v.N. algebra M .

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.

Let φ be a f.n.s. weight on a v.N. algebra M .

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.
- $\Lambda_{\varphi}\colon n_{\varphi}\to H_{\varphi}$ is the canonical injection.

Let φ be a f.n.s. weight on a v.N. algebra M .

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.
- $\Lambda_{\varphi} \colon n_{\varphi} \to H_{\varphi}$ is the canonical injection.
- $\mathcal{A}_{\varphi}:=\Lambda_{\varphi}(n_{\varphi}\cap n_{\varphi}^*)$ is the associated left Hilbert algebra with

$$
\Lambda_{\varphi}(x) \cdot \Lambda_{\varphi}(y) := \Lambda_{\varphi}(xy), \quad \Lambda_{\varphi}(x)^{\sharp} := \Lambda_{\varphi}(x^*).
$$

 \mathbf{a}

Let φ be a f.n.s. weight on a v.N. algebra M .

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.
- $\bullet \ \Lambda_{\varphi} \colon n_{\varphi} \to H_{\varphi}$ is the canonical injection.
- $\mathcal{A}_{\varphi}:=\Lambda_{\varphi}(n_{\varphi}\cap n_{\varphi}^*)$ is the associated left Hilbert algebra with

$$
\Lambda_{\varphi}(x) \cdot \Lambda_{\varphi}(y) := \Lambda_{\varphi}(xy), \quad \Lambda_{\varphi}(x)^{\sharp} := \Lambda_{\varphi}(x^*).
$$

• π_{φ} is the corresponding representation of *M* on H_{φ} .

Let φ be a f.n.s. weight on a v.N. algebra M .

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.
- Λ_{φ} : $n_{\varphi} \to H_{\varphi}$ is the canonical injection.
- $\mathcal{A}_{\varphi}:=\Lambda_{\varphi}(n_{\varphi}\cap n_{\varphi}^*)$ is the associated left Hilbert algebra with

$$
\Lambda_{\varphi}(x) \cdot \Lambda_{\varphi}(y) := \Lambda_{\varphi}(xy), \quad \Lambda_{\varphi}(x)^{\sharp} := \Lambda_{\varphi}(x^*).
$$

]

- \bullet π_{φ} is the corresponding representation of *M* on H_{φ} .
- S_φ is the closure of the conjugate-linear operator $\xi \mapsto \xi^\sharp$ on $H_\varphi,$ which has the polar decomposition

$$
S_{\varphi}=J_{\varphi}\Delta_{\varphi}^{1/2},
$$

where J_{φ} is the modular involution and Δ_{φ} is the modular operator.

Let φ be a f.n.s. weight on a v.N. algebra M .

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.
- Λ_{φ} : $n_{\varphi} \to H_{\varphi}$ is the canonical injection.
- $\mathcal{A}_{\varphi}:=\Lambda_{\varphi}(n_{\varphi}\cap n_{\varphi}^*)$ is the associated left Hilbert algebra with

$$
\Lambda_{\varphi}(x) \cdot \Lambda_{\varphi}(y) := \Lambda_{\varphi}(xy), \quad \Lambda_{\varphi}(x)^{\sharp} := \Lambda_{\varphi}(x^*).
$$

- \bullet π_{φ} is the corresponding representation of *M* on H_{φ} .
- S_φ is the closure of the conjugate-linear operator $\xi \mapsto \xi^\sharp$ on $H_\varphi,$ which has the polar decomposition

$$
S_{\varphi}=J_{\varphi}\Delta_{\varphi}^{1/2},
$$

where J_{φ} is the modular involution and Δ_{φ} is the modular operator.

• $P_{\varphi} := \overline{\{\xi(J_{\varphi} \xi) \mid \xi \in \mathcal{A}_{\varphi}\}}$ is the self-dual positive cone.

Let φ be a f.n.s. weight on a v.N. algebra M .

- $n_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}.$
- H_{φ} is the completion of n_{φ} with respect to $||x||_{\varphi}^2 := \varphi(x^*x)$.
- $\bullet \ \Lambda_{\varphi} \colon n_{\varphi} \to H_{\varphi}$ is the canonical injection.
- $\mathcal{A}_{\varphi}:=\Lambda_{\varphi}(n_{\varphi}\cap n_{\varphi}^*)$ is the associated left Hilbert algebra with

$$
\Lambda_{\varphi}(x) \cdot \Lambda_{\varphi}(y) := \Lambda_{\varphi}(xy), \quad \Lambda_{\varphi}(x)^{\sharp} := \Lambda_{\varphi}(x^*).
$$

- **■** $π_ϕ$ is the corresponding representation of *M* on $H_ϕ$.
- S_φ is the closure of the conjugate-linear operator $\xi \mapsto \xi^\sharp$ on $H_\varphi,$ which has the polar decomposition

$$
S_{\varphi}=J_{\varphi}\Delta_{\varphi}^{1/2},
$$

where J_{φ} is the modular involution and Δ_{φ} is the modular operator.

• $P_{\varphi} := \{ \xi(J_{\varphi} \xi) \mid \xi \in \mathcal{A}_{\varphi} \}$ is the self-dual positive cone.

Then the quadruple $(\pi_{\varphi}(M), H_{\varphi}, J_{\varphi}, P_{\varphi})$ is a standard form.

Rui OKAYASU (OKU) HAP and positive cones May. 25. 2014 4 / 22

Let (M, H, J, P) and $(\mathbb{M}_n, \mathbb{M}_n, J_{\mathrm{tr}_n}, \mathbb{M}_n^+)$ be standard forms.

Let (M, H, J, P) and $(\mathbb{M}_n, \mathbb{M}_n, J_{\mathrm{tr}_n}, \mathbb{M}_n^+)$ be standard forms.

Definition
\n•
$$
[\xi_{ij}] \in M_n(H)
$$
 is *n*-positive if
\n
$$
\sum_{i,j=1}^n x_i J x_j J \xi_{ij} \in P \text{ for any } x_1, ..., x_n \in M.
$$

Let (M, H, J, P) and $(\mathbb{M}_n, \mathbb{M}_n, J_{\mathrm{tr}_n}, \mathbb{M}_n^+)$ be standard forms.

Definition

\n\n- $$
[\xi_{ij}] \in \mathbb{M}_n(H)
$$
 is *n*-positive if
\n- $\sum_{i,j=1}^n x_i J x_j J \xi_{ij} \in P$ for any $x_1, \ldots, x_n \in M$.
\n- $P^{(n)} := \{ [\xi_{ij}] \in \mathbb{M}_n(H) : n\text{-positive} \}$.
\n

Let (M, H, J, P) and $(\mathbb{M}_n, \mathbb{M}_n, J_{\mathrm{tr}_n}, \mathbb{M}_n^+)$ be standard forms.

Definition

\n\n- $$
[\xi_{ij}] \in \mathbb{M}_n(H)
$$
 is *n*-positive if
\n- $\sum_{i,j=1}^n x_i J x_j J \xi_{ij} \in P$ for any $x_1, \ldots, x_n \in M$.
\n- $P^{(n)} := \{ [\xi_{ij}] \in \mathbb{M}_n(H) : n\text{-positive} \}$.
\n
\nTheorem (Schmitt-Wittstock 1982, Miura-Tomiyama 1984)

 $(\mathbb{M}_n(M), \mathbb{M}_n(H), J \otimes J_{\mathrm{tr}_n}, P^{(n)})$ is a standard form.

HAP for a v.N. algebra

Definition

Let (M, H, J, P) be a standard form.

. A bounded linear operator *T* : *H* → *H* is **completely positive** (**c.p.**) if

 $(T \otimes id_n)P^{(n)} \subset P^{(n)}$ for any $n \geq 1$.

HAP for a v.N. algebra

Definition

Let (M, H, J, P) be a standard form.

. A bounded linear operator *T* : *H* → *H* is **completely positive** (**c.p.**) if

 $(T \otimes id_n)P^{(n)} \subset P^{(n)}$ for any $n \geq 1$.

Definition (O-Tomatsu 2013) Construction of the Constructio

A v.N. algebra *M* has the **HAP** if \exists standard form (M, H, J, P) ; \exists c.c.p. $T_n \in \mathbb{K}(H)$ such that $T_n \to 1_H$ in SOT.

HAP for a v.N. algebra

Definition

Let (M, H, J, P) be a standard form.

. A bounded linear operator *T* : *H* → *H* is **completely positive** (**c.p.**) if

 $(T \otimes id_n)P^{(n)} \subset P^{(n)}$ for any $n \geq 1$.

Definition (O-Tomatsu 2013) Construction of the Constructio

A v.N. algebra *M* has the **HAP** if \exists standard form (M, H, J, P) ; \exists c.c.p. $T_n \in \mathbb{K}(H)$ such that $T_n \to 1_H$ in SOT.

Remark

The HAP does not depend on the choice of (*M*, *H*, *J*, *P*).

Injectivity implies HAP

Theorem (Torpe 1981, Junge-Ruan-Xu 2005)

A v.N. algebra *M* is injective \iff \exists finite rank c.c.p. T_n on H such that $T_n \to 1_H$ in SOT.

Theorem (O-Tomatsu 2013)

If $p_n \in M$ are projections with $p_n \nearrow 1_M$, then M has the HAP $\Longleftrightarrow p_nMp_n$ has the HAP for all $n;$

Theorem (O-Tomatsu 2013)

- If $p_n \in M$ are projections with $p_n \nearrow 1_M$, then M has the HAP $\Longleftrightarrow p_nMp_n$ has the HAP for all $n;$
- $\bigoplus_n M_n$ has the HAP $\Longleftrightarrow M_n$ has the HAP for all n ;

Theorem (O-Tomatsu 2013)

- If $p_n \in M$ are projections with $p_n \nearrow 1_M$, then M has the HAP $\Longleftrightarrow p_nMp_n$ has the HAP for all $n;$
- $\bigoplus_n M_n$ has the HAP $\Longleftrightarrow M_n$ has the HAP for all n ;
- $M_1 \otimes M_2$ has the HAP $\Longleftrightarrow M_1, M_2$ have the HAP;

Theorem (O-Tomatsu 2013)

- If $p_n \in M$ are projections with $p_n \nearrow 1_M$, then *M* has the HAP $\Longleftrightarrow p_nMp_n$ has the HAP for all *n*;
- $\bigoplus_n M_n$ has the HAP $\Longleftrightarrow M_n$ has the HAP for all n ;
- $M_1 \otimes M_2$ has the HAP $\Longleftrightarrow M_1, M_2$ have the HAP;
- *M* has the HAP $\Longleftrightarrow M'$ has the HAP.

Theorem (O-Tomatsu 2013)

Let α be an action of a locally compact group G on a v.N. algebra M .

Theorem (O-Tomatsu 2013)

Let α be an action of a locally compact group *G* on a v.N. algebra *M*.

 \bullet If $M \rtimes_{\alpha} G$ has the HAP, then M has the HAP;

Theorem (O-Tomatsu 2013)

Let α be an action of a locally compact group *G* on a v.N. algebra *M*.

- \bullet If $M \rtimes_{\alpha} G$ has the HAP, then M has the HAP;
- **If G** is amenable and M has the HAP, then $M \rtimes_{\alpha} G$ has the HAP.

Theorem (O-Tomatsu 2013)

Let α be an action of a locally compact group *G* on a v.N. algebra *M*.

• If $M \rtimes_{\alpha} G$ has the HAP, then M has the HAP;

.. .

If G is amenable and M has the HAP, then $M \rtimes_{\alpha} G$ has the HAP.

Corollary (O-Tomatsu 2013)

A v.N. algebra *M* has the HAP if and only if so does its core $\widetilde{M} := M \rtimes_{\sigma} \mathbb{R}$.

Conditional expactation

Theorem (O-Tomatsu 2013)

If $E: M \to N$ is a (not necessarily normal) conditional expectation and *M* has the HAP, then *N* has the HAP.

σ**-finite v.N. algebras**

Let φ be a f.n. state on a σ -finite v.N. algebra M .

Let ($H_{\varphi}, \xi_{\varphi}$) be the GNS representation and Λ_{φ} be the modular operator.

σ**-finite v.N. algebras**

Let φ be a f.n. state on a σ -finite v.N. algebra M . Let ($H_{\varphi}, \xi_{\varphi}$) be the GNS representation and Δ_{φ} be the modular operator.

Theorem (O-Tomatsu 2013)

A σ-finite v.N. algebra *M* has the HAP if and only if

- \exists c.p. compact contractions T_n on H_φ such that $T_n\to 1_{H_\varphi}$ in SOT;
- \bullet \exists c.c.p. normal maps Φ_n on *M* such that $\varphi \circ \Phi_n \leq \varphi$ and

$$
T_n(\Delta_{\varphi}^{1/4} x \xi_{\varphi}) = \Delta_{\varphi}^{1/4} \Phi_n(x) \xi_{\varphi} \quad \text{for } x \in M.
$$

σ**-finite v.N. algebras**

Let φ be a f.n. state on a σ -finite v.N. algebra M. Let $(H_{\varphi}, \xi_{\varphi})$ be the GNS representation and Δ_{φ} be the modular operator.

Theorem (O-Tomatsu 2013)

A σ-finite v.N. algebra *M* has the HAP if and only if

- \exists c.p. compact contractions T_n on H_φ such that $T_n\to 1_{H_\varphi}$ in SOT;
- \bullet \exists c.c.p. normal maps Φ_n on *M* such that $\varphi \circ \Phi_n \leq \varphi$ and

$$
T_n(\Delta_{\varphi}^{1/4}x\xi_{\varphi}) = \Delta_{\varphi}^{1/4}\Phi_n(x)\xi_{\varphi} \quad \text{for } x \in M.
$$

Remark

Our HAP is equivalent to the original definition when *M* is finite.

CS-HAP

Definition (Caspers-Skalski 2013)

A (σ -finite) v.N. algebra M (with a f.n. state φ) has the CS-HAP if

 \exists compact contractions T_n on H_φ such that $T_n\to 1_{H_\varphi}$ in SOT;

 \bullet \exists c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

 $T_n(x\xi_\varphi) = \Phi_n(x)\xi_\varphi$ for $x \in M$.

CS-HAP

Definition (Caspers-Skalski 2013)

A (σ -finite) v.N. algebra M (with a f.n. state φ) has the CS-HAP if

 \exists compact contractions T_n on H_φ such that $T_n\to 1_{H_\varphi}$ in SOT;

 \bullet \exists c.p. normal maps Φ_n on *M* such that $\varphi \circ \Phi_n \leq \varphi$ and

 $T_n(x\xi_\varphi) = \Phi_n(x)\xi_\varphi$ for $x \in M$.

Remark

The OT-HAP is equivalent to the CS-HAP.
Proof

Let *M* be a v.N. algebra.

Proof

Let *M* be a v.N. algebra.

M has the HAP if and only if its core $\widetilde{M} := M \rtimes_{\sigma} \mathbb{R}$ has the HAP.

Proof

Let *M* be a v.N. algebra.

M has the HAP if and only if its core $\widetilde{M} := M \rtimes_{\sigma} \mathbb{R}$ has the HAP.

So we may assume that $M = N \overline{\otimes} \mathbb{B}(H)$, where *N* is finite.

Proof

Let *M* be a v.N. algebra.

M has the HAP if and only if its core $\widetilde{M} := M \rtimes_{\sigma} \mathbb{R}$ has the HAP.

So we may assume that $M = N \overline{\otimes} \mathbb{B}(H)$, where *N* is finite.

Then *M* has the HAP if and only if *N* has the HAP.

Proof

Let *M* be a v.N. algebra.

M has the HAP if and only if its core $\widetilde{M} := M \rtimes_{\sigma} \mathbb{R}$ has the HAP.

So we may assume that $M = N \overline{\otimes} \mathbb{B}(H)$, where *N* is finite.

Then *M* has the HAP if and only if *N* has the HAP.

In the case of finite v.N. algebras, CS-HAP and OT-HAP are equivalent to the original one.

CS-HAP and OT-HAP

Let *M* be a σ -finite v.N. algebra *M* with a f.n. state φ .

OT-HAP

- \exists c.p. compact contractions T_n on H_φ such that $T_n\to 1_{H_\varphi}$ in SOT;
	- \bullet \exists c.c.p. normal maps Φ_n on *M* such that $\varphi \circ \Phi_n \leq \varphi$ and

$$
T_n(\Delta_{\varphi}^{1/4} x \xi_{\varphi}) = \Delta_{\varphi}^{1/4} \Phi_n(x) \xi_{\varphi} \quad \text{for } x \in M.
$$

CS-HAP

- \exists compact contractions T_n on H_φ such that $T_n\to 1_{H_\varphi}$ in SOT;
- \bullet \exists c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

 $T_n(x\xi_\varphi) = \Phi_n(x)\xi_\varphi$ for $x \in M$.

CS-HAP and OT-HAP

Let *M* be a σ -finite v.N. algebra *M* with a f.n. state φ .

OT-HAP

 \exists **c.p.** compact contractions T_n on H_φ such that $T_n \to 1_{H_\varphi}$ in SOT;

 \bullet \exists **c.**c.p. normal maps Φ_n on *M* such that $\varphi \circ \Phi_n \leq \varphi$ and

$$
T_n(\Delta_{\varphi}^{1/4} x \xi_{\varphi}) = \Delta_{\varphi}^{1/4} \Phi_n(x) \xi_{\varphi} \quad \text{for } x \in M.
$$

CS-HAP

 \exists compact contractions T_n on H_φ such that $T_n\to 1_{H_\varphi}$ in SOT;

 \bullet \exists c.p. normal maps Φ_n on M such that $\varphi \circ \Phi_n \leq \varphi$ and

 $T_n(x\xi_\varphi) = \Phi_n(x)\xi_\varphi$ for $x \in M$.

Let M be a v.N. algebra M with a f.n.s. weight φ .

Let *M* be a v.N. algebra *M* with a f.n.s. weight ϕ. Recall that \mathcal{A}_{φ} is the associated left Hilbert algebra.

Let M be a v.N. algebra M with a f.n.s. weight φ . Recall that \mathcal{A}_{φ} is the associated left Hilbert algebra. Consider the following positive cone:

$$
P_{\varphi}^{\sharp} = \{ \xi \xi^{\sharp} \mid \xi \in \mathcal{A}_{\varphi} \} \quad \text{and} \quad P_{\varphi} = P_{\varphi}^{\sharp} = \overline{\{ \xi(J_{\varphi} \xi) \mid \xi \in \mathcal{A}_{\varphi} \}}.
$$

Let M be a v.N. algebra M with a f.n.s. weight φ . Recall that \mathcal{A}_{φ} is the associated left Hilbert algebra. Consider the following positive cone:

$$
P_{\varphi}^{\sharp} = \{ \xi \xi^{\sharp} \mid \xi \in \mathcal{A}_{\varphi} \} \quad \text{and} \quad P_{\varphi} = P_{\varphi}^{\sharp} = \overline{\{ \xi(J_{\varphi} \xi) \mid \xi \in \mathcal{A}_{\varphi} \}}.
$$

Definition (Araki 1974)

 $P_{\varphi}^{\alpha}:=\Delta_{\varphi}^{\alpha}P_{\varphi}^{\sharp}$ $\frac{1}{\varphi}$ for $0 \leq \alpha \leq 1/2$.

Let M be a v.N. algebra M with a f.n.s. weight φ . Recall that \mathcal{A}_{φ} is the associated left Hilbert algebra. Consider the following positive cone:

$$
P_{\varphi}^{\sharp} = \{ \xi \xi^{\sharp} \mid \xi \in \mathcal{A}_{\varphi} \} \quad \text{and} \quad P_{\varphi} = P_{\varphi}^{\sharp} = \overline{\{ \xi(J_{\varphi} \xi) \mid \xi \in \mathcal{A}_{\varphi} \}}.
$$

Definition (Araki 1974)

$$
P^\alpha_\varphi:=\Delta^\alpha_\varphi P^\sharp_\varphi\quad\text{for $0\le\alpha\le 1/2$}.
$$

•
$$
P_{\varphi}^0 = P_{\varphi}^{\sharp}
$$
 and $P_{\varphi}^{1/4} = P_{\varphi} = P_{\varphi}^{\sharp}$;

Let M be a v.N. algebra M with a f.n.s. weight φ . Recall that \mathcal{A}_{φ} is the associated left Hilbert algebra. Consider the following positive cone:

$$
P_{\varphi}^{\sharp} = \{ \xi \xi^{\sharp} \mid \xi \in \mathcal{A}_{\varphi} \} \quad \text{and} \quad P_{\varphi} = P_{\varphi}^{\sharp} = \overline{\{ \xi(J_{\varphi} \xi) \mid \xi \in \mathcal{A}_{\varphi} \}}.
$$

Definition (Araki 1974)

$$
P^\alpha_\varphi:=\Delta^\alpha_\varphi P^\sharp_\varphi\quad\text{for $0\le\alpha\le 1/2$}.
$$

\n- •
$$
P_{\varphi}^{0} = P_{\varphi}^{\sharp}
$$
 and $P_{\varphi}^{1/4} = P_{\varphi} = P_{\varphi}^{\sharp}$;
\n- • $J_{\varphi} P_{\varphi}^{\alpha} = P_{\varphi}^{1/2-\alpha}$;
\n

Let M be a v.N. algebra M with a f.n.s. weight φ . Recall that \mathcal{A}_{φ} is the associated left Hilbert algebra. Consider the following positive cone:

$$
P_{\varphi}^{\sharp} = \{ \xi \xi^{\sharp} \mid \xi \in \mathcal{A}_{\varphi} \} \quad \text{and} \quad P_{\varphi} = P_{\varphi}^{\sharp} = \overline{\{ \xi(J_{\varphi} \xi) \mid \xi \in \mathcal{A}_{\varphi} \}}.
$$

Definition (Araki 1974)

$$
P^\alpha_\varphi:=\Delta^\alpha_\varphi P^\sharp_\varphi\quad\text{for $0\le\alpha\le 1/2$}.
$$

\n- •
$$
P_{\varphi}^{0} = P_{\varphi}^{\sharp}
$$
 and $P_{\varphi}^{1/4} = P_{\varphi} = P_{\varphi}^{\sharp}$;
\n- • $J_{\varphi} P_{\varphi}^{\alpha} = P_{\varphi}^{1/2-\alpha}$;
\n- • $P_{\varphi}^{1/2-\alpha} = \ln 5 H_{\varphi} / \ln 5 \geq 0$ for $5 \leq 1$;
\n

•
$$
P_{\varphi}^{1/2-\alpha} = \{ \eta \in H_{\varphi} : \langle \eta, \xi \rangle \ge 0 \text{ for } \xi \in P_{\varphi}^{\alpha} \}.
$$

α**-HAP**

Let $0 \leq \alpha \leq 1/2$. Let *M* be a v.N. algebra with a f.n.s weight φ .

Definition (O-Tomatsu 2014)

A v.N. algebra *M* has the α**-HAP** if \exists contractiions $T_n \in \mathbb{K}(H_\varphi)$ such that

- $T_n \to 1_{H_{\varphi}}$ in SOT;
- T_n is completely positive with respect to $P_\varphi^{\,\alpha}.$

α**-HAP**

Let $0 \leq \alpha \leq 1/2$. Let *M* be a v.N. algebra with a f.n.s weight φ .

Definition (O-Tomatsu 2014)

A v.N. algebra M has the α -HAP if \exists contractiions $T_n \in \mathbb{K}(H_\varphi)$ such that

- $T_n \to 1_{H_{\varphi}}$ in SOT;
- T_n is completely positive with respect to $P_\varphi^{\,\alpha}.$

Remark

It can be proved that the α -HAP does not depend on the choice of φ .

Independency on the choice of positive cones

Let *M* be a von Neumann algebra.

Theorem (O-Tomatsu 2014) The following are equivalent: (1) *M* has the OT-HAP, i.e., 1/4-HAP; (2) *M* has the CS-HAP; (3) *M* has the 0-HAP; (4) *M* has the α -HAP for some/all α ; (5) For any f.n.s. weight φ , \exists c.c.p. normal maps Φ_n on M such that $\bullet \varphi \circ \Phi_n \leq \varphi;$ $\bullet \Phi_n \to \text{id}_M$ in σ -WOT; for any $0 \le \alpha \le 1/2$, the associated c.c.p. operators T_n^{α} are compact and $T_n^{\alpha} \to 1_{H_{\varphi}},$ where $T_n^{\alpha}(\Delta_{\varphi}^{\alpha}\Lambda_{\varphi}(x)) = \Delta_{\varphi}^{\alpha}\Lambda_{\varphi}(\Phi_n(x))$ for $x \in n_{\varphi}$.

We may assume that M is σ -finite with a f.n. state φ .

We may assume that M is σ -finite with a f.n. state φ . Take c.c.p. normal maps Φ*ⁿ* on *M* such that

$$
T_n(\Delta_{\varphi}^{1/4}x\xi_{\varphi}):=\Delta_{\varphi}^{1/4}\Phi_n(x)\xi_{\varphi}.
$$

We may assume that M is σ -finite with a f.n. state φ . Take c.c.p. normal maps Φ*ⁿ* on *M* such that

$$
T_n(\Delta_{\varphi}^{1/4}x\xi_{\varphi}):=\Delta_{\varphi}^{1/4}\Phi_n(x)\xi_{\varphi}.
$$

Then
$$
T_n^0 = \Delta_\varphi^{-1/4} T_n \Delta_\varphi^{1/4} \in \mathbb{B}(H)
$$
 satisfies $T_n^0(x\xi_\varphi) = \Phi_n(x)\xi_\varphi$,

We may assume that *M* is σ -finite with a f.n. state φ . Take c.c.p. normal maps Φ*ⁿ* on *M* such that

$$
T_n(\Delta_{\varphi}^{1/4}x\xi_{\varphi}):=\Delta_{\varphi}^{1/4}\Phi_n(x)\xi_{\varphi}.
$$

Then $T_n^0 = \Delta_\varphi^{-1/4} T_n \Delta_\varphi^{1/4}$ $\Phi_{\varphi}^{1/4}$ ∈ $\mathbb{B}(H)$ satisfies $T_n^0(x\xi_{\varphi}) = \Phi_n(x)\xi_{\varphi},$ but $T_n^0 \in \mathbb{K}(H_\varphi)$?

We may assume that *M* is σ -finite with a f.n. state φ . Take c.c.p. normal maps Φ*ⁿ* on *M* such that

$$
T_n(\Delta_{\varphi}^{1/4}x\xi_{\varphi}):=\Delta_{\varphi}^{1/4}\Phi_n(x)\xi_{\varphi}.
$$

Then $T_n^0 = \Delta_\varphi^{-1/4} T_n \Delta_\varphi^{1/4}$ $\Phi_{\varphi}^{1/4}$ ∈ $\mathbb{B}(H)$ satisfies $T_n^0(x\xi_{\varphi}) = \Phi_n(x)\xi_{\varphi},$ but $T_n^0 \in \mathbb{K}(H_\varphi)$? Let $g_{\beta}(t) := \sqrt{\beta/\pi} \exp(-\beta t^2)$ for $\beta > 0$.

We may assume that *M* is σ -finite with a f.n. state φ . Take c.c.p. normal maps Φ*ⁿ* on *M* such that

$$
T_n(\Delta_{\varphi}^{1/4}x\xi_{\varphi}):=\Delta_{\varphi}^{1/4}\Phi_n(x)\xi_{\varphi}.
$$

Then $T_n^0 = \Delta_\varphi^{-1/4} T_n \Delta_\varphi^{1/4}$ $\Phi_{\varphi}^{1/4}$ ∈ $\mathbb{B}(H)$ satisfies $T_n^0(x\xi_{\varphi}) = \Phi_n(x)\xi_{\varphi},$ but $T_n^0 \in \mathbb{K}(H_\varphi)$? Let $g_{\beta}(t) := \sqrt{\beta/\pi} \exp(-\beta t^2)$ for $\beta > 0$. Define $U_\beta \coloneqq$ ∫ $g_{\beta}(t) \Delta_{\varphi}^{it} dt$ and $\Phi_{n,\beta,\gamma} := \sigma_{g}^{\varphi}$ $\frac{\varphi}{g_\beta} \circ \Phi_n \circ \sigma_g^\varphi$ *g*γ .

R

We may assume that *M* is σ -finite with a f.n. state φ . Take c.c.p. normal maps Φ*ⁿ* on *M* such that

$$
T_n(\Delta_{\varphi}^{1/4}x\xi_{\varphi}):=\Delta_{\varphi}^{1/4}\Phi_n(x)\xi_{\varphi}.
$$

Then $T_n^0 = \Delta_\varphi^{-1/4} T_n \Delta_\varphi^{1/4}$ $\Phi_{\varphi}^{1/4}$ ∈ $\mathbb{B}(H)$ satisfies $T_n^0(x\xi_{\varphi}) = \Phi_n(x)\xi_{\varphi},$ but $T_n^0 \in \mathbb{K}(H_\varphi)$? Let $g_{\beta}(t) := \sqrt{\beta/\pi} \exp(-\beta t^2)$ for $\beta > 0$. **Define** ∫

$$
U_{\beta} := \int_{\mathbb{R}} g_{\beta}(t) \Delta_{\varphi}^{it} dt \quad \text{and} \quad \Phi_{n,\beta,\gamma} := \sigma_{g_{\beta}}^{\varphi} \circ \Phi_n \circ \sigma_{g_{\gamma}}^{\varphi}.
$$

Then $T^0_{\scriptscriptstyle \perp}$ $\Phi^{\mathbf{0}}_{\bm{n},\bm{\beta},\bm{\gamma}}(x\xi_{\varphi}):=\Phi_{\bm{n},\bm{\beta},\bm{\gamma}}(x)\xi_{\varphi}$ such that $T^0_{n,\beta,\gamma} = (U_\beta \Delta_\varphi^{-1/4})$ $\int_{\varphi}^{-1/4} T_n(\Delta_{\varphi}^{1/4} U_{\gamma}) \in \mathbb{K}(H_{\varphi}),$ because $U_\beta \Delta_\omega^{-1/4}$ $_{\varphi}^{-1/4}, \Delta_{\varphi}^{1/4} U_{\gamma} \in \mathbb{B}(H_{\varphi}).$

Rui OKAYASU (OKU) **HAP and positive cones** May. 25. 2014 18/22

Independency on the choice of positive cones

Let *M* be a von Neumann algebra.

Theorem (O-Tomatsu 2014) The following are equivalent: (1) *M* has the OT-HAP, i.e., 1/4-HAP; (2) *M* has the CS-HAP; (3) *M* has the 0-HAP; (4) *M* has the α -HAP for some/all α ; (5) For any f.n.s. weight φ , \exists c.c.p. normal maps Φ_n on M such that $\bullet \varphi \circ \Phi_n \leq \varphi;$ $\bullet \Phi_n \to \text{id}_M$ in σ -WOT; for any $0 \le \alpha \le 1/2$, the associated c.c.p. operators T_n^{α} are compact and $T_n^{\alpha} \to 1_{H_{\varphi}},$ where $T_n^{\alpha}(\Delta_{\varphi}^{\alpha}\Lambda_{\varphi}(x)) = \Delta_{\varphi}^{\alpha}\Lambda_{\varphi}(\Phi_n(x))$ for $x \in n_{\varphi}$.

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0,1/4]$ and $T \in \mathbb{B}(H_{\varphi})$ be completely positive with respect to P_{φ}^{α} . Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- norm || T ||, which is completely positive with respect to P^{β}_{φ} $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ $\int_\varphi^{a-\rho}$ can be extended to a bounded operator on H_φ with the ρ
φ
- If *T* is compact, then so does $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ ϕ .

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0,1/4]$ and $T \in \mathbb{B}(H_{\varphi})$ be completely positive with respect to P_{φ}^{α} . Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- norm || T ||, which is completely positive with respect to P^{β}_{φ} $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ $\int_\varphi^{a-\rho}$ can be extended to a bounded operator on H_φ with the ρ
φ
- If *T* is compact, then so does $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ ϕ .

Proof For simplicity, assume that $\alpha = 0$.

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0,1/4]$ and $T \in \mathbb{B}(H_{\varphi})$ be completely positive with respect to P_{φ}^{α} . Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- norm || T ||, which is completely positive with respect to P^{β}_{φ} $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ $\int_\varphi^{a-\rho}$ can be extended to a bounded operator on H_φ with the ρ
φ
- If *T* is compact, then so does $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ ϕ .

Proof For simplicity, assume that $\alpha = 0$.

Now suppose that *T* is bounded (or compact) at the endpoint 0.

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0,1/4]$ and $T \in \mathbb{B}(H_{\varphi})$ be completely positive with respect to P_{φ}^{α} . Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- norm || T ||, which is completely positive with respect to P^{β}_{φ} $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ $\int_\varphi^{a-\rho}$ can be extended to a bounded operator on H_φ with the ρ
φ
- If *T* is compact, then so does $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ ϕ .

Proof For simplicity, assume that $\alpha = 0$.

Now suppose that *T* is bounded (or compact) at the endpoint 0.

Then $J_{\varphi}TJ_{\varphi}$ is also bounded (or compact) at the other endpoint 1/2.

Lemma (O-Tomatsu 2014)

Let $\alpha \in [0,1/4]$ and $T \in \mathbb{B}(H_{\varphi})$ be completely positive with respect to P_{φ}^{α} . Then for $\beta \in [\alpha, 1/2 - \alpha]$,

- norm || T ||, which is completely positive with respect to P^{β}_{φ} $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ $\int_\varphi^{a-\rho}$ can be extended to a bounded operator on H_φ with the ρ
φ
- If *T* is compact, then so does $\Delta_{\alpha}^{\beta-\alpha}$ $_\varphi^{\beta-\alpha}T\Delta_\varphi^{\alpha-\beta}$ ϕ .

Proof For simplicity, assume that $\alpha = 0$.

Now suppose that *T* is bounded (or compact) at the endpoint 0.

Then $J_{\varphi}TJ_{\varphi}$ is also bounded (or compact) at the other endpoint 1/2.

Apply the three lines Theorem.

Let $1 < p < \infty$ and $L^p(M)$ be Haagerup's non-commutative L^p -space.

Let $1 < p < \infty$ and $L^p(M)$ be Haagerup's non-commutative L^p -space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.

Let $1 < p < \infty$ and $L^p(M)$ be Haagerup's non-commutative L^p -space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the L^p -HAP if \exists compact contractiions \overline{T}_n on $L^p(M)$ such that

- $T_n \to 1_{L^p(M)}$ in SOT;
- T_n is completely positive.

.

Let $1 < p < \infty$ and $L^p(M)$ be Haagerup's non-commutative L^p -space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the L^p -HAP if \exists compact contractiions \overline{T}_n on $L^p(M)$ such that

- $T_n \to 1_{L^p(M)}$ in SOT;
- **•** T_n is completely positive.

Note that $(M, L^2(M), \ast, L^2(M)^+)$ is a standard form.

.

Let $1 < p < \infty$ and $L^p(M)$ be Haagerup's non-commutative L^p -space. Note that $L^p(M)$ has the natural positive cone $L^p(M)^+$.

Definition (O-Tomatsu 2014)

A v.N. algebra M has the L^p -HAP if \exists compact contractiions \overline{T}_n on $L^p(M)$ such that

- $T_n \to 1_{L^p(M)}$ in SOT;
- **•** T_n is completely positive.

Note that $(M, L^2(M), \ast, L^2(M)^+)$ is a standard form.

Theorem (O-Tomatsu 2014)

A v.N. algebra *M* has the HAP, i.e., L^2 -HAP $\iff M$ has the L^p -HAP for some/all $1 < p < \infty$.

.

Refferences

- \bullet M. Caspers and A. Skalski; The Haagerup property for arbitrary von Neumann algebras. Preprint. arXiv:1312.1491.
- \bullet M. Caspers and A. Skalski; The Haagerup approximation property for von Neumann algebras via quantum Markov semigroups and Dirichlet forms. Preprint. arXiv:1404.6214.
- M. Caspers, A. Skalski, R. Okayasu and R. Tomatsu; Generalisations of the Haagerup approximation property to arbitrary von Neumann algebras.
	- To appear in C. R. Acad. Sci. Paris Ser. I Math. arXiv:1404.2716
- R. Okayasu and R. Tomatsu; Haagerup approximation property for arbitrary von Neumann algebras. Preprint. arXiv:1312.1033
- R. Okayasu and R. Tomatsu; Haagerup approximation property and positive cones associated with ^a von Neumann algebra. Preprint. arXiv:1403.3971