Amenable minimal Cantor systems of free groups arising from diagonal actions

Yuhei SUZUKI

RIMS at Kyoto University

Operator Spaces, LCQGs and Amenability May 30, 2014 @Fields Institute

AMENABLE MINIMAL CANTOR SYSTEMS

Cantor set : the topological space characterized by

- compactness
- total disconnectedness
- metrizability
- without isolated point

Cantor set : the topological space characterized by

- compactness
- total disconnectedness
- metrizability
- without isolated point

 \Rightarrow The property 'homeomorphic to the Cantor set' is preserved by many operations.

(E.g., finite direct sum, countable direct product, projective limit,...)

Cantor set : the topological space characterized by

- compactness
- total disconnectedness
- metrizability
- without isolated point

 \Rightarrow The property 'homeomorphic to the Cantor set' is preserved by many operations.

(E.g., finite direct sum, countable direct product, projective limit,...) \Rightarrow We can regard the Cantor set as a topological analogue of the Lebesgue space.

Classification theory of C*-algebras

A : C*-algebra.

 $\rightsquigarrow K_*(A) := (K_0(A), [1_A]_0, K_1(A))$: an invariant of A. $K_*(-)$ is a functor that preserves the inductive limits.

Classification theory of C*-algebras

- A : C*-algebra.
- $\rightsquigarrow K_*(A) := (K_0(A), [1_A]_0, K_1(A))$: an invariant of A. $K_*(-)$ is a functor that preserves the inductive limits.

Theorem (Kirchberg and Phillips)

 K_* is a complete invariant for Kirchberg algebras in the UCT class.

Classification theory of C*-algebras

- A : C*-algebra.
- $\rightsquigarrow K_*(A) := (K_0(A), [1_A]_0, K_1(A))$: an invariant of A. $K_*(-)$ is a functor that preserves the inductive limits.

Theorem (Kirchberg and Phillips)

 K_* is a complete invariant for Kirchberg algebras in the UCT class.

Example :

- The Cuntz algebras \mathcal{O}_n $(2 \le n \le \infty)$.
- The Cuntz–Krieger algebras \mathcal{O}_A .
- The boundary algebras $C(\partial \Gamma) \rtimes \Gamma$ of ICC hyperbolic groups.

Amenability of discrete groups is generalized to that of topological dynamical systems.

Example

- Any dynamical system of an amenable group.
- The boundary action of a hyperbolic group.
- $SL(n,\mathbb{Z}) \frown SO(n) = SL(n,\mathbb{R})/P$.

Amenability of discrete groups is generalized to that of topological dynamical systems.

Example

- Any dynamical system of an amenable group.
- The boundary action of a hyperbolic group.
- SL $(n,\mathbb{Z}) \frown SO(n) = SL(n,\mathbb{R})/P$.
- $\alpha \colon \Gamma \curvearrowright X$: amenable $\Rightarrow C(X) \rtimes_{\mathrm{red}} \Gamma$ has nice properties.
 - $C(X) \rtimes_{\text{full}} \Gamma = C(X) \rtimes_{\text{red}} \Gamma$ canonically.
 - $C(X) \rtimes \Gamma$ is nuclear.
 - $C(X) \rtimes \Gamma$ satisfies the universal coefficient theorem. (Tu 1999)

Minimality = Topological analogue of ergodicity

Our Interest : amenable minimal Cantor systems of free groups \mathbb{F}_n .

Minimality = Topological analogue of ergodicity Our Interest : amenable minimal Cantor systems of free groups \mathbb{F}_n . Motivation:

- Output How well does C(X) ⋊_α 𝔽_n remember the information of amenable minimal Cantor systems α: 𝔽_n へ X?
- Give a new presentation for a *Kirchberg algebra* in the UCT class.

Minimality = Topological analogue of ergodicity Our Interest : amenable minimal Cantor systems of free groups \mathbb{F}_n . Motivation:

- How well does $C(X) \rtimes_{\alpha} \mathbb{F}_n$ remember the information of amenable minimal Cantor systems $\alpha \colon \mathbb{F}_n \curvearrowright X$?
- Give a new presentation for a *Kirchberg algebra* in the UCT class.

For both purposes, it is important to construct concrete and tractable examples. Until now, only a few examples were known.

Minimality = Topological analogue of ergodicity Our Interest : amenable minimal Cantor systems of free groups \mathbb{F}_n . Motivation:

- How well does $C(X) \rtimes_{\alpha} \mathbb{F}_n$ remember the information of amenable minimal Cantor systems $\alpha \colon \mathbb{F}_n \curvearrowright X$?
- Give a new presentation for a *Kirchberg algebra* in the UCT class.

For both purposes, it is important to construct concrete and tractable examples. Until now, only a few examples were known.

Example

- The boundary action $\beta_n \colon \mathbb{F}_n \curvearrowright \partial \mathbb{F}_n$. (Analysed by J. Spielberg.)
- **②** (G. A. Elliott and A. Sierakowski 2011) ∃ amenable minimal Cantor \mathbb{F}_n -system s.t. $K_0 = 0$.

Theorem (S. 13)

Let $\mathbb{Z}^{\infty} \leq G \leq \mathbb{Q}^{\infty}$ with $[G : \mathbb{Z}^{\infty}] = \infty$, $2 \leq n < \infty$, $k \in \mathbb{Z}$.

Then \exists amenable minimal Cantor \mathbb{F}_n -system γ s.t.

Theorem (S. 13)

Let $\mathbb{Z}^{\infty} \leq G \leq \mathbb{Q}^{\infty}$ with $[G : \mathbb{Z}^{\infty}] = \infty$, $2 \leq n < \infty$, $k \in \mathbb{Z}$. Then \exists amenable minimal Cantor \mathbb{F}_n -system γ s.t.

• $(K_0(C(X) \rtimes_{\gamma} \mathbb{F}_n), [1]_0) \cong (G \oplus \Lambda_{G,n}, 0 \oplus [k(n-1)^{-1}]).$ Here

 $\Lambda_{G,n} := \left\{ x \in \mathbb{Q}/\mathbb{Z} : \exists \text{ finite } H \leq G, \text{ s.t. } \operatorname{ord}(x) | (n-1) \sharp H \right\}.$

• $K_1(C(X) \rtimes_{\gamma} \mathbb{F}_n) \cong \mathbb{Z}^{\infty}$.

• The crossed product is a Kirchberg algebra in the UCT class.

(We only deal the case k = 1.) Take a decreasing sequence $(\Gamma_m)_{m=1}^{\infty}$ of finite index subgroups of \mathbb{F}_n . We study $\varprojlim (\mathbb{F}_n \curvearrowright \partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m)_{m=1}^{\infty}$. (We only deal the case k = 1.) Take a decreasing sequence $(\Gamma_m)_{m=1}^{\infty}$ of finite index subgroups of \mathbb{F}_n . We study $\lim_{\to} (\mathbb{F}_n \curvearrowright \partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m)_{m=1}^{\infty}$. **Computation of (K**₀, **[1]**₀) Each $K_0(C(\partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m) \rtimes \mathbb{F}_n)$ is explicitly computable. [Spielberg (1991), Cuntz (1981)] Then determine K_0 -maps of the inclusions

$$C(\partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m) \rtimes \mathbb{F}_n \hookrightarrow C(\partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_{m+1}) \rtimes \mathbb{F}_n.$$

By continuity of K_0 -groups, the construction of suitable systems and the computation of K_0 -group are now reduced to algebraic problems.

(We only deal the case k = 1.) Take a decreasing sequence $(\Gamma_m)_{m=1}^{\infty}$ of finite index subgroups of \mathbb{F}_n . We study $\lim_{m \to \infty} (\mathbb{F}_n \propto \partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m)_{m=1}^{\infty}$. **Computation of (K₀, [1]₀)** Each $K_0(C(\partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m) \rtimes \mathbb{F}_n)$ is explicitly computable. [Spielberg (1991), Cuntz (1981)] Then determine K_0 -maps of the inclusions

$$C(\partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_m) \rtimes \mathbb{F}_n \hookrightarrow C(\partial \mathbb{F}_n \times \mathbb{F}_n / \Gamma_{m+1}) \rtimes \mathbb{F}_n.$$

By continuity of K_0 -groups, the construction of suitable systems and the computation of K_0 -group are now reduced to algebraic problems. **Computation of K**₁

Use the Pimsner–Voiculescu Exact Sequence for free groups.

Induced dynamical system construction \rightsquigarrow Similar results for virtually free groups (Ex : SL(2, \mathbb{Z}), $G_1 * G_2 * \cdots * G_n$; G_i finite or \mathbb{Z} .). We obtain a decomposition theorem for certain Kirchberg algebras. Induced dynamical system construction \rightsquigarrow Similar results for virtually free groups (Ex : SL(2, \mathbb{Z}), $G_1 * G_2 * \cdots * G_n$; G_i finite or \mathbb{Z} .). We obtain a decomposition theorem for certain Kirchberg algebras.

Corollary (S. 13)

G : torsion free abelian group of infinite rank. A : Kirchberg algebra in the UCT class s.t.

$$K_*(A) \cong (G \oplus \mathbb{Q}/\mathbb{Z}, 0, \mathbb{Z}^\infty).$$

Then $\forall \Gamma$: virtually free group, A is decomposed as the crossed product of an amenable minimal Cantor Γ -system.

 $\Gamma \curvearrowright X$: Free $\Leftrightarrow \forall g \in \Gamma \setminus \{e\}, \nexists$ fixed point.

We can construct continuously many amenable minimal free Cantor systems for any virtually free groups.

 $\Gamma \curvearrowright X$: Free $\Leftrightarrow \forall g \in \Gamma \setminus \{e\}, \nexists$ fixed point.

We can construct continuously many amenable minimal free Cantor systems for any virtually free groups.

Theorem

Let Γ be a virtually free group. Then \exists continuously many amenable minimal free Cantor systems whose crossed products are mutually non-isomorphic Kirchberg algebras in the UCT class.

 $\Gamma \curvearrowright X$: Free $\Leftrightarrow \forall g \in \Gamma \setminus \{e\}, \nexists$ fixed point.

We can construct continuously many amenable minimal free Cantor systems for any virtually free groups.

Theorem

Let Γ be a virtually free group. Then \exists continuously many amenable minimal free Cantor systems whose crossed products are mutually non-isomorphic Kirchberg algebras in the UCT class.

Remark

We also can prove the same result for non f.g. case. In this case, we use $\mathbb{F}_{\infty} \cong [\mathbb{F}_2, \mathbb{F}_2] \curvearrowright \partial \mathbb{F}_2$ instead of the boundary action.

The proof of Main Theorem also provides a technique of computation of K-groups for certain Cantor systems.

The proof of Main Theorem also provides a technique of computation of K-groups for certain Cantor systems.

Odometer transformations

 $(n_k)_{k=1}^{\infty}$: sequence of positive integers ≥ 2 . Consider

$$\varinjlim(\alpha_k\colon\mathbb{Z}\sim\mathbb{Z}/n_1\cdots n_k\mathbb{Z})_{k=1}^{\infty}.$$

This only depends on the formal infinite product $N = \prod_{k=1}^{\infty} n_k$. Denote it by α_N and call it the odometer transformation of type N.

The proof of Main Theorem also provides a technique of computation of K-groups for certain Cantor systems.

Odometer transformations

 $(n_k)_{k=1}^{\infty}$: sequence of positive integers ≥ 2 . Consider

$$\varinjlim(\alpha_k\colon\mathbb{Z}\curvearrowright\mathbb{Z}/n_1\cdots n_k\mathbb{Z})_{k=1}^{\infty}.$$

This only depends on the formal infinite product $N = \prod_{k=1}^{\infty} n_k$. Denote it by α_N and call it the odometer transformation of type N.

Example

 $N = p^{\infty}$, p: prime number. Then $(X, \alpha_N) = (\mathbb{Z}_p, +1)$. $(\mathbb{Z}_p$: the ring of *p*-adic integers.) For $2 \le n < \infty$ and N_1, \ldots, N_k : sequence of infinite supernatural numbers with $k \le n$, consider the Cantor \mathbb{F}_n -system

$$\gamma_{N_1,\ldots,N_k}^{(n)} := \beta_n \times \prod_{i=1}^k \alpha_{N_i} \circ \pi_i.$$

Here $\pi_i \colon \mathbb{F}_n = \langle s_1, \ldots, s_n \rangle \to \mathbb{Z}$ is a homomorphism given by $s_i \mapsto 1$ and $s_j \mapsto 0$ for $j \neq i$.

Definition

 $\gamma_i \colon \Gamma_i \curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). γ_1 and γ_2 are orbit equivalent $\Leftrightarrow \exists h \colon X_1 \to X_2$ homeomorphism, s.t. $\forall x \in X_1, h(\Gamma_1.x) = \Gamma_2.h(x).$

Definition

 $\gamma_i \colon \Gamma_i \curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). γ_1 and γ_2 are orbit equivalent $\Leftrightarrow \exists h \colon X_1 \to X_2$ homeomorphism, s.t. $\forall x \in X_1, h(\Gamma_1.x) = \Gamma_2.h(x).$

We are interested in stronger orbit equivalent conditions: Continuous orbit equivalent and Strong orbit equivalent.

Definition

 $\gamma_i \colon \Gamma_i \curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). γ_1 and γ_2 are orbit equivalent $\Leftrightarrow \exists h \colon X_1 \to X_2$ homeomorphism, s.t. $\forall x \in X_1, h(\Gamma_1.x) = \Gamma_2.h(x).$

We are interested in stronger orbit equivalent conditions: Continuous orbit equivalent and Strong orbit equivalent.

Continuous $OE \Rightarrow Strong OE \Rightarrow OE$

Definition

 $\gamma_i \colon \Gamma_i \curvearrowright X_i$: minimal topologically free Cantor system (i=1, 2). γ_1 and γ_2 are orbit equivalent $\Leftrightarrow \exists h \colon X_1 \to X_2$ homeomorphism, s.t. $\forall x \in X_1, h(\Gamma_1.x) = \Gamma_2.h(x).$

We are interested in stronger orbit equivalent conditions: Continuous orbit equivalent and Strong orbit equivalent.

Continuous $OE \Rightarrow Strong OE \Rightarrow OE$

Definition

 $\gamma: \Gamma \curvearrowright X$: minimal topologically free Cantor system. Topological full group $[[\gamma]]$:= the group consists of all $h \in Homeo(X)$ which are "locally" given by $s \in \Gamma$.

Theorem (S. 13)

For two Cantor systems $\varphi := \gamma_{N_1,...,N_k}^{(n)}$ and $\psi := \gamma_{M_1,...,M_l}^{(m)}$, T.F.A.E.

- They are strong orbit equivalent.
- 2 They are continuous orbit equivalent.

$$[[\varphi]] \cong [[\psi]].$$

- $k = l, n = m, and \exists \sigma \in \mathfrak{S}_k and \exists (n_1, \ldots, n_k), \exists (m_1, \ldots, m_k)$ s.t. $\prod_{j=1}^k n_j = \prod_{j=1}^k m_j and n_i N_i = m_i M_{\sigma(i)} \forall i.$

Theorem (S. 13)

For two Cantor systems $\varphi := \gamma_{N_1,...,N_k}^{(n)}$ and $\psi := \gamma_{M_1,...,M_l}^{(m)}$, T.F.A.E.

- They are strong orbit equivalent.
- 2 They are continuous orbit equivalent.

$$[[\varphi]] \cong [[\psi]].$$

- $k = l, n = m, and \exists \sigma \in \mathfrak{S}_k and \exists (n_1, \ldots, n_k), \exists (m_1, \ldots, m_k)$ s.t. $\prod_{j=1}^k n_j = \prod_{j=1}^k m_j and n_i N_i = m_i M_{\sigma(i)} \forall i.$

Y. Suzuki, Amenable minimal Cantor systems of free groups arising from diagonal actions. to appear in J. reine angew. Math.

Y. SUZUKI (RIMS)