Product type actions of compact quantum groups

.

Product type actions I Quantum flag manifolds Product type actions II Classification

Reiji TOMATSU

May 26, 2014 @Fields institute

. Product type actions I

Product type actions I Quantum flag manifolds Product type actions II Classifica

. Quantum flag manifolds

. Product type actions II

. Classification

Product type actions I

Product type actions I Quantum flag manifolds Product type actions II Classification

Compact quantum group

Product type actions I

. Definition (Woronowicz) .

A *compact quantum group G* is a pair of $C(G)$ and δ s.t.

- *C*(*G*): unital C*∗* -algebra.
- *δ* : *C*(*G*) *→ C*(*G*) *⊗ C*(*G*): coproduct, i.e.

 $(\delta \otimes id) \circ \delta = (id \otimes \delta) \circ \delta.$

(Cancellation property) *δ*(*C*(*G*)) *·* (C *⊗ C*(*G*)) and $\delta(C(G)) \cdot (C(G) \otimes \mathbb{C})$ are dense in $C(G)$.

Notation

We need

- *h*: the Haar state.
- $L^2(G)$: the GNS Hilbert space.
- *L∞*(*G*): the weak closure of *C*(*G*).

A unitary $v ∈ B(H) ⊗ L[∞](G)$ is a *representation* if

 $(id \otimes \delta)(v) = v_{12}v_{13}.$

Let

- *G*: a compact quantum group.
- *v ∈ B*(*H*) *⊗ L∞*(*G*): a unitary representation on *H*.
- *γ* : *B*(*H*) *→ B*(*H*) *⊗ L∞*(*G*) defined by

Product type actions I Quantum flag manifolds Product type actions I

$$
\gamma(x) = v(x \otimes 1)v^* \quad \text{for } x \in B(H).
$$

 $\rightsquigarrow \gamma$ is an action, that is,

$$
(\gamma \otimes \mathsf{id}) \circ \gamma = (\mathsf{id} \otimes \delta) \circ \gamma.
$$

Assumption (not essential): *γ* is faithful.

Namely, any irreducible representation of *G* is contained in $(v \otimes \overline{v})^{\otimes n}$ for a large *n*.

Product type actions

If *G*: a compact group, ⇝ a product type action Ad *v ⊗∞* is minimal, i.e. (*Mα*) *′ ∩M* = C.

Product type actions I Quantum flag manifolds Product type actions II Classificat

$$
B(H) \to B(H)^{\otimes 2} \to \cdots \to B(H)^{\otimes n} \to \cdots \to B(H)^{\otimes \infty}.
$$

$$
(\mathcal{M},\varphi):=\bigotimes_{n=1}^{\infty}(B(H),\phi)^{\prime\prime}.
$$

Product type actions

If *G*: a compact group,

⇝ a product type action Ad *v ⊗∞* is minimal, i.e. (*Mα*) *′ ∩M* = C. Let *v ⊗n* , tensor product representations.

Then the actions Ad *v ⊗n* extend to the following UHF-algebra:

$$
B(H) \to B(H)^{\otimes 2} \to \cdots \to B(H)^{\otimes n} \to \cdots \to B(H)^{\otimes \infty}.
$$

Product type actions I Quantum flag manifolds Product type actions I

$$
(\mathcal{M},\varphi):=\bigotimes_{n=1}^{\infty}(B(H),\phi)^{\prime\prime}.
$$

Product type actions

If *G*: a compact group,

Product type actions I Quantum flag manifolds

⇝ a product type action Ad *v ⊗∞* is minimal, i.e. (*Mα*) *′ ∩M* = C. Let *v ⊗n* , tensor product representations.

Then the actions Ad *v ⊗n* extend to the following UHF-algebra:

$$
B(H) \to B(H)^{\otimes 2} \to \cdots \to B(H)^{\otimes n} \to \cdots \to B(H)^{\otimes \infty}.
$$

Fix an invariant state ϕ on $B(H)$ for Ad *v*:

 $(\phi \otimes id)(v(x \otimes 1)v^*) = \phi(x)1, \quad \forall x \in B(H).$

Denote by *M* the weak closure w.r.t. the product state *φ*:

$$
(\mathcal{M}, \varphi) := \bigotimes_{n=1}^{\infty} (B(H), \phi)^n.
$$

Then set the product type action $\alpha := \mathsf{Ad}\,\nu^{\otimes \infty}$ on $\mathcal{M}.$ Recall the fixed point algebra:

$$
\mathcal{M}^{\alpha} := \{x \in \mathcal{M} \mid \alpha(x) = x \otimes 1\}.
$$

Our study relies on he following result.

-
-

Then set the product type action $\alpha := \mathsf{Ad}\,\nu^{\otimes \infty}$ on $\mathcal{M}.$ Recall the fixed point algebra:

$$
\mathcal{M}^{\alpha} := \{ x \in \mathcal{M} \mid \alpha(x) = x \otimes 1 \}.
$$

Our study relies on he following result.

. Theorem (Izumi) .

Suppose that G is not of Kac type (h is non-tracial). Then the following statements hold:

- $({\mathcal{M}}^\alpha)' \cap {\mathcal{M}} \neq {\mathbb{C}}$.
- $({\mathcal M}^\alpha)'\cap{\mathcal M}$ is isomorphic to the Poisson boundary $H^\infty_\mathcal{A}(\widehat{G},\mu),$ which is determined by a random walk μ on the dual G.

 \rightsquigarrow non-minimality of $\alpha =$ Ad $v^{\otimes \infty}$.

Then set the product type action $\alpha := \mathsf{Ad}\,\nu^{\otimes \infty}$ on $\mathcal{M}.$ Recall the fixed point algebra:

$$
\mathcal{M}^{\alpha} := \{ x \in \mathcal{M} \mid \alpha(x) = x \otimes 1 \}.
$$

Our study relies on he following result.

. Theorem (Izumi) .

Suppose that G is not of Kac type (h is non-tracial). Then the following statements hold:

- $({\mathcal{M}}^\alpha)' \cap {\mathcal{M}} \neq {\mathbb{C}}$.
- $({\mathcal M}^\alpha)'\cap{\mathcal M}$ is isomorphic to the Poisson boundary $H^\infty_\mathcal{A}(\widehat{G},\mu),$ which is determined by a random walk μ on the dual G.

 \rightsquigarrow non-minimality of $\alpha =$ Ad $v^{\otimes \infty}$. **Aim:** Study of α in detail when $G = G_q$.

Quantum flag manifolds

Product type actions I Quantum flag manifolds Product type actions II Classification

Quick review of the recipe of G_q . Let $0 < q < 1$.

- A Cartan matrix $A = (a_{ij})_{i,j \in I}$ (finite, irreducible).
- The root data $(h, \{h_i\}_{i\in I}, \{\alpha_i\}_{i\in I})$.
- Drinfel'd–Jimbo's quantum group $U_q(\mathfrak{g})$.
-

Quantum flag manifolds Product type actions I

-
-

-
-

Quick review of the recipe of G_q . Let $0 < q < 1$.

Product type actions I Quantum flag manifolds Product type actions II Classification

- A Cartan matrix $A = (a_{ij})_{i,j \in I}$ (finite, irreducible).
- The root data $(h, \{h_i\}_{i\in I}, \{\alpha_i\}_{i\in I})$.
- Drinfel'd–Jimbo's quantum group $U_q(\mathfrak{g})$.
- Collect ***-representations $\pi: U_q(\mathfrak{g}) \to B(H)$ (admissible ones).
- For $\xi, \eta \in H$, set $C^{\pi}_{\xi, \eta}(x) := \langle \pi(x)\eta, \xi \rangle$ for $x \in U_q(\mathfrak{g})$.
- \bullet

$$
A(G_q) := \text{span}\{C_{\xi,\eta}^\pi \mid \pi,\xi,\eta\} \subset U_q(\mathfrak{g})^*.
$$

- \rightsquigarrow *A*(\mathcal{G}_q) inherits the Hopf $*$ -algebra structure from $U_q(\mathfrak{g})^*.$
- $C(G_q) :=$ the universal C^{*}-algebra of $A(G_q)$.

 \rightarrow *C*(*G_q*) is a compact quantum group with faithful Haar state.

Maximal torus, Quantum flag manifold

Let $\mathcal{T} := \mathbb{T}^I$, the $|I|$ -fold direct product group of \mathbb{T} . \rightarrow *T* is a closed subgroup of G_q , that is, *∃* a canonical surjective *∗*-homomorphism *r^T* : *C*(*Gq*) *→ C*(*T*) s.t.

$$
\delta_{\mathcal{T}}\circ r_{\mathcal{T}}=(r_{\mathcal{T}}\otimes r_{\mathcal{T}})\circ \delta_{G_q}.
$$

Quantum flag manifolds Product type actions I

\rightsquigarrow We call *T* the maximal torus of G_q .

The quantum flag manifold is defined by

Maximal torus, Quantum flag manifold

Product type actions I Quantum flag manifolds Product type actions II Classification

Let $\mathcal{T} := \mathbb{T}^I$, the $|I|$ -fold direct product group of \mathbb{T} . \rightsquigarrow *T* is a closed subgroup of G_q , that is, *∃* a canonical surjective *∗*-homomorphism *r^T* : *C*(*Gq*) *→ C*(*T*) s.t.

$$
\delta_{\mathcal{T}}\circ r_{\mathcal{T}}=(r_{\mathcal{T}}\otimes r_{\mathcal{T}})\circ \delta_{G_q}.
$$

 \rightsquigarrow We call *T* the maximal torus of G_q . The quantum flag manifold is defined by

 $C(T \setminus G_q) := \{x \in C(G_q) \mid (r_T \otimes id)(\delta_{G_q}(x)) = 1 \otimes x\}.$

Then δ_{G_q} provides $C(T\backslash G_q)$ with a (right) action of G_q .

Our main ingredients are the following two results. Recall a product type action $\alpha \colon \mathcal{M} \to \mathcal{M} \otimes L^{\infty}(G_q)$.

Product type actions I Quantum flag manifolds Product type actions II

.
Theorem (Izumi, Izumi-Neshveyev-Tuset, T) .

One has the following Gq-equivariant isomorphisms:

$$
L^{\infty}(\mathcal{T}\setminus G_q)\cong H^{\infty}(\widehat{G_q})\cong (\mathcal{M}^{\alpha})'\cap \mathcal{M}.
$$

-
-
-

Quantum flag manifolds Product type actions

Our main ingredients are the following two results. Recall a product type action $\alpha \colon \mathcal{M} \to \mathcal{M} \otimes L^{\infty}(G_q)$.

.
Theorem (Izumi, Izumi-Neshveyev-Tuset, T) .

One has the following Gq-equivariant isomorphisms:

$$
L^{\infty}(\mathcal{T}\setminus G_q)\cong H^{\infty}(\widehat{G_q})\cong (\mathcal{M}^{\alpha})'\cap \mathcal{M}.
$$

. Remark .

- **•** The Poisson boundary $H^{\infty}(\widehat{G_q})$ does not depend on a choice of a generating probability measure μ .
- *Z*(*Mα*) *∼*= *H∞*(*ℓ∞*(Irr(*Gq*))) = C (Hayashi). ⇝ *M^α* is a factor.
- (*Mα*) *′ ∩ M* does not depend on a choice of Ad *v* and *ϕ*.

The second one is about the structure of $L^{\infty}(G_q)$.

Product type actions I Quantum flag manifolds Product type actions I

. Theorem (T)

The following statements hold:

- **•** L^∞ ($T\setminus G_q$) *is a factor of type* I_∞ *.*
- $L^{\infty}(T \setminus G_q)' \cap L^{\infty}(G_q) = Z(L^{\infty}(G_q)).$ \mathcal{I} *Hus* $L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)$.
- *The left action γ of T on Z*(*L∞*(*Gq*)) *is faithful and ergodic.*

. Proof. .

Let $\Theta: L^{\infty}(\mathcal{T}\backslash\mathcal{G}_{q})\to H^{\infty}(\widehat{\mathcal{G}_{q}})$ be the Poisson integral $(\widehat{G}_q$ - G_q -isomorphism). \mathcal{I} Then Θ maps $Z(L^\infty(\mathcal{G}_q)) \cap L^\infty(\mathcal{T} \setminus \mathcal{G}_q)$ into $L^\infty(\widehat{\mathcal{G}_q})^{\mathcal{G}_q} = \mathbb{C}.$ \rightsquigarrow $Z(L^{\infty}(G_q)) \cap L^{\infty}(T \backslash G_q) = \mathbb{C}.$ $\rightsquigarrow \gamma$: $\mathcal{T} \curvearrowright \mathcal{Z}(L^{\infty}(G_q))$ is ergodic. Let $C^{\lambda}_{\lambda,\mathsf{w}_0\lambda} = \mathsf{v} | C^{\lambda}_{\lambda,\mathsf{w}_0\lambda} |$ be the polar decomposition. \rightsquigarrow ν is central. $\rightsquigarrow \gamma$ is faithful on the center. \rightsquigarrow $L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q).$ \Box It is well-known that $L^\infty(\mathcal{G}_q)$ is of type I.

Product type actions I Quantum flag manifolds Product type actions II Classification

Product type actions II

Product type actions II Classification

Tensor product decomposition

Recall

- $\alpha = \operatorname{\mathsf{Ad}}\nolimits\nu^{\otimes \infty} \colon \mathcal{M} \to \mathcal{M} \otimes L^\infty(\mathsf{G}).$
- $Q := (\mathcal{M}^{\alpha})' \cap \mathcal{M} \cong L^{\infty}(\mathcal{T} \setminus \mathcal{G}_q) \cong B(\ell^2).$

Product type actions I Quantum flag manifolds Product type actions II Classification

-
-

Tensor product decomposition

Recall

- $\alpha = \operatorname{\mathsf{Ad}}\nolimits\nu^{\otimes \infty} \colon \mathcal{M} \to \mathcal{M} \otimes L^\infty(\mathsf{G}).$
- $Q := (\mathcal{M}^{\alpha})' \cap \mathcal{M} \cong L^{\infty}(\mathcal{T} \setminus \mathcal{G}_q) \cong B(\ell^2).$

Therefore, we have a tensor product decomposition,

$$
\mathcal{M}=\mathcal{R}\vee\mathcal{Q}\cong\mathcal{R}\otimes\mathcal{Q},
$$

Product type actions I Quantum flag manifolds Product type actions II Classification

 W^{inter} *R* := $Q' \cap M = ((M^{\alpha})' \cap M)' \cap M$.

-
-

Tensor product decomposition

Recall

- $\alpha = \operatorname{\mathsf{Ad}}\nolimits\nu^{\otimes \infty} \colon \mathcal{M} \to \mathcal{M} \otimes L^\infty(\mathsf{G}).$
- $Q := (\mathcal{M}^{\alpha})' \cap \mathcal{M} \cong L^{\infty}(\mathcal{T} \setminus \mathcal{G}_q) \cong B(\ell^2).$

Therefore, we have a tensor product decomposition,

$$
\mathcal{M}=\mathcal{R}\vee\mathcal{Q}\cong\mathcal{R}\otimes\mathcal{Q},
$$

Product type actions I Quantum flag manifolds Product type actions II Classification

 W^{inter} *R* := $Q' \cap M = ((M^{\alpha})' \cap M)' \cap M$. Then

- $\mathcal{M}^{\alpha} \subset \mathcal{R}$ is irreducible, i.e. $(\mathcal{M}^{\alpha})' \cap \mathcal{R} = \mathbb{C}$
- $M^{\alpha} \subset \mathcal{R}$ is of depth 2.

 $\mathsf{So,}\ \exists \ \mathsf{a} \ \mathsf{minimal} \ \mathsf{action} \ \beta \colon H \curvearrowright \mathcal{R} \ \mathsf{s.t.} \ \mathcal{M}^\alpha = \mathcal{R}^\beta.$ What is a compact quantum group *H*? The irreducible decomposition of the bimodule $_{\mathcal{M}^{\alpha}}\mathsf{L}^{2}(\mathcal{R})_{\mathcal{M}^{\alpha}}$ implies the following.

$\mathsf{So,}\ \exists \ \mathsf{a} \ \mathsf{minimal} \ \mathsf{action} \ \beta \colon H \curvearrowright \mathcal{R} \ \mathsf{s.t.} \ \mathcal{M}^\alpha = \mathcal{R}^\beta.$

What is a compact quantum group *H*?

The irreducible decomposition of the bimodule $_{\mathcal{M}^{\alpha}}\mathsf{L}^{2}(\mathcal{R})_{\mathcal{M}^{\alpha}}$ implies the following.

Product type actions I Quantum flag manifolds Product type actions II Classification

. Theorem (T)

. *The subfactor M^α ⊂ R comes from a minimal action β of the* . *maximal torus T on R.*

Namely, $H = T$. Actually, $\beta_t =$ the restriction of α_t on R though this fact is non-trivial at first.

To study β , we need the canonical generators of $Z(L^{\infty}(G_q))$. Recall γ : $T \curvearrowright Z(L^{\infty}(G_q))$ is faithful and ergodic. ⇝ *Z*(*L∞*(*Gq*)) *∼*= *L∞*(*T*). \rightsquigarrow $Z(L^{\infty}(G_q)) = \{v_{\lambda} \mid \lambda \in \mathcal{T}\}$ ", where v_{λ} is a unitary with

$$
v_{\lambda}v_{\mu}=v_{\lambda+\mu}, \quad \gamma_t(v_{\lambda})=\langle t,\lambda\rangle v_{\lambda}.
$$

$$
L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)
$$

= { $v_{\lambda} \mid \lambda \in \widehat{T}$ }'' $\vee L^{\infty}(T \setminus G_q)$.

To study β , we need the canonical generators of $Z(L^{\infty}(G_q))$. Recall γ : $T \curvearrowright Z(L^{\infty}(G_q))$ is faithful and ergodic. ⇝ *Z*(*L∞*(*Gq*)) *∼*= *L∞*(*T*). \rightsquigarrow $Z(L^{\infty}(G_q)) = \{v_{\lambda} \mid \lambda \in \mathcal{T}\}$ ", where v_{λ} is a unitary with

$$
v_{\lambda}v_{\mu}=v_{\lambda+\mu},\quad \gamma_t(v_{\lambda})=\langle t,\lambda\rangle v_{\lambda}.
$$

Then

$$
L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)
$$

= { $v_{\lambda} \mid \lambda \in \widehat{T}$ }'' $\vee L^{\infty}(T \setminus G_q)$.

Assumption: *M^α* is infinite. Then the minimal action β : $T \curvearrowright \mathcal{R}$ is dual, that is,

$$
\mathcal{R} = \mathcal{M}^{\alpha} \vee \{ u_{\lambda} \mid \lambda \in \widehat{\mathcal{T}} \}'' \cong \mathcal{M}^{\alpha} \rtimes_{\theta} \widehat{\mathcal{T}},
$$

where $\theta_{\lambda} = \text{Ad} \mu_{\lambda}$ on \mathcal{M}^{α} , $u_{\lambda}u_{\mu} = u_{\lambda+\mu}$. Now

$$
\mathcal{M} = \mathcal{R} \vee \mathcal{Q} = \mathcal{M}^{\alpha} \vee \{u_{\lambda} \mid \lambda \in \widehat{T}\}^{\prime\prime} \vee \mathcal{Q}.
$$

$Recall Q ⊆ L[∞](T\setminus G_q)$.

$$
L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)
$$

= { $v_{\lambda} \mid \lambda \in \widehat{T}$ }'' $\vee L^{\infty}(T \setminus G_q)$.

Assumption: *M^α* is infinite. Then the minimal action β : $T \curvearrowright \mathcal{R}$ is dual, that is,

$$
\mathcal{L} = \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L}
$$

$$
\mathcal{R} = \mathcal{M}^{\alpha} \vee \{ u_{\lambda} \mid \lambda \in \widehat{\mathcal{T}} \}'' \cong \mathcal{M}^{\alpha} \rtimes_{\theta} \widehat{\mathcal{T}},
$$

where $\theta_{\lambda} = \text{Ad} \mu_{\lambda}$ on \mathcal{M}^{α} , $u_{\lambda}u_{\mu} = u_{\lambda+\mu}$. Now

$$
\mathcal{M} = \mathcal{R} \vee \mathcal{Q} = \mathcal{M}^{\alpha} \vee \{u_{\lambda} \mid \lambda \in \widehat{T}\}^{\prime\prime} \vee \mathcal{Q}.
$$

 $Recall Q ⊆ L[∞](T\setminus G_q).$ Compare this equality with the following:

$$
L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)
$$

= { $v_{\lambda} \mid \lambda \in \widehat{T}$ }'' $\vee L^{\infty}(T \setminus G_q)$.

Assumption: *M^α* is infinite.

Then the minimal action β : $T \curvearrowright \mathcal{R}$ is dual, that is,

$$
\mathcal{R} = \mathcal{M}^{\alpha} \vee \{ u_{\lambda} \mid \lambda \in \widehat{\mathcal{T}} \}'' \cong \mathcal{M}^{\alpha} \rtimes_{\theta} \widehat{\mathcal{T}},
$$

where $\theta_{\lambda} = \text{Ad} \ u_{\lambda}$ on \mathcal{M}^{α} , $u_{\lambda}u_{\mu} = u_{\lambda+\mu}$. Now

$$
\mathcal{M} = \mathcal{R} \vee \mathcal{Q} = \mathcal{M}^{\alpha} \vee \{u_{\lambda} \mid \lambda \in \widehat{T}\}^{\prime\prime} \vee \mathcal{Q}.
$$

 $Recall Q ⊆ L[∞](T\setminus G_q).$ Compare this equality with the following:

$$
L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)
$$

= { $v_{\lambda} \mid \lambda \in \widehat{T}$ }'' $\vee L^{\infty}(T \setminus G_q)$.

. Problem . . *Is L∞*(*Gq*) *Gq-equivariantly embeddable into M?*

How do δ and α act on v_{λ} and u_{λ} , respectively? Set w_{λ} and w_{λ}^{o} as follows:

$$
\delta(v_\lambda)=(v_\lambda\otimes 1)w_\lambda,\quad \alpha(u_\lambda)=(u_\lambda\otimes 1)w_\lambda^o
$$

Then $w_\lambda,w_\lambda^o\in L^\infty(\mathcal{T}\backslash\mathcal{G}_q)\otimes L^\infty(\mathcal{G})$ by regarding $\mathcal{Q}=L^\infty(\mathcal{T}\backslash\mathcal{G}_q).$ Obviously they are one-cocycles of δ : $L^{\infty}(T \setminus G_q) \cap G_q$, that is,

$$
(w\otimes 1)(\delta\otimes\mathsf{id})(w)=(\mathsf{id}\otimes\delta)(w).
$$

$$
w_{\lambda}\delta(x)w_{\lambda}^*=(v_{\lambda}^*\otimes 1)\delta(v_{\lambda}xv_{\lambda}^*)(v_{\lambda}\otimes 1)=\delta(x),
$$

How do δ and α act on v_{λ} and u_{λ} , respectively? Set w_{λ} and w_{λ}^{o} as follows:

$$
\delta(v_\lambda)=(v_\lambda\otimes 1)w_\lambda,\quad \alpha(u_\lambda)=(u_\lambda\otimes 1)w_\lambda^o
$$

Then $w_\lambda,w_\lambda^o\in L^\infty(\mathcal{T}\backslash\mathcal{G}_q)\otimes L^\infty(\mathcal{G})$ by regarding $\mathcal{Q}=L^\infty(\mathcal{T}\backslash\mathcal{G}_q).$ \bigcirc Obviously they are one-cocycles of $\delta\colon L^\infty(\,\mathcal{T}\backslash\, \mathcal{G}_q)\curvearrowleft \mathcal{G}_q,$ that is,

$$
(w\otimes 1)(\delta\otimes \mathsf{id})(w)=(\mathsf{id}\otimes \delta)(w).
$$

 M oreover, for $x \in L^{\infty}(\mathcal{T} \backslash \mathcal{G}_q)$:

$$
w_{\lambda}\delta(x)w_{\lambda}^*=(v_{\lambda}^*\otimes 1)\delta(v_{\lambda}xv_{\lambda}^*)(v_{\lambda}\otimes 1)=\delta(x),
$$

and

$$
w_\lambda^o \delta(x) (w_\lambda^o)^* = (u_\lambda^* \otimes 1) \alpha (u_\lambda x u_\lambda^*)(u_\lambda \otimes 1) = \delta(x).
$$

Invariant cocycles

Namely, $w_{\lambda}, w_{\lambda}^o$ belong to the following set:

$$
Z^1_{\text{inv}}(\delta, L^{\infty}(\mathcal{T}\setminus G_q))
$$

 := { $w \in L^{\infty}(\mathcal{T}\setminus G_q) \otimes L^{\infty}(G_q)$ | δ -cocycle, $\delta^w = \delta$ on $L^{\infty}(\mathcal{T}\setminus G_q)$ }.

Thus we must determine those invariant cocycles.

Product type actions I Quantum flag manifolds Product type actions II

Invariant cocycles

.

Namely, $w_{\lambda}, w_{\lambda}^o$ belong to the following set:

$$
Z^1_{\text{inv}}(\delta, L^{\infty}(T \setminus G_q))
$$

 := { $w \in L^{\infty}(T \setminus G_q) \otimes L^{\infty}(G_q)$ | δ -cocycle, $\delta^w = \delta$ on $L^{\infty}(T \setminus G_q)$ }.

Product type actions I Quantum flag manifolds Product type actions II Classification

Thus we must determine those invariant cocycles.

Theorem (T) . $Z_{\text{inv}}^1(\delta, L^{\infty}(\mathcal{T}\setminus\mathcal{G}_q)) = \{w_{\lambda} \mid \lambda \in \widehat{\mathcal{T}}\}.$

 \rightsquigarrow $w_{\lambda} = w_{\lambda}^o$ up to an automorphism of $\widehat{\tau}$.

⇝ *∃* a *Gq*-equivariant embedding:

$$
L^{\infty}(G_q) = \{v_{\lambda} \mid \lambda \in \widehat{T}\}'' \vee L^{\infty}(T \setminus G_q) \cong \{u_{\lambda} \mid \lambda \in \widehat{T}\}'' \vee \mathcal{Q} \subset \mathcal{M}.
$$

Using this embedding, we obtain our main result.

. Theorem (T)

. . *determined up to conjugacy. A faithful product type action of G^q is induced from a minimal action of T on a type III factor. The minimal action is uniquely*

Product type actions I Quantum flag manifolds Product type actions II Classification

We will give a sketch of a proof of the equality,

 $Z_{\text{inv}}^1(\delta, L^{\infty}(\mathcal{T}\setminus\mathcal{G}_q)) = \{w_{\lambda} \mid \lambda \in \widehat{\mathcal{T}}\},\$

where *w^λ* is the canonical cocycle, that is,

$$
\delta(v_\lambda)=(v_\lambda\otimes 1)w_\lambda, \quad \lambda\in\widehat{\mathcal{T}}.
$$

Sketch of a proof

- Show that the perturbed action δ^w is ergodic on $L^\infty(\mathcal{G}_q)$.
- By 2 *×* 2-matrix trick, take a unitary *v ∈ L∞*(*Gq*) such that

$$
\delta(v)=(v\otimes 1)w.
$$

Product type actions I Classifications II Quantum flag manifolds Product type actions II Classifica

$$
v=\sum_{\lambda\in\widehat{\mathcal{T}}}v_{\lambda}a_{\lambda},
$$

Sketch of a proof

Show that the perturbed action δ^w is ergodic on $L^\infty(\mathcal{G}_q)$.

Product type actions I Quantum flag manifolds Product type actions II Classification

By 2 *×* 2-matrix trick, take a unitary *v ∈ L∞*(*Gq*) such that

$$
\delta(v)=(v\otimes 1)w.
$$

• By Fourier type expansion, we have

$$
v=\sum_{\lambda\in\widehat{T}}v_{\lambda}a_{\lambda},
$$

where $a_{\lambda} \in L^{\infty}(T \setminus G_q)$. In fact, there exists a unique λ such that $v = v_{\lambda} a_{\lambda}$. We want to show that $a_{\lambda} \in \mathbb{C}$.

Since $\delta^w = \delta$ on $L^\infty(\mathcal{T} \backslash \mathcal{G}_q)$, we have the following equality putting *θ* := Ad *aλ*:

$$
\delta \circ \theta = (\theta \otimes id) \circ \delta,
$$

which means that *θ* is a *Gq*-equivariant automorphism on *L∞*(*T\Gq*).

The following result shows that a_{λ} is a scalar.

Since $\delta^w = \delta$ on $L^\infty(\mathcal{T} \backslash \mathcal{G}_q)$, we have the following equality putting *θ* := Ad *aλ*:

$$
\delta \circ \theta = (\theta \otimes \mathrm{id}) \circ \delta,
$$

which means that *θ* is a *Gq*-equivariant automorphism on *L∞*(*T\Gq*).

The following result shows that a_{λ} is a scalar.

. Theorem .

 $\mathsf{Aut}_{\mathsf{G}_q}(L^{\infty}(\mathcal{T}\setminus \mathsf{G}_q)) = \{\mathsf{id}\}.$

This follows from the following result:

Since $\delta^w = \delta$ on $L^\infty(\mathcal{T} \backslash \mathcal{G}_q)$, we have the following equality putting *θ* := Ad *aλ*:

$$
\delta \circ \theta = (\theta \otimes \mathrm{id}) \circ \delta,
$$

which means that *θ* is a *Gq*-equivariant automorphism on *L∞*(*T\Gq*).

The following result shows that a_{λ} is a scalar.

. Theorem .

 $\mathsf{Aut}_{\mathsf{G}_q}(L^{\infty}(\mathcal{T}\setminus \mathsf{G}_q)) = \{\mathsf{id}\}.$

This follows from the following result:

. Theorem (Dijkhuizen-Stokman) .

The counit is the unique character of $C(T\setminus G_q)$ *.*

Indeed, we have $\varepsilon \circ \theta = \varepsilon$ on $C(T \setminus G_q)$, and

$$
\theta(x)=(\varepsilon\otimes\mathsf{id})(\delta(\theta(x)))=(\varepsilon\circ\theta\otimes\mathsf{id})(\delta(x))=(\varepsilon\otimes\mathsf{id})(\delta(x))=x.
$$

Classification

Product type actions I Quantum flag manifolds Product type actions II Classification

SUq(2) case

Let $G_q = SU_q(2)$. \rightarrow *T* is the one-dimensional torus.

Aim: Classification of product type actions up to cocycle conjugacy.

Product type actions I Quantum flag manifolds Product type actions II Classification

SUq(2) case

Let $G_q = SU_q(2)$. \rightarrow *T* is the one-dimensional torus.

Aim: Classification of product type actions up to cocycle conjugacy.

Product type actions I Quantum flag manifolds Product type actions II Classification

 $\mathsf{Recall} \ \mathcal{M} = \mathcal{R} \lor \mathcal{Q}, \ \mathcal{Q} = (\mathcal{M}^{\alpha})' \cap \mathcal{M} \ \mathsf{and} \ \beta \colon \mathcal{T} \curvearrowright \mathcal{R}.$ It is not hard to show the following.

. Lemma .

The minimal action β_t *on* $\mathcal R$ *is cocycle conjugate to* α_t *on* $\mathcal M$ *.*

 \rightsquigarrow β is (invariantly) approximately inner,

 $\rightsquigarrow \hat{\beta}$: $\mathbb{Z} \curvearrowright \mathcal{R} \rtimes_{\beta} \mathcal{T}$ is centrally free.

Classification results

It depends on a type of *Mα*.

. Theorem .

. *type IIIq. If M^α is of type II, then α is unique up to conjugacy. Indeed, α is conjugate to* $\operatorname{Ind}^{\mathsf{G}_q}_{\mathcal{T}} \sigma_{t/}^{\varphi_q}$ *t/* log *q , where φ^q denotes the Powers state of*

Product type actions I Quantum flag manifolds Product type actions II Classification

In particular, \mathcal{M}^{α} and \mathcal{M} must be of type II_1 and III_q .

. Corollary .

. \mathcal{F} or $0 < \lambda < 1$ *with* $\lambda \neq q$, Ind $\frac{\mathcal{G}_q}{\mathcal{T}}\, \sigma^{\varphi_{\lambda}}_{t/1}$ *t/* log *λ is mutually non-conjugate and non-product type actions of SUq*(2)*.*

. Theorem .

minimal action of T *on* \mathcal{R}_0 *. If M^α is of type III*1*, then α is unique up to conjugacy. Indeed, α is conjugate to* Ind*G^q T* (id*R[∞] ⊗m*)*, where m denotes the unique*

Product type actions I Quantum flag manifolds Product type actions II Classification

In fact, this result holds for a general *Gq*.

. Theorem .

minimal action of T *on* \mathcal{R}_0 *. If* M^{α} *is of type III*₁*, then* α *is unique up to conjugacy. Indeed,* α *is conjugate to* Ind*G^q T* (id*R[∞] ⊗m*)*, where m denotes the unique*

Product type actions I Quantum flag manifolds Product type actions II Classification

In fact, this result holds for a general *Gq*.

. Proof. .

May assume that $\mathcal{R} = \mathcal{M}^{\alpha} \rtimes_{\theta} \widehat{\mathcal{T}}$.

 $\beta = \hat{\theta}$ is invariantly approximately inner

. By duality argument, we are done. $\rightsquigarrow \theta$ has the Rohlin property $\rightsquigarrow \theta$ is centrally free. & Aut(*Mα*) = Int(*Mα*) (Kawahigashi–Sutherland–Takesaki). Thus θ is cocycle conjugate to id $_{\mathcal{R}_{\infty}}$ $\otimes \theta^0$ (Ocneanu), where θ^0 denotes the unique free action of \widehat{T} on \mathcal{R}_0 .

 \Box

When \mathcal{M}^{α} is of type III_{λ}, write $\mathcal{R} = \mathcal{M}^{\alpha} \rtimes_{\theta} \mathbb{Z}$. We know θ^n is not centrally trivial (= not modular). So, the automorphism *θ* is classified by Connes–Takesaki module $mod(\theta) \in \mathbb{R}_{>0}/\lambda^{\mathbb{Z}} = [\lambda, 1].$

. Theorem .

. R*>*0*/λ*Z*. In each case, α is unique up to conjugacy.* \mathcal{L} et $0 < \lambda < 1$ *. If* \mathcal{M}^{α} *is of type III* $_{\lambda}$ *, then <code>mod(* θ *) = q or* $\lambda^{1/2}$ *q in*</code>

This immediately implies the following result.

When \mathcal{M}^{α} is of type III_{λ}, write $\mathcal{R} = \mathcal{M}^{\alpha} \rtimes_{\theta} \mathbb{Z}$. We know θ^n is not centrally trivial (= not modular). So, the automorphism *θ* is classified by Connes–Takesaki module $mod(\theta) \in \mathbb{R}_{>0}/\lambda^{\mathbb{Z}} = [\lambda, 1].$

. Theorem .

. R*>*0*/λ*Z*. In each case, α is unique up to conjugacy.* \mathcal{L} et $0 < \lambda < 1$ *. If* \mathcal{M}^{α} *is of type III* $_{\lambda}$ *, then <code>mod(* θ *) = q or* $\lambda^{1/2}$ *q in*</code>

This immediately implies the following result.

. Corollary .

 $SU_q(2)$ *on* \mathcal{R}_∞ *with type III* $_\lambda$ *fixed point factor. Let* $0 < \lambda < 1$ *.* $Suppose\ that\ \mu\in\mathbb{R}\ \text{\it satisfies}\ 0<\mu<1\ \text{\it and}\ \mu\notin(\lambda^{1/2})^{\mathbb{Z}_{+}}.$ *Then* $\operatorname{Ind}_{\mathcal{T}}^{G_q}(\operatorname{id}_{\mathcal{R}_\lambda} \otimes \sigma_{t/1}^{\varphi_\mu})$ $\frac{\varphi_\mu}{t/\log \mu}$) is not of product type. *In particular, for any such λ, there exist uncountably many, non-product type, mutually non-cocycle conjugate actions of*

Related problem

We know that $L^{\infty}(T\backslash G_q)$ is a type I factor. Actually, the right action δ is implemented by a unitary:

$$
\delta(x) = U(x \otimes 1)U^*, \quad x \in L^{\infty}(\mathcal{T} \backslash G_q).
$$

Product type actions I Quantum flag manifolds Product type actions II Classification

Then the following Ω satisfies the 2-cocycle relation:

 $U_{12}U_{13} = (\text{id} \otimes \delta)(U)(1 \otimes \Omega^*).$

Then the twisted bialgebra $G_{q,\Omega} = (L^{\infty}(G_q), \delta_{\Omega})$ is again a (locally compact) quantum group (De Commer).

. Problem . . *Realize Gq,*^Ω *as a concrete quantum group.*

If $G_q = SU_q(2)$, then $G_{q,\Omega} \cong \widetilde{E}_q(2)$ (De Commer).

Thank you!

Product type actions I Quantum flag manifolds Product type actions II Classification