A continuum of C*-norms on $\mathbb{B}(H) \otimes \mathbb{B}(H)$ and related tensor products

Gilles Pisier Texas A&M University

Gilles Pisier Texas A&M University A continuum of C^* -norms on $\mathbb{B}(H) \otimes \mathbb{B}(H)$ and related tensor pu

ヘロン 人間 とくほ とくほ とう

э.

Definition

A pair of C^* algebras (A, B) will be called a nuclear pair if

$$A \otimes_{\min} B = A \otimes_{\max} B.$$

Recall

(A, B) nuclear $\forall B \Leftrightarrow A$ nuclear

We will concentrate on two fundamental examples

 $\mathcal{B} = B(\ell_2)$

$$\mathcal{C} = \mathcal{C}^*(\mathbb{F}_\infty)$$

Note that these are both universal but in two different ways injectively for $\mathcal{B} = B(\ell_2)$ projectively for $\mathcal{C} = C^*(\mathbb{F}_{\infty})$ Also both are non-nuclear, also $\mathcal{B} \simeq \overline{\mathcal{B}}$ and $\mathcal{C} \simeq \overline{\mathcal{C}}$

Kirchberg, Invent, 1993 proved the following fondamental

Theorem

 $(\mathcal{B}, \mathcal{C})$ is a nuclear pair. Moreover (A, \mathcal{C}) is a nuclear pair \Leftrightarrow A WEP (A, \mathcal{B}) is a nuclear pair \Leftrightarrow A LLP

Kirchberg asked two important questions 1) Is $(\mathcal{B}, \mathcal{B})$ a nuclear pair ? 2) Is $(\mathcal{C}, \mathcal{C})$ a nuclear pair ? still OPEN For Question 1 : answer is no (Junge-P, GAFA 1995)

Theorem (Junge-P, GAFA 1995)

If M, N are not nuclear, then the pair (M, N) is not nuclear.

ヘロト ヘアト ヘビト ヘビト

ъ

Wassermann (JFA 1976) characterized nuclear von Neumann algebras as finite direct sums of $C \otimes M_n$ with C commutative. Equivalently, he showed

 \forall non nuclear von Neumann algebra M

$$\mathbb{B}=\prod_{n>1}M_n\subset M$$

So preceding theorem reduces to the case

$$M=N=\prod_{n\geq 1}M_n$$

or equivalently to the case

$$M = N = B$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

э.

Let *N* be a non nuclear von Neumann algebra Wassermann's result shows that any separable operator space *E* embeds (completely isometrically) into *N* i.e. we can replace B(H) by *N* (for operator space theory) we write this

$$E \subset N$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Note that

Theorem (Haagerup)

 C^* algebra A is WEP IFF A $\otimes \overline{A}$ satisfies

$$\forall n \,\forall x_j \in A \quad \|\sum_{1}^n x_j \otimes \bar{x}_j\|_{\min} = \|\sum_{1}^n x_j \otimes \bar{x}_j\|_{\max}$$

So this holds for A = B.

But nevertheless

min \neq max on $\mathcal{B} \otimes \overline{\mathcal{B}}$ (or on $\mathcal{B} \otimes \mathcal{B}$)

ヘロト 人間 とくほ とくほ とう

∃ 𝒫𝔅

Theorem (Ozawa-P)

Let M, N be any pair of von Neumann algebras. If

 $M \otimes_{\min} N \neq M \otimes_{\max} N$

i.e. if

$$card\{C^* - norms \text{ on } M \otimes N\} > 1$$

then:

 $\operatorname{card} \{ \mathrm{C}^* - \operatorname{norms} \operatorname{on} M \otimes N \} \geq 2^{\aleph_0}$

Gilles Pisier Texas A&M University A continuum of C^* -norms on $\mathbb{B}(H) \otimes \mathbb{B}(H)$ and related tensor pu

Theorem (Ozawa-P)

Let M, N be any pair of von Neumann algebras. If

 $M \otimes_{\min} N \neq M \otimes_{\max} N$

i.e. if

$$card\{C^* - norms \text{ on } M \otimes N\} > 1$$

then:

$$\operatorname{card} \{ C^* - \operatorname{norms} on M \otimes N \} \geq 2^{\aleph_0}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

We say a C*-norm $\|\cdot\|_{\alpha}$ on $\mathbb{B}(\ell_2) \otimes \mathbb{B}(\ell_2)$ is *admissible* if it is invariant under the flip and tensorizes unital completely positive maps

Complement:

When M = N = B

we can find a continuum of *admissible* C*-norms α on $\mathcal{B} \otimes \mathcal{B}$ This produces a continuum of *injective tensor product functors* in the sense of Kirchberg by inducing each α on $\mathcal{A} \otimes \mathcal{B}$ with

 $A \subset \mathcal{B} \quad B \subset \mathcal{B}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Theorem (Ozawa-P)

Let

$$\mathbb{B}=\prod_{n\geq 1}M_n$$

(so that

$$\{x \in \mathbb{B} \mid ||x|| \le 1\} = \prod_{n \ge 1} \{x \in M_n \mid ||x||_{M_n} \le 1\})$$

and let

$$M \subset \mathbb{B}(\ell_2)$$

be a non-nuclear von Neumann algebra. Then the set of

 $\{C^* - norms \text{ on } M \otimes \mathbb{B}\}$

has cardinality equal to $2^{2^{\aleph_0}}$.

・ロト ・ 理 ト ・ ヨ ト ・

3

$$OS_n = \{E \subset \mathcal{B} \mid dim(E) = n\}$$

We declare E = F if E, F completely isometric Let

 (OS_n, d_{cb})

be the metric space formed of all *n*-dimensional operator spaces equipped with the "distance"

$$d_{cb}(E,F) = \inf\{\|u\|_{cb} \| u^{-1}\|_{cb} \mid u: E \to F\}$$

 $\forall E, F, G \in OS_n \quad d_{cb}(E, G) \leq d_{cb}(E, F) d_{cb}(F, G)$

◆□ > ◆□ > ◆豆 > ◆豆 > □ ● の < ()

Key ingredient

Theorem (Junge-P, 1995)

For any n > 2(OS_n, d_{cb}) is not separable more precisely there is $\delta > 0$ and a family { $E_i \mid i \in I$ } $\subset OS_n$ with card(I) = 2^{\aleph_0} such that

$$orall i
eq j \in I \quad d_{cb}(E_i,E_j) > 1 + \delta$$

We will use a variant:

Theorem

Assume given for any $E \in OS_n$ a separable subset $C_E \subset OS_n$ and let

 $d(E,F) = \max\{d_{cb}(E,C_F), d_{cb}(F,C_E)\}$

Then the same holds (by extracting a suitable subfamily and changing $\delta > 0$) for the metric d.

Let *A* be a C^* algebra. Let $OS_n(A) = \{E \in OS_n \mid E \subset A\}$ Various Remarks:

• If A is separable, $OS_n(A)$ is separable

• for any (possibly uncountable) free group \mathbb{F} , if $A = C^*(\mathbb{F})$ then $OS_n(A)$ is separable

because $E \subset C^*(\mathbb{F}) \Rightarrow E \subset C^*(\mathbb{F}_\infty)$ and $C^*(\mathbb{F}_\infty)$ is separable Notation:

$$d_{SA}(E) = \inf\{d_{cb}(E,F) \mid F \subset A\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

A, B C*-algebras Let $I \subset A$ be an ideal in A C*-norm on $(A/I) \otimes B$

$$\forall t \in (A/I) \otimes B$$
 $\alpha(t) = \|t\|_{(A \otimes_{\min} B)/(I \otimes_{\min} B)}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

For any $E \in OS_n$, say $E \subset \mathcal{B}$ there is an embedding $E^* \subset \mathcal{B}$ such that

 $\forall n \quad M_n(E^*) = CB(E, M_n)$ isometrically

for any operator space F

 $CB(E, F) = F \otimes_{\min} E^* \subset \mathcal{B} \otimes_{\min} \mathcal{B}$ isometrically

(ロ) (同) (三) (三) (三) (○)

Lemma (Key Lemma)

Let $E \in OS_n$ Assume M = A/IConsider $E \subset M$ and $E^* \subset N$ Let $t_E \in E \otimes E^* \subset (A/I) \otimes N$ be associated to Id_E Then

 $d_{SA}(E) \leq \|t_E\|_{(A \otimes_{\min} N)/(I \otimes_{\min} N)}$

Special case from [JP 1995] A = C

 $t_E \in \mathcal{B} \otimes \mathcal{B}$

$$d_{SA}(E) = \|t_E\|_{\mathcal{B} \otimes_{\max} \mathcal{B}} = \|t_E\|_{(\mathcal{A} \otimes_{\min} \mathcal{B})/(I \otimes_{\min} \mathcal{B})}$$

where we use

$$\mathcal{B} \simeq \mathcal{A}/I$$
 with $\mathcal{A} = \mathcal{C}^*(\mathbb{F})$

for some large enough free group ${\rm I\!F}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof that \exists **2 norms on** $M \otimes N$

Pick $E \in OS_n$ such that $d_{SC}(E) > 1$ then set $A = C^*(\mathbb{F})$ so that A/I = M and $E^* \subset N$ so that $t_E \in E \otimes E^* \subset (A/I) \otimes N$

$$\alpha(t) = \|t\|_{(A\otimes_{\min}N)/(I\otimes_{\min}N)}$$

Then

$$\alpha(t_{\mathcal{E}}) \geq d_{\mathcal{SC}}(\mathcal{E}) > 1 = \|t_{\mathcal{E}}\|_{\min}$$

so

 $\alpha \neq \| \parallel_{\min}$

and a fortiori

 $\|t_E\|_{\max} > 1$ $\|\|_{\max} \neq \|\|_{\min}$

(ロ) (同) (三) (三) (三) (○)

Proof that \exists **3 norms on** $M \otimes N$

Assume $E \subset M$ and $E^* \subset N$ again Let $q: C^*(\mathbb{F}) \to M$ be onto, let $j_E: C^* < E > \to M$ be inclusion Let now

$$\mathcal{A}_{E} = \mathcal{C}^{*} < E > *\mathcal{C}^{*}(\mathbb{F})$$

we have a surjection $Q_E = j_E * q : A_E \to M$ so that

$$\mathcal{A}_{E}/\mathcal{I} = M$$

Again we set $\alpha_E(t) = ||t||_{(\mathcal{A}_E \otimes_{\min} N)/(\mathcal{I} \otimes_{\min} N)}$ Note $OS_n(A)$ is separable (because as previously observed can replace \mathbb{F} by \mathbb{F}_{∞}) Thus we can find F such that $d_{SA}(F) > 1$ and hence on the one hand

$$\alpha_{E}(t_{F}) \geq d_{SA}(F) > 1 = \|t_{F}\|_{\min}$$

SO

$$\alpha_E \neq \| \|_{\min}$$

but on the other hand $\alpha_E(t_E) = 1$ but we just proved that $||t_E||_{max} > 1$ so $\alpha_E \neq || ||_{max}$

Proof that $\exists 2^{\aleph_0}$ **norms on** $M \otimes N$

For any E we associate the class

$$\mathcal{C}_{\mathcal{E}} = \{ \mathcal{F} \subset \mathcal{C}^* < \mathcal{E} > *\mathcal{C}^*(\mathbb{F}) \}$$

We consider a family $\{E_i \mid i \in I\}$ in OS_n with card 2^{\aleph_0} and $\delta > 0$ such that

$$\forall i \neq j \in I \quad d(E_i, E_j) > 1 + \delta$$

where

$$d(E,F) = \max\{d_{cb}(E,C_F), d_{cb}(F,C_E)\}$$

Then the preceding reasoning shows that $\forall i \neq j \in I$ we have either

$$\alpha_{E_i}(t_{E_j}) > 1 + \delta$$
 but $\alpha_{E_j}(t_{E_j}) = 1$

or

$$\alpha_{E_i}(t_{E_i}) > 1 + \delta$$
 but $\alpha_{E_i}(t_{E_i}) = 1$

and hence

$$\alpha_{E_i} \neq \alpha_{E_j}$$

・ロン・(理)・ ・ ヨン・