. free groups arising from diagonal actions Amenable minimal Cantor systems of

Yuhei SUZUKI

RIMS at Kyoto University

Operator Spaces, LCQGs and Amenability May 30, 2014 @Fields Institute

.

Cantor set

Cantor set : the topological space characterized by

- ¹ compactness
- 2 total disconnectedness
- ³ metrizability
- \bullet without isolated point

Cantor set

Cantor set : the topological space characterized by

- ¹ compactness
- 2 total disconnectedness
- ³ metrizability
- \bullet without isolated point

⇒ The property 'homeomorphic to the Cantor set' is preserved by many operations.

(E.g., finite direct sum, countable direct product, projective limit,...)

Cantor set

Cantor set : the topological space characterized by

- ¹ compactness
- 2 total disconnectedness
- ³ metrizability
- \bullet without isolated point

⇒ The property 'homeomorphic to the Cantor set' is preserved by many operations.

(E.g., finite direct sum, countable direct product, projective limit,...) *⇒* We can regard the Cantor set as a topological analogue of the Lebesgue space.

Classification theory of C *∗* -algebras

A : C *∗* -algebra.

 \rightsquigarrow *K*_∗(*A*) := (*K*₀(*A*), [1_{*A*}]₀, *K*₁(*A*)) : an invariant of *A*. *K*[∗](−) is a functor that preserves the inductive limits.

Classification theory of C *∗* -algebras

A : C *∗* -algebra.

 \rightsquigarrow *K*_∗(*A*) := (*K*₀(*A*), [1_{*A*}]₀, *K*₁(*A*)) : an invariant of *A*. *K*[∗](−) is a functor that preserves the inductive limits.

. Theorem (Kirchberg and Phillips) .

.*K[∗] is a* **complete invariant** *for Kirchberg algebras in the UCT class.*

Classification theory of C *∗* -algebras

A : C *∗* -algebra.

 \rightsquigarrow *K*_∗(*A*) := (*K*₀(*A*), [1_{*A*}]₀, *K*₁(*A*)) : an invariant of *A*. *K*^{$[∗](−)$ is a functor that preserves the inductive limits.}</sup>

. Theorem (Kirchberg and Phillips) .

.*K[∗] is a* **complete invariant** *for Kirchberg algebras in the UCT class.*

Example :

- The Cuntz algebras \mathcal{O}_n (2 \leq *n* $\leq \infty$).
- The Cuntz–Krieger algebras *OA*.
- **•** The boundary algebras *C*($∂Γ$) $×$ Γ of ICC hyperbolic groups.

Amenable dynamical systems

Amenability of discrete groups is generalized to that of topological dynamical systems.

. Example .

- ¹. Any dynamical system of an amenable group.
- **2** The boundary action of a hyperbolic group.
- \bigcirc SL(*n*, Z) \bigcirc SO(*n*) =SL(*n*, R)/*P*.

Amenable dynamical systems

Amenability of discrete groups is generalized to that of topological dynamical systems.

. Example .

- ¹. Any dynamical system of an amenable group.
- **2** The boundary action of a hyperbolic group.
- \bigcirc SL(n , Z) \bigcirc SO(n) =SL(n , \mathbb{R})/*P*.
- *α*: $\Gamma \curvearrowright X$: amenable \Rightarrow $C(X) \rtimes_{\text{red}} \Gamma$ has nice properties.
	- $C(X) \rtimes_{\text{full}} \Gamma = C(X) \rtimes_{\text{red}} \Gamma$ canonically.
	- \bullet *C*(*X*) \times *C* is nuclear.
	- \bullet $C(X) \rtimes \Gamma$ satisfies the universal coefficient theorem. (Tu 1999)

Minimality $=$ Topological analogue of ergodicity

Our Interest : amenable minimal Cantor systems of free groups F*n*.

Minimality $=$ Topological analogue of ergodicity

Our Interest : amenable minimal Cantor systems of free groups F*n*. **Motivation:**

- **1.** How well does $C(X) \rtimes_{\alpha} \mathbb{F}_n$ remember the information of amenable minimal Cantor systems $α$: \mathbb{F}_n ∧ *X*?
- ². Give a new presentation for a *Kirchberg algebra* in the UCT class.

Minimality $=$ Topological analogue of ergodicity

Our Interest : amenable minimal Cantor systems of free groups F*n*. **Motivation:**

- **1.** How well does $C(X) \rtimes_{\alpha} \mathbb{F}_n$ remember the information of amenable minimal Cantor systems $α$: \mathbb{F}_n ∧ *X*?
- ². Give a new presentation for a *Kirchberg algebra* in the UCT class.

For both purposes, it is important to construct concrete and tractable examples. Until now, only a few examples were known.

Minimality $=$ Topological analogue of ergodicity

Our Interest : amenable minimal Cantor systems of free groups F*n*. **Motivation:**

- **1.** How well does $C(X) \rtimes_{\alpha} \mathbb{F}_n$ remember the information of amenable minimal Cantor systems $α$: \mathbb{F}_n \curvearrowright *X*?
- ². Give a new presentation for a *Kirchberg algebra* in the UCT class.

For both purposes, it is important to construct concrete and tractable examples. Until now, only a few examples were known.

Main Theorem

. Theorem (S. 13) .

 \mathcal{L} et $\mathbb{Z}^{\infty} \leq G \leq \mathbb{Q}^{\infty}$ with $[G:\mathbb{Z}^{\infty}]=\infty$, $2\leq n<\infty$, $k\in\mathbb{Z}$. *Then* \exists *amenable minimal Cantor* \mathbb{F}_n -system γ *s.t.*

Main Theorem

. Theorem (S. 13) .

 \mathcal{L} et $\mathbb{Z}^{\infty} \leq G \leq \mathbb{Q}^{\infty}$ with $[G:\mathbb{Z}^{\infty}]=\infty$, $2\leq n<\infty$, $k\in\mathbb{Z}$. *Then* \exists *amenable minimal Cantor* \mathbb{F}_n -system γ *s.t.*

 $(K_0(C(X) \rtimes_\gamma \mathbb{F}_n), [1]_0) \cong (G \oplus \Lambda_{G,n}, 0 \oplus [k(n-1)^{-1}])$. *Here*

 $\Lambda_{G,n} := \{x \in \mathbb{Q}/\mathbb{Z} : \exists \text{ finite } H \leq G, \text{ s.t. } \text{ord}(x) | (n-1)\sharp H\}.$

- $K_1(C(X) \rtimes_\gamma \mathbb{F}_n) \cong \mathbb{Z}^\infty$.
- *The crossed product is a Kirchberg algebra in the UCT class.*

Sketch of the construction

(We only deal the case $k = 1$.) Take a decreasing sequence (Γ*m*) *∞ ^m*=1 of finite index subgroups of F*n*. $\mathsf{W}\mathsf{e}$ study $\varprojlim(\mathbb{F}_n \curvearrowright \partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m)_{m=1}^{\infty}$.

Sketch of the construction

(We only deal the case $k = 1$.)

Take a decreasing sequence (Γ*m*) *∞ ^m*=1 of finite index subgroups of F*n*. $We study \lim_{m \to \infty} (\mathbb{F}_n \curvearrowright \partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m)_{m=1}^{\infty}.$

Computation of $(K_0, [1]_0)$

Each $K_0(C(\partial \mathbb{F}_n \times \mathbb{F}_n/\Gamma_m) \rtimes \mathbb{F}_n)$ is explicitly computable. [Spielberg (1991), Cuntz (1981)] Then determine K_0 -maps of the inclusions

 $C(\partial \mathbb{F}_n \times \mathbb{F}_n/\Gamma_m) \rtimes \mathbb{F}_n \hookrightarrow C(\partial \mathbb{F}_n \times \mathbb{F}_n/\Gamma_{m+1}) \rtimes \mathbb{F}_n$.

By continuity of K_0 -groups, the construction of suitable systems and the computation of K_0 -group are now reduced to algebraic problems.

Sketch of the construction

(We only deal the case $k = 1$.)

Take a decreasing sequence (Γ*m*) *∞ ^m*=1 of finite index subgroups of F*n*. $We study \lim_{m \to \infty} (\mathbb{F}_n \curvearrowright \partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m)_{m=1}^{\infty}.$

Computation of $(K_0, [1]_0)$

Each $K_0(C(\partial \mathbb{F}_n \times \mathbb{F}_n/\Gamma_m) \rtimes \mathbb{F}_n)$ is explicitly computable. [Spielberg (1991), Cuntz (1981)] Then determine K_0 -maps of the inclusions

 $C(\partial \mathbb{F}_n \times \mathbb{F}_n/\Gamma_m) \rtimes \mathbb{F}_n \hookrightarrow C(\partial \mathbb{F}_n \times \mathbb{F}_n/\Gamma_{m+1}) \rtimes \mathbb{F}_n$.

By continuity of K_0 -groups, the construction of suitable systems and the computation of K_0 -group are now reduced to algebraic problems. **Computation of K¹**

Use the Pimsner–Voiculescu Exact Sequence for free groups.

Consequence of the Main Theorem

Induced dynamical system construction

⇝Similar results for virtually free groups

 $(\mathsf{Ex} : \mathsf{SL}(2,\mathbb{Z}), G_1 * G_2 * \cdots * G_n ; G_i \text{ finite or } \mathbb{Z}.).$

We obtain a decomposition theorem for certain Kirchberg algebras.

Consequence of the Main Theorem

Induced dynamical system construction

⇝Similar results for virtually free groups

 $(\mathsf{Ex} : \mathsf{SL}(2,\mathbb{Z}), G_1 * G_2 * \cdots * G_n; G_i$ finite or \mathbb{Z} .).

We obtain a decomposition theorem for certain Kirchberg algebras.

. Corollary (S. 13) .

G : torsion free abelian group of infinite rank. A : Kirchberg algebra in the UCT class s.t.

 $K_*(A) \cong (G \oplus \mathbb{Q}/\mathbb{Z}, 0, \mathbb{Z}^{\infty}).$

. *product of an amenable minimal Cantor* Γ*-system. Then ∀* Γ *: virtually free group, A is decomposed as the crossed*

Free Examples

 $Γ$ \curvearrowright *X*: Free \Leftrightarrow $∀$ *g* \in $Γ$ \setminus {*e*}, $\frac{1}{\cancel{1}}$ fixed point.

We can construct continuously many amenable minimal free Cantor systems for any virtually free groups.

Free Examples

 $\Gamma \curvearrowright X$: Free $\Leftrightarrow \forall g \in \Gamma \setminus \{e\}, \nexists$ fixed point.

We can construct continuously many amenable minimal free Cantor systems for any virtually free groups.

. Theorem

. *non-isomorphic Kirchberg algebras in the UCT class. Let* Γ *be a virtually free group. Then ∃ continuously many amenable minimal* **free** *Cantor systems whose crossed products are mutually*

Free Examples

 $Γ$ \curvearrowright *X*: Free \Leftrightarrow $∀$ *g* $∈$ $Γ$ \setminus $\{e\},$ $#$ fixed point.

We can construct continuously many amenable minimal free Cantor systems for any virtually free groups.

. Theorem

. *non-isomorphic Kirchberg algebras in the UCT class. Let* Γ *be a virtually free group. Then ∃ continuously many amenable minimal* **free** *Cantor systems whose crossed products are mutually*

. Remark .

 \mathbf{u} se $\mathbb{F}_{\infty} \cong [\mathbb{F}_{2}, \mathbb{F}_{2}] \curvearrowright \partial \mathbb{F}_{2}$ *instead of the boundary action. We also can prove the same result for non f.g. case. In this case, we*

.

The proof of Main Theorem also provides a technique of computation of *K*-groups for certain Cantor systems.

The proof of Main Theorem also provides a technique of computation of *K*-groups for certain Cantor systems.

. Odometer transformations .

 $(n_k)_{k=1}^\infty$: sequence of positive integers $\geq 2.$ Consider

 $\varinjlim(\alpha_k : \mathbb{Z} \cap \mathbb{Z}/n_1 \cdots n_k \mathbb{Z})_{k=1}^{\infty}$.

Denote it by α_N and call it the odometer transformation of type N . This only depends on the formal infinite product $N = \prod_{k=1}^{\infty} n_k$.

The proof of Main Theorem also provides a technique of computation of *K*-groups for certain Cantor systems.

. Odometer transformations .

 $(n_k)_{k=1}^\infty$: sequence of positive integers $\geq 2.$ Consider

 $\varinjlim(\alpha_k : \mathbb{Z} \cap \mathbb{Z}/n_1 \cdots n_k \mathbb{Z})_{k=1}^{\infty}$.

Denote it by α_N and call it the odometer transformation of type N . This only depends on the formal infinite product $N = \prod_{k=1}^{\infty} n_k$.

. **Example** .

 $N = p^{\infty}$, *p* : prime number.

Then $(X, \alpha_N) = (\mathbb{Z}_p, +1)$. $(\mathbb{Z}_p :$ the ring of p -adic integers.)

For $2 \le n < \infty$ and N_1, \ldots, N_k : sequence of infinite supernatural numbers with $k \leq n$, consider the Cantor \mathbb{F}_n -system

$$
\gamma_{N_1,\ldots,N_k}(n) := \beta_n \times \prod_{i=1}^k \alpha_{N_i} \circ \pi_i.
$$

Here $\pi_i\colon\mathbb{F}_n=\langle\mathsf{s}_1,\ldots,\mathsf{s}_n\rangle\to\mathbb{Z}$ is a homomorphism given by $\mathsf{s}_i\mapsto 1$ and $s_j \mapsto 0$ for $j \neq i$.

. **Definition**

 $\forall x \in X_1$, $h(\Gamma_1.x) = \Gamma_2.h(x)$. $\gamma_i\colon\Gamma_i\curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). *γ*₁ and *γ*₂ are orbit equivalent $\Leftrightarrow \exists h: X_1 \rightarrow X_2$ homeomorphism, s.t.

. **Definition**

 $\forall x \in X_1$, $h(\Gamma_1.x) = \Gamma_2.h(x)$. $\gamma_i\colon\Gamma_i\curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). *γ*₁ and *γ*₂ are orbit equivalent $\Leftrightarrow \exists h: X_1 \rightarrow X_2$ homeomorphism, s.t.

We are interested in stronger orbit equivalent conditions: Continuous orbit equivalent and Strong orbit equivalent.

. **Definition**

 $\forall x \in X_1$, $h(\Gamma_1.x) = \Gamma_2.h(x)$. $\gamma_i\colon\Gamma_i\curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). *γ*₁ and *γ*₂ are orbit equivalent $\Leftrightarrow \exists h: X_1 \rightarrow X_2$ homeomorphism, s.t.

We are interested in stronger orbit equivalent conditions: Continuous orbit equivalent and Strong orbit equivalent.

.Continuous OE *⇒* Strong OE *⇒* OE

. **Definition**

 $\forall x \in X_1$, $h(\Gamma_1.x) = \Gamma_2.h(x)$. $\gamma_i\colon\Gamma_i\curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). *γ*₁ and *γ*₂ are orbit equivalent $\Leftrightarrow \exists h: X_1 \rightarrow X_2$ homeomorphism, s.t.

We are interested in stronger orbit equivalent conditions: Continuous orbit equivalent and Strong orbit equivalent.

.Continuous OE *⇒* Strong OE *⇒* OE

. Definition

. *h ∈ Homeo*(*X*) which are "**locally**" given by *s ∈* Γ. *γ* : Γ \curvearrowright *X* : minimal topologically free Cantor system. Topological full group [[*γ*]]:= the group consists of all

Classification results for *γ*'s

. Theorem (S. 13) .

For two Cantor systems $\varphi := \gamma_{N_1}^{(n)}$ $\gamma_{N_1,...,N_k}^{(n)}$ and $\psi := \gamma_{M_1,N_k}^{(m)}$ *M*1*,...,M^l , T.F.A.E.*

- ¹. *They are strong orbit equivalent.*
- ². *They are continuous orbit equivalent.*
- 3. [[*φ*]] *∼*= [[*ψ*]]*.*
- \bullet $C(X) \rtimes_{\varphi} \mathbb{F}_n \cong C(X) \rtimes_{\psi} \mathbb{F}_m$.
- \bullet *K*_∗(*C*(*X*) \times φ \mathbb{F}_n) \cong *K*_∗(*C*(*X*) \times ψ \mathbb{F}_m).
- **6.** $k = 1, n = m$, and $\exists \sigma \in \mathfrak{S}_k$ and $\exists (n_1, \ldots, n_k)$, $\exists (m_1, \ldots, m_k)$ $s.t.$ $\prod_{j=1}^{k} n_j = \prod_{j=1}^{k} m_j$ and $n_iN_i = m_iM_{\sigma(i)}$ $\forall i.$

Classification results for *γ*'s

. Theorem (S. 13) .

For two Cantor systems $\varphi := \gamma_{N_1}^{(n)}$ $\gamma_{N_1,...,N_k}^{(n)}$ and $\psi := \gamma_{M_1,N_k}^{(m)}$ *M*1*,...,M^l , T.F.A.E.*

- ¹. *They are strong orbit equivalent.*
- ². *They are continuous orbit equivalent.*
- 3. [[*φ*]] *∼*= [[*ψ*]]*.*
- \bullet $C(X) \rtimes_{\varphi} \mathbb{F}_n \cong C(X) \rtimes_{\psi} \mathbb{F}_m$.
- **5** K_* ($C(X) \rtimes_{\varphi} \mathbb{F}_n$) ≅ K_* ($C(X) \rtimes_{\psi} \mathbb{F}_m$).
- **6.** $k = 1, n = m$, and $\exists \sigma \in \mathfrak{S}_k$ and $\exists (n_1, \ldots, n_k)$, $\exists (m_1, \ldots, m_k)$ $s.t.$ $\prod_{j=1}^{k} n_j = \prod_{j=1}^{k} m_j$ and $n_iN_i = m_iM_{\sigma(i)}$ $\forall i.$

. *from diagonal actions.* to appear in J. reine angew. Math. Y. Suzuki, *Amenable minimal Cantor systems of free groups arising*

