Product type actions of compact quantum groups

Reiji TOMATSU

May 26, 2014 @Fields institute

- Quantum flag manifolds
- 3 Product type actions II

Product type actions I

Compact quantum group

Definition (Woronowicz)

A compact quantum group G is a pair of C(G) and δ s.t.

- C(G): unital C*-algebra.
- $\delta \colon C(G) \to C(G) \otimes C(G)$: coproduct, i.e.

$$(\delta \otimes \mathsf{id}) \circ \delta = (\mathsf{id} \otimes \delta) \circ \delta.$$

• (Cancellation property) $\delta(C(G)) \cdot (\mathbb{C} \otimes C(G))$ and $\delta(C(G)) \cdot (C(G) \otimes \mathbb{C})$ are dense in C(G).

Notation

We need

- h: the Haar state.
- $L^2(G)$: the GNS Hilbert space.
- $L^{\infty}(G)$: the weak closure of C(G).

A unitary $v \in B(H) \otimes L^{\infty}(G)$ is a representation if

$$(\mathsf{id}\otimes\delta)(v)=v_{12}v_{13}.$$

Let

- G: a compact quantum group.
- $v \in B(H) \otimes L^{\infty}(G)$: a unitary representation on H.
- $\gamma \colon B(H) o B(H) \otimes L^{\infty}(G)$ defined by

$$\gamma(x)=v(x\otimes 1)v^* \quad ext{for } x\in B(H).$$

 $\rightsquigarrow \gamma$ is an action, that is,

$$(\gamma \otimes \mathsf{id}) \circ \gamma = (\mathsf{id} \otimes \delta) \circ \gamma$$

Assumption (not essential): γ is faithful. Namely, any irreducible representation of G is contained in $(v \otimes \overline{v})^{\otimes n}$ for a large n.

Product type actions

If G: a compact group, \rightsquigarrow a product type action Ad $v^{\otimes \infty}$ is minimal, i.e. $(\mathcal{M}^{\alpha})' \cap \mathcal{M} = \mathbb{C}$. Let $v^{\otimes n}$, tensor product representations. Then the actions Ad $v^{\otimes n}$ extend to the following UHF-algebra: $B(H) \rightarrow B(H)^{\otimes 2} \rightarrow \cdots \rightarrow B(H)^{\otimes n} \rightarrow \cdots \rightarrow B(H)^{\otimes \infty}$

Fix an invariant state ϕ on B(H) for Ad v:

 $(\phi \otimes id)(v(x \otimes 1)v^*) = \phi(x)1, \quad \forall x \in B(H).$

Denote by \mathcal{M} the weak closure w.r.t. the product state φ :

$$(\mathcal{M},\varphi):=\bigotimes_{n=1}^{\infty}(B(H),\phi)''.$$

Product type actions

If G: a compact group,

 \rightsquigarrow a product type action Ad $v^{\otimes \infty}$ is minimal, i.e. $(\mathcal{M}^{\alpha})' \cap \mathcal{M} = \mathbb{C}$. Let $v^{\otimes n}$, tensor product representations. Then the actions Ad $v^{\otimes n}$ extend to the following UHF-algebra:

$$B(H) \to B(H)^{\otimes 2} \to \cdots \to B(H)^{\otimes n} \to \cdots \to B(H)^{\otimes \infty}.$$

Fix an invariant state ϕ on B(H) for Ad v:

 $(\phi \otimes id)(v(x \otimes 1)v^*) = \phi(x)1, \quad \forall x \in B(H).$

Denote by \mathcal{M} the weak closure w.r.t. the product state φ :

$$(\mathcal{M},\varphi) := \bigotimes_{n=1}^{\infty} (B(H),\phi)''.$$

Product type actions

If G: a compact group,

 \sim a product type action Ad $v^{\otimes \infty}$ is minimal, i.e. $(\mathcal{M}^{\alpha})' \cap \mathcal{M} = \mathbb{C}$. Let $v^{\otimes n}$, tensor product representations. Then the actions Ad $v^{\otimes n}$ extend to the following UHF-algebra:

$$B(H) \to B(H)^{\otimes 2} \to \cdots \to B(H)^{\otimes n} \to \cdots \to B(H)^{\otimes \infty}.$$

Fix an invariant state ϕ on B(H) for Ad v:

$$(\phi \otimes id)(v(x \otimes 1)v^*) = \phi(x)1, \quad \forall x \in B(H).$$

Denote by \mathcal{M} the weak closure w.r.t. the product state φ :

$$(\mathcal{M},\varphi) := \bigotimes_{n=1}^{\infty} (B(H),\phi)''.$$

Then set the product type action $\alpha := \operatorname{Ad} v^{\otimes \infty}$ on \mathcal{M} . Recall the fixed point algebra:

$$\mathcal{M}^{\alpha} := \{ x \in \mathcal{M} \mid \alpha(x) = x \otimes 1 \}.$$

Our study relies on he following result.

Theorem (Izumi)

Suppose that G is not of Kac type (h is non-tracial). Then the following statements hold:

- $(\mathcal{M}^{\alpha})' \cap \mathcal{M} \neq \mathbb{C}.$
- (M^α)' ∩ M is isomorphic to the Poisson boundary H[∞](Ĝ, μ), which is determined by a random walk μ on the dual Ĝ.

 \rightsquigarrow non-minimality of $\alpha = \operatorname{Ad} v^{\otimes \infty}$. Aim: Study of α in detail when $G = G_q$

Then set the product type action $\alpha := \operatorname{Ad} v^{\otimes \infty}$ on \mathcal{M} . Recall the fixed point algebra:

$$\mathcal{M}^{\alpha} := \{ x \in \mathcal{M} \mid \alpha(x) = x \otimes 1 \}.$$

Our study relies on he following result.

Theorem (Izumi)

Suppose that G is not of Kac type (h is non-tracial). Then the following statements hold:

- $(\mathcal{M}^{\alpha})' \cap \mathcal{M} \neq \mathbb{C}.$
- $(\mathcal{M}^{\alpha})' \cap \mathcal{M}$ is isomorphic to the Poisson boundary $H^{\infty}(\widehat{G}, \mu)$, which is determined by a random walk μ on the dual \widehat{G} .

 \rightsquigarrow non-minimality of $\alpha = \operatorname{Ad} v^{\otimes \infty}$.

Aim: Study of α in detail when $G = G_q$.

Then set the product type action $\alpha := \operatorname{Ad} v^{\otimes \infty}$ on \mathcal{M} . Recall the fixed point algebra:

$$\mathcal{M}^{\alpha} := \{ x \in \mathcal{M} \mid \alpha(x) = x \otimes 1 \}.$$

Our study relies on he following result.

Theorem (Izumi)

Suppose that G is not of Kac type (h is non-tracial). Then the following statements hold:

- $(\mathcal{M}^{\alpha})' \cap \mathcal{M} \neq \mathbb{C}.$
- $(\mathcal{M}^{\alpha})' \cap \mathcal{M}$ is isomorphic to the Poisson boundary $H^{\infty}(\widehat{G}, \mu)$, which is determined by a random walk μ on the dual \widehat{G} .

→ non-minimality of $\alpha = \operatorname{Ad} v^{\otimes \infty}$. Aim: Study of α in detail when $G = G_q$.

Quantum flag manifolds

Quick review of the recipe of G_q . Let 0 < q < 1.

- A Cartan matrix $A = (a_{ij})_{i,j \in I}$ (finite, irreducible).
- The root data $(\mathfrak{h}, \{h_i\}_{i \in I}, \{\alpha_i\}_{i \in I})$.
- Drinfel'd–Jimbo's quantum group $U_q(\mathfrak{g})$.
- Collect *-representations π: U_q(g) → B(H) (admissible ones).
 For ξ, η ∈ H, set C^π_{ξ,η}(x) := ⟨π(x)η, ξ⟩ for x ∈ U_q(g).

$$A(G_q) := \operatorname{span} \{ C^{\pi}_{\xi,\eta} \mid \pi, \xi, \eta \} \subset U_q(\mathfrak{g})^*.$$

 $\rightsquigarrow A(G_q)$ inherits the Hopf *-algebra structure from $U_q(\mathfrak{g})^*$.

C(G_q) := the universal C*-algebra of A(G_q).
 → C(G_q) is a compact quantum group with faithful Haar state.

۲

Quick review of the recipe of G_q . Let 0 < q < 1.

- A Cartan matrix $A = (a_{ij})_{i,j \in I}$ (finite, irreducible).
- The root data $(\mathfrak{h}, \{h_i\}_{i \in I}, \{\alpha_i\}_{i \in I})$.
- Drinfel'd-Jimbo's quantum group $U_q(\mathfrak{g})$.
- Collect *-representations $\pi \colon U_q(\mathfrak{g}) \to B(H)$ (admissible ones).
- For $\xi, \eta \in H$, set $C^{\pi}_{\xi,\eta}(x) := \langle \pi(x)\eta, \xi \rangle$ for $x \in U_q(\mathfrak{g})$.

$$A(G_q) := \operatorname{span} \{ C^\pi_{\xi,\eta} \mid \pi, \xi, \eta \} \subset U_q(\mathfrak{g})^*.$$

 $\rightsquigarrow A(G_q)$ inherits the Hopf *-algebra structure from $U_q(\mathfrak{g})^*$.

C(G_q) := the universal C*-algebra of A(G_q).
 → C(G_q) is a compact quantum group with faithful Haar state.

Maximal torus, Quantum flag manifold

Let $T := \mathbb{T}^{I}$, the |I|-fold direct product group of \mathbb{T} . $\rightsquigarrow T$ is a closed subgroup of G_q , that is, \exists a canonical surjective *-homomorphism $r_T : C(G_q) \to C(T)$ s.t.

$$\delta_T \circ r_T = (r_T \otimes r_T) \circ \delta_{G_q}.$$

 \rightarrow We call *T* the maximal torus of *G*_q. The quantum flag manifold is defined by

 $C(T \setminus G_q) := \{ x \in C(G_q) \mid (r_T \otimes id)(\delta_{G_q}(x)) = 1 \otimes x \}.$

Then δ_{G_q} provides $C(T \setminus G_q)$ with a (right) action of G_q .

Maximal torus, Quantum flag manifold

Let $T := \mathbb{T}^{I}$, the |I|-fold direct product group of \mathbb{T} . $\rightsquigarrow T$ is a closed subgroup of G_q , that is, \exists a canonical surjective *-homomorphism $r_T : C(G_q) \to C(T)$ s.t.

$$\delta_T \circ r_T = (r_T \otimes r_T) \circ \delta_{G_q}.$$

 \rightsquigarrow We call T the maximal torus of G_q . The quantum flag manifold is defined by

 $C(T \setminus G_q) := \{x \in C(G_q) \mid (r_T \otimes id)(\delta_{G_q}(x)) = 1 \otimes x\}.$

Then δ_{G_q} provides $C(T \setminus G_q)$ with a (right) action of G_q .

Our main ingredients are the following two results. Recall a product type action $\alpha \colon \mathcal{M} \to \mathcal{M} \otimes L^{\infty}(\mathcal{G}_q)$.

Theorem (Izumi,Izumi-Neshveyev-Tuset, T)

One has the following G_q -equivariant isomorphisms:

$$L^{\infty}(T \setminus G_q) \cong H^{\infty}(\widehat{G_q}) \cong (\mathcal{M}^{\alpha})' \cap \mathcal{M}.$$

Remark

- The Poisson boundary $H^{\infty}(\widehat{G}_q)$ does not depend on a choice of a generating probability measure μ .
- Z(M^α) ≅ H[∞](l[∞](Irr(G_q))) = C (Hayashi).
 → M^α is a factor.
- $(\mathcal{M}^{\alpha})' \cap \mathcal{M}$ does not depend on a choice of Ad v and ϕ .

Our main ingredients are the following two results. Recall a product type action $\alpha \colon \mathcal{M} \to \mathcal{M} \otimes L^{\infty}(\mathcal{G}_q)$.

Theorem (Izumi,Izumi-Neshveyev-Tuset, T)

One has the following G_q -equivariant isomorphisms:

$$L^{\infty}(T \setminus G_q) \cong H^{\infty}(\widehat{G_q}) \cong (\mathcal{M}^{\alpha})' \cap \mathcal{M}.$$

Remark

- The Poisson boundary H[∞](G_q) does not depend on a choice of a generating probability measure μ.
- $Z(\mathcal{M}^{\alpha}) \cong H^{\infty}(\ell^{\infty}(\operatorname{Irr}(G_q))) = \mathbb{C}$ (Hayashi). $\rightsquigarrow \mathcal{M}^{\alpha}$ is a factor.
- $(\mathcal{M}^{\alpha})' \cap \mathcal{M}$ does not depend on a choice of Ad v and ϕ .

The second one is about the structure of $L^{\infty}(G_q)$.

Theorem (T)

The following statements hold:

- $L^{\infty}(T \setminus G_q)$ is a factor of type I_{∞} .
- $L^{\infty}(T \setminus G_q)' \cap L^{\infty}(G_q) = Z(L^{\infty}(G_q)).$ Thus $L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q).$
- The left action γ of T on $Z(L^{\infty}(G_q))$ is faithful and ergodic.

Proof.

Let
$$\Theta \colon L^{\infty}(T \setminus G_q) \to H^{\infty}(\widehat{G_q})$$
 be the Poisson integral $(\widehat{G_q} \cdot G_q \cdot \operatorname{isomorphism}).$
Then Θ maps $Z(L^{\infty}(G_q)) \cap L^{\infty}(T \setminus G_q)$ into $L^{\infty}(\widehat{G_q})^{\widehat{G_q}} = \mathbb{C}.$

 $\sim \rightarrow$

$$Z(L^{\infty}(G_q)) \cap L^{\infty}(T \setminus G_q) = \mathbb{C}.$$

 $\rightsquigarrow \gamma \colon T \curvearrowright Z(L^{\infty}(G_q))$ is ergodic.

Let $C_{\lambda,w_0\lambda}^{\lambda} = v |C_{\lambda,w_0\lambda}^{\lambda}|$ be the polar decomposition. $\rightsquigarrow v$ is central.

 $\rightsquigarrow \gamma$ is faithful on the center.

$$\rightsquigarrow L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q).$$

It is well-known that $L^{\infty}(G_q)$ is of type I.

Product type actions II

Tensor product decomposition

Recall

- $\alpha = \operatorname{Ad} v^{\otimes \infty} \colon \mathcal{M} \to \mathcal{M} \otimes L^{\infty}(G).$
- $\mathcal{Q} := (\mathcal{M}^{\alpha})' \cap \mathcal{M} \cong L^{\infty}(T \setminus G_q) \cong B(\ell^2).$

Therefore, we have a tensor product decomposition,

 $\mathcal{M}=\mathcal{R}\vee\mathcal{Q}\cong\mathcal{R}\otimes\mathcal{Q},$

where $\mathcal{R} := \mathcal{Q}' \cap \mathcal{M} = ((\mathcal{M}^{\alpha})' \cap \mathcal{M})' \cap \mathcal{M}.$ Then

- $\mathcal{M}^{lpha} \subset \mathcal{R}$ is irreducible, i.e. $(\mathcal{M}^{lpha})' \cap \mathcal{R} = \mathbb{C}$
- $\mathcal{M}^{\alpha} \subset \mathcal{R}$ is of depth 2.

Tensor product decomposition

Recall

•
$$\alpha = \operatorname{Ad} v^{\otimes \infty} \colon \mathcal{M} \to \mathcal{M} \otimes L^{\infty}(G).$$

•
$$\mathcal{Q} := (\mathcal{M}^{\alpha})' \cap \mathcal{M} \cong L^{\infty}(T \setminus G_q) \cong B(\ell^2).$$

Therefore, we have a tensor product decomposition,

$$\mathcal{M}=\mathcal{R}\vee\mathcal{Q}\cong\mathcal{R}\otimes\mathcal{Q},$$

where $\mathcal{R} := \mathcal{Q}' \cap \mathcal{M} = ((\mathcal{M}^{\alpha})' \cap \mathcal{M})' \cap \mathcal{M}.$ Then

• $\mathcal{M}^{\alpha} \subset \mathcal{R}$ is irreducible, i.e. $(\mathcal{M}^{\alpha})' \cap \mathcal{R} = \mathbb{C}$

• $\mathcal{M}^{\alpha} \subset \mathcal{R}$ is of depth 2.

Tensor product decomposition

Recall

•
$$\alpha = \operatorname{Ad} v^{\otimes \infty} \colon \mathcal{M} \to \mathcal{M} \otimes L^{\infty}(G).$$

•
$$\mathcal{Q} := (\mathcal{M}^{\alpha})' \cap \mathcal{M} \cong L^{\infty}(T \setminus G_q) \cong B(\ell^2).$$

Therefore, we have a tensor product decomposition,

$$\mathcal{M}=\mathcal{R}\vee\mathcal{Q}\cong\mathcal{R}\otimes\mathcal{Q},$$

where $\mathcal{R} := \mathcal{Q}' \cap \mathcal{M} = ((\mathcal{M}^{\alpha})' \cap \mathcal{M})' \cap \mathcal{M}.$ Then

- $\mathcal{M}^{lpha} \subset \mathcal{R}$ is irreducible, i.e. $(\mathcal{M}^{lpha})' \cap \mathcal{R} = \mathbb{C}$
- $\mathcal{M}^{\alpha} \subset \mathcal{R}$ is of depth 2.

So, \exists a minimal action $\beta \colon H \curvearrowright \mathcal{R}$ s.t. $\mathcal{M}^{\alpha} = \mathcal{R}^{\beta}$. What is a compact quantum group H? The irreducible decomposition of the bimodule $_{\mathcal{M}^{\alpha}}L^{2}(\mathcal{R})_{\mathcal{M}^{\alpha}}$ implies the following.

Theorem (

The subfactor $\mathcal{M}^{\alpha} \subset \mathcal{R}$ comes from a minimal action β of the maximal torus T on \mathcal{R} .

Namely, H=T. Actually, $\beta_t=$ the restriction of α_t on $\mathcal R$ though this fact is non-trivial at first. So, \exists a minimal action $\beta \colon H \curvearrowright \mathcal{R}$ s.t. $\mathcal{M}^{\alpha} = \mathcal{R}^{\beta}$. What is a compact quantum group H? The irreducible decomposition of the bimodule $_{\mathcal{M}^{\alpha}}L^{2}(\mathcal{R})_{\mathcal{M}^{\alpha}}$ implies the following.

Theorem (T)

The subfactor $\mathcal{M}^{\alpha} \subset \mathcal{R}$ comes from a minimal action β of the maximal torus T on \mathcal{R} .

Namely, H = T. Actually, β_t = the restriction of α_t on \mathcal{R} though this fact is non-trivial at first. To study β , we need the canonical generators of $Z(L^{\infty}(G_q))$. Recall $\gamma: T \curvearrowright Z(L^{\infty}(G_q))$ is faithful and ergodic. $\rightsquigarrow Z(L^{\infty}(G_q)) \cong L^{\infty}(T)$. $\rightsquigarrow Z(L^{\infty}(G_q)) = \{v_{\lambda} \mid \lambda \in \widehat{T}\}''$, where v_{λ} is a unitary with $v_{\lambda}v_{\mu} = v_{\lambda+\mu}, \quad \gamma_t(v_{\lambda}) = \langle t, \lambda \rangle v_{\lambda}.$

Then

$$L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)$$
$$= \{ v_{\lambda} \mid \lambda \in \widehat{T} \}'' \vee L^{\infty}(T \setminus G_q).$$

To study β , we need the canonical generators of $Z(L^{\infty}(G_q))$. Recall $\gamma: T \curvearrowright Z(L^{\infty}(G_q))$ is faithful and ergodic. $\rightsquigarrow Z(L^{\infty}(G_q)) \cong L^{\infty}(T)$. $\rightsquigarrow Z(L^{\infty}(G_q)) = \{v_{\lambda} \mid \lambda \in \widehat{T}\}''$, where v_{λ} is a unitary with $v_{\lambda}v_{\mu} = v_{\lambda+\mu}, \quad \gamma_t(v_{\lambda}) = \langle t, \lambda \rangle v_{\lambda}.$

Then

$$L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \vee L^{\infty}(T \setminus G_q)$$

= $\{v_{\lambda} \mid \lambda \in \widehat{T}\}'' \vee L^{\infty}(T \setminus G_q).$

Assumption: \mathcal{M}^{α} is infinite.

Then the minimal action $\beta \colon T \curvearrowright \mathcal{R}$ is dual, that is,

$$\mathcal{R} = \mathcal{M}^{lpha} \lor \{ u_{\lambda} \mid \lambda \in \widehat{\mathcal{T}} \}'' \cong \mathcal{M}^{lpha}
times_{ heta} \widehat{\mathcal{T}},$$

where $\theta_{\lambda} = \operatorname{Ad} u_{\lambda}$ on \mathcal{M}^{α} , $u_{\lambda}u_{\mu} = u_{\lambda+\mu}$. Now

$$\mathcal{M} = \mathcal{R} \lor \mathcal{Q} = \mathcal{M}^{\alpha} \lor \{u_{\lambda} \mid \lambda \in \widehat{\mathcal{T}}\}'' \lor \mathcal{Q}.$$

Recall $\mathcal{Q} \cong L^{\infty}(T \setminus G_q)$.

Compare this equality with the following:

$$L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \lor L^{\infty}(T \backslash G_q)$$
$$= \{v_{\lambda} \mid \lambda \in \widehat{T}\}'' \lor L^{\infty}(T \backslash G_q)$$

Problem

Is $L^{\infty}(G_q)$ G_q -equivariantly embeddable into \mathcal{M} ?

Assumption: \mathcal{M}^{α} is infinite.

Then the minimal action β : $T \curvearrowright \mathcal{R}$ is dual, that is,

$$\mathcal{R} = \mathcal{M}^{lpha} \lor \{ u_{\lambda} \mid \lambda \in \widehat{\mathcal{T}} \}'' \cong \mathcal{M}^{lpha} \rtimes_{\theta} \widehat{\mathcal{T}},$$

where $\theta_{\lambda} = \operatorname{Ad} u_{\lambda}$ on \mathcal{M}^{α} , $u_{\lambda}u_{\mu} = u_{\lambda+\mu}$. Now

$$\mathcal{M} = \mathcal{R} \lor \mathcal{Q} = \mathcal{M}^{\alpha} \lor \{u_{\lambda} \mid \lambda \in \widehat{T}\}'' \lor \mathcal{Q}.$$

Recall $Q \cong L^{\infty}(T \setminus G_q)$. Compare this equality with the following:

$$L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \lor L^{\infty}(T \setminus G_q)$$

= $\{v_{\lambda} \mid \lambda \in \widehat{T}\}'' \lor L^{\infty}(T \setminus G_q).$

Problem

Is $L^{\infty}(G_q)$ G_q -equivariantly embeddable into \mathcal{M} ?

Assumption: \mathcal{M}^{α} is infinite.

Then the minimal action β : $T \curvearrowright \mathcal{R}$ is dual, that is,

$$\mathcal{R} = \mathcal{M}^{lpha} \lor \{ u_{\lambda} \mid \lambda \in \widehat{\mathcal{T}} \}'' \cong \mathcal{M}^{lpha} \rtimes_{\theta} \widehat{\mathcal{T}},$$

where $\theta_{\lambda} = \operatorname{Ad} u_{\lambda}$ on \mathcal{M}^{α} , $u_{\lambda}u_{\mu} = u_{\lambda+\mu}$. Now

$$\mathcal{M}=\mathcal{R}\vee\mathcal{Q}=\mathcal{M}^{\alpha}\vee\{u_{\lambda}\mid\lambda\in\widehat{T}\}''\vee\mathcal{Q}.$$

Recall $Q \cong L^{\infty}(T \setminus G_q)$. Compare this equality with the following:

$$L^{\infty}(G_q) = Z(L^{\infty}(G_q)) \lor L^{\infty}(T \setminus G_q)$$

= $\{v_{\lambda} \mid \lambda \in \widehat{T}\}'' \lor L^{\infty}(T \setminus G_q).$

Problem

Is $L^{\infty}(G_q)$ G_q -equivariantly embeddable into \mathcal{M} ?

How do δ and α act on v_{λ} and u_{λ} , respectively? Set w_{λ} and w_{λ}^{o} as follows:

$$\delta(\mathsf{v}_\lambda)=(\mathsf{v}_\lambda\otimes 1)\mathsf{w}_\lambda,\quad lpha(u_\lambda)=(u_\lambda\otimes 1)\mathsf{w}_\lambda^{\mathsf{o}}$$

Then $w_{\lambda}, w_{\lambda}^{o} \in L^{\infty}(T \setminus G_{q}) \otimes L^{\infty}(G)$ by regarding $\mathcal{Q} = L^{\infty}(T \setminus G_{q})$. Obviously they are one-cocycles of $\delta \colon L^{\infty}(T \setminus G_{q}) \curvearrowleft G_{q}$, that is,

$$(w \otimes 1)(\delta \otimes id)(w) = (id \otimes \delta)(w).$$

Moreover, for $x \in L^{\infty}(T \setminus G_q)$:

 $w_{\lambda}\delta(x)w_{\lambda}^{*} = (v_{\lambda}^{*}\otimes 1)\delta(v_{\lambda}xv_{\lambda}^{*})(v_{\lambda}\otimes 1) = \delta(x),$

and

 $w_{\lambda}^{o}\delta(x)(w_{\lambda}^{o})^{*} = (u_{\lambda}^{*}\otimes 1)\alpha(u_{\lambda}xu_{\lambda}^{*})(u_{\lambda}\otimes 1) = \delta(x).$

How do δ and α act on v_{λ} and u_{λ} , respectively? Set w_{λ} and w_{λ}^{o} as follows:

$$\delta(\mathsf{v}_\lambda)=(\mathsf{v}_\lambda\otimes 1)\mathsf{w}_\lambda,\quad lpha(u_\lambda)=(u_\lambda\otimes 1)\mathsf{w}_\lambda^{\mathsf{o}}$$

Then $w_{\lambda}, w_{\lambda}^{o} \in L^{\infty}(T \setminus G_{q}) \otimes L^{\infty}(G)$ by regarding $\mathcal{Q} = L^{\infty}(T \setminus G_{q})$. Obviously they are one-cocycles of $\delta \colon L^{\infty}(T \setminus G_{q}) \curvearrowleft G_{q}$, that is,

$$(w \otimes 1)(\delta \otimes \mathsf{id})(w) = (\mathsf{id} \otimes \delta)(w).$$

Moreover, for $x \in L^{\infty}(T \setminus G_q)$:

$$w_\lambda\delta(x)w_\lambda^*=(v_\lambda^*\otimes 1)\delta(v_\lambda x v_\lambda^*)(v_\lambda\otimes 1)=\delta(x),$$

and

$$w_{\lambda}^{o}\delta(x)(w_{\lambda}^{o})^{*} = (u_{\lambda}^{*}\otimes 1)\alpha(u_{\lambda}xu_{\lambda}^{*})(u_{\lambda}\otimes 1) = \delta(x).$$

Invariant cocycles

Namely, $w_{\lambda}, w_{\lambda}^{o}$ belong to the following set:

$$Z^{1}_{\mathrm{inv}}(\delta, L^{\infty}(T \setminus G_{q})) \\ := \{ w \in L^{\infty}(T \setminus G_{q}) \otimes L^{\infty}(G_{q}) \mid \delta \text{-cocycle}, \ \delta^{w} = \delta \text{ on } L^{\infty}(T \setminus G_{q}) \}.$$

Thus we must determine those invariant cocycles.

Theorem (1

$$Z^1_{\mathrm{inv}}(\delta, L^{\infty}(T \setminus G_q)) = \{ w_{\lambda} \mid \lambda \in \widehat{T} \}.$$

 $\rightsquigarrow w_{\lambda} = w^{o}_{\lambda}$ up to an automorphism of \widehat{T} .

 $\rightarrow \exists a \ G_q$ -equivariant embedding:

$L^{\infty}(G_q) = \{v_{\lambda} \mid \lambda \in \widehat{T}\}'' \vee L^{\infty}(T \setminus G_q) \cong \{u_{\lambda} \mid \lambda \in \widehat{T}\}'' \vee \mathcal{Q} \subset \mathcal{M}.$

Invariant cocycles

Namely, $w_{\lambda}, w_{\lambda}^{o}$ belong to the following set:

$$Z^{1}_{\mathrm{inv}}(\delta, L^{\infty}(T \setminus G_{q})) \\ := \{ w \in L^{\infty}(T \setminus G_{q}) \otimes L^{\infty}(G_{q}) \mid \delta \text{-cocycle}, \ \delta^{w} = \delta \text{ on } L^{\infty}(T \setminus G_{q}) \}.$$

Thus we must determine those invariant cocycles.

Theorem (T)

$$Z^1_{ ext{inv}}(\delta, L^{\infty}(T \setminus G_q)) = \{ w_{\lambda} \mid \lambda \in \widehat{T} \}.$$

 $\rightsquigarrow w_{\lambda} = w_{\lambda}^{o}$ up to an automorphism of \widehat{T} .

 $\rightsquigarrow \exists a \ G_q$ -equivariant embedding:

$$L^{\infty}(G_q) = \{v_{\lambda} \mid \lambda \in \widehat{T}\}'' \vee L^{\infty}(T \setminus G_q) \cong \{u_{\lambda} \mid \lambda \in \widehat{T}\}'' \vee \mathcal{Q} \subset \mathcal{M}.$$

Using this embedding, we obtain our main result.

Theorem (T)

A faithful product type action of G_q is induced from a minimal action of T on a type III factor. The minimal action is uniquely determined up to conjugacy.

We will give a sketch of a proof of the equality,

$$Z^1_{ ext{inv}}(\delta, L^{\infty}(T \setminus G_q)) = \{ w_{\lambda} \mid \lambda \in \widehat{T} \},$$

where w_{λ} is the canonical cocycle, that is,

$$\delta(\mathbf{v}_{\lambda}) = (\mathbf{v}_{\lambda} \otimes 1)\mathbf{w}_{\lambda}, \quad \lambda \in \widehat{\mathcal{T}}.$$

Sketch of a proof

- Show that the perturbed action δ^w is ergodic on $L^{\infty}(G_q)$.
- By 2 imes 2-matrix trick, take a unitary $v \in L^\infty(G_q)$ such that

$$\delta(\mathbf{v}) = (\mathbf{v} \otimes 1)\mathbf{w}.$$

• By Fourier type expansion, we have

$$v = \sum_{\lambda \in \widehat{T}} v_{\lambda} a_{\lambda},$$

where $a_{\lambda} \in L^{\infty}(T \setminus G_q)$. In fact, there exists a unique λ such that $v = v_{\lambda}a_{\lambda}$. We want to show that $a_{\lambda} \in \mathbb{C}$.

Sketch of a proof

- Show that the perturbed action δ^w is ergodic on $L^{\infty}(G_q)$.
- By 2 imes 2-matrix trick, take a unitary $v \in L^\infty(G_q)$ such that

$$\delta(\mathbf{v}) = (\mathbf{v} \otimes 1)\mathbf{w}.$$

• By Fourier type expansion, we have

$$\mathbf{v}=\sum_{\lambda\in\widehat{T}}\mathbf{v}_{\lambda}\mathbf{a}_{\lambda},$$

where $a_{\lambda} \in L^{\infty}(T \setminus G_q)$. In fact, there exists a unique λ such that $v = v_{\lambda}a_{\lambda}$. We want to show that $a_{\lambda} \in \mathbb{C}$.

Since $\delta^w = \delta$ on $L^{\infty}(T \setminus G_q)$, we have the following equality putting $\theta := \operatorname{Ad} a_{\lambda}$:

 $\delta \circ \theta = (\theta \otimes \mathsf{id}) \circ \delta,$

which means that θ is a G_q -equivariant automorphism on $L^{\infty}(T \setminus G_q)$. The following result shows that a_{λ} is a scalar.

Theorem

 $\operatorname{Aut}_{G_q}(L^{\infty}(T \setminus G_q)) = \{\operatorname{id}\}.$

This follows from the following result:

Theorem (Dijkhuizen-Stokman)

The counit is the unique character of $C(T \setminus G_q)$.

Indeed, we have $\varepsilon \circ \theta = \varepsilon$ on $C(T \setminus G_q)$, and

 $\theta(x) = (\varepsilon \otimes \mathrm{id})(\delta(\theta(x))) = (\varepsilon \circ \theta \otimes \mathrm{id})(\delta(x)) = (\varepsilon \otimes \mathrm{id})(\delta(x)) = x.$

Since $\delta^w = \delta$ on $L^{\infty}(T \setminus G_q)$, we have the following equality putting $\theta := \operatorname{Ad} a_{\lambda}$:

$$\delta \circ \theta = (\theta \otimes \mathsf{id}) \circ \delta,$$

which means that θ is a G_q -equivariant automorphism on $L^{\infty}(T \setminus G_q)$. The following result shows that a_{λ} is a scalar.

Theorem

 $\operatorname{Aut}_{G_q}(L^{\infty}(T \setminus G_q)) = {\operatorname{id}}.$

This follows from the following result:

Theorem (Dijkhuizen-Stokman)

The counit is the unique character of $C(T \setminus G_q)$.

Indeed, we have $\varepsilon \circ \theta = \varepsilon$ on $C(T \setminus G_q)$, and

 $\theta(x) = (\varepsilon \otimes \mathrm{id})(\delta(\theta(x))) = (\varepsilon \circ \theta \otimes \mathrm{id})(\delta(x)) = (\varepsilon \otimes \mathrm{id})(\delta(x)) = x.$

Since $\delta^w = \delta$ on $L^{\infty}(T \setminus G_q)$, we have the following equality putting $\theta := \operatorname{Ad} a_{\lambda}$:

 $\delta \circ \theta = (\theta \otimes \mathsf{id}) \circ \delta,$

which means that θ is a G_q -equivariant automorphism on $L^{\infty}(T \setminus G_q)$. The following result shows that a_{λ} is a scalar.

Theorem

 $\operatorname{Aut}_{G_q}(L^{\infty}(T \setminus G_q)) = {\operatorname{id}}.$

This follows from the following result:

Theorem (Dijkhuizen-Stokman)

The counit is the unique character of $C(T \setminus G_q)$.

Indeed, we have $\varepsilon \circ \theta = \varepsilon$ on $C(T \setminus G_q)$, and

 $\theta(x) = (\varepsilon \otimes \mathrm{id})(\delta(\theta(x))) = (\varepsilon \circ \theta \otimes \mathrm{id})(\delta(x)) = (\varepsilon \otimes \mathrm{id})(\delta(x)) = x.$

 $SU_q(2)$ case

Let $G_q = SU_q(2)$. $\rightsquigarrow T$ is the one-dimensional torus.

Aim: Classification of product type actions up to cocycle conjugacy.

Recall $\mathcal{M} = \mathcal{R} \lor \mathcal{Q}$, $\mathcal{Q} = (\mathcal{M}^{\alpha})' \cap \mathcal{M}$ and $\beta \colon T \curvearrowright \mathcal{R}$. It is not hard to show the following.

_emma

The minimal action β_t on $\mathcal R$ is cocycle conjugate to $lpha_t$ on $\mathcal M.$

 $\rightsquigarrow \beta$ is (invariantly) approximately inner, $\rightsquigarrow \hat{\beta} \colon \mathbb{Z} \curvearrowright \mathcal{R} \rtimes_{\beta} T$ is centrally free. $SU_q(2)$ case

Let $G_q = SU_q(2)$. $\rightsquigarrow T$ is the one-dimensional torus.

Aim: Classification of product type actions up to cocycle conjugacy.

Recall
$$\mathcal{M} = \mathcal{R} \lor \mathcal{Q}$$
, $\mathcal{Q} = (\mathcal{M}^{\alpha})' \cap \mathcal{M}$ and $\beta \colon \mathcal{T} \curvearrowright \mathcal{R}$
It is not hard to show the following.

Lemma

The minimal action β_t on \mathcal{R} is cocycle conjugate to α_t on \mathcal{M} .

$$\rightsquigarrow eta$$
 is (invariantly) approximately inner,

 $\rightsquigarrow \hat{\beta} \colon \mathbb{Z} \curvearrowright \mathcal{R} \rtimes_{\beta} T$ is centrally free.

Classification results

It depends on a type of \mathcal{M}^{α} .

Theorem

If \mathcal{M}^{α} is of type II, then α is unique up to conjugacy. Indeed, α is conjugate to $\operatorname{Ind}_{T}^{G_{q}} \sigma_{t/\log q}^{\varphi_{q}}$, where φ_{q} denotes the Powers state of type III_q.

In particular, \mathcal{M}^{α} and \mathcal{M} must be of type II₁ and III_q.

Corollary

For $0 < \lambda < 1$ with $\lambda \neq q$, $\operatorname{Ind}_{T}^{G_{q}} \sigma_{t/\log \lambda}^{\varphi_{\lambda}}$ is mutually non-conjugate and non-product type actions of $SU_{q}(2)$.

Theorem

If \mathcal{M}^{α} is of type III₁, then α is unique up to conjugacy. Indeed, α is conjugate to $\operatorname{Ind}_{T}^{G_{q}}(\operatorname{id}_{\mathcal{R}_{\infty}} \otimes m)$, where m denotes the unique minimal action of T on \mathcal{R}_{0} .

In fact, this result holds for a general G_q .

Proof.

May assume that $\mathcal{R} = \mathcal{M}^{\alpha} \rtimes_{\theta} \widehat{\mathcal{T}}$.

 $\beta = \hat{\theta}$ is invariantly approximately inner

 $\begin{array}{l} \sim \theta \text{ has the Rohlin property } \sim \theta \text{ is centrally free.} \\ \& \operatorname{Aut}(\mathcal{M}^{\alpha}) = \operatorname{Int}(\mathcal{M}^{\alpha}) \text{ (Kawahigashi–Sutherland–Takesaki).} \\ \operatorname{Thus} \theta \text{ is cocycle conjugate to } \operatorname{id}_{\mathcal{R}_{\infty}} \otimes \theta^0 \text{ (Ocneanu),} \\ \text{where } \theta^0 \text{ denotes the unique free action of } \widehat{\mathcal{T}} \text{ on } \mathcal{R}_0. \\ \text{By duality argument, we are done.} \end{array}$

Theorem

If \mathcal{M}^{α} is of type III₁, then α is unique up to conjugacy. Indeed, α is conjugate to $\operatorname{Ind}_{T}^{G_{q}}(\operatorname{id}_{\mathcal{R}_{\infty}} \otimes m)$, where m denotes the unique minimal action of T on \mathcal{R}_{0} .

In fact, this result holds for a general G_q .

Proof.

May assume that $\mathcal{R} = \mathcal{M}^{\alpha} \rtimes_{\theta} \widehat{\mathcal{T}}$.

 $\beta=\hat{\theta}$ is invariantly approximately inner

 $\begin{array}{l} \rightsquigarrow \theta \text{ has the Rohlin property } \rightsquigarrow \theta \text{ is centrally free.} \\ \& \operatorname{Aut}(\mathcal{M}^{\alpha}) = \overline{\operatorname{Int}}(\mathcal{M}^{\alpha}) \text{ (Kawahigashi–Sutherland–Takesaki).} \\ \operatorname{Thus} \theta \text{ is cocycle conjugate to id}_{\mathcal{R}_{\infty}} \otimes \theta^0 \text{ (Ocneanu),} \\ \text{where } \theta^0 \text{ denotes the unique free action of } \widehat{\mathcal{T}} \text{ on } \mathcal{R}_0. \\ \text{By duality argument, we are done.} \end{array}$

When \mathcal{M}^{α} is of type III_{λ} , write $\mathcal{R} = \mathcal{M}^{\alpha} \rtimes_{\theta} \mathbb{Z}$. We know θ^{n} is not centrally trivial (= not modular). So, the automorphism θ is classified by Connes–Takesaki module $mod(\theta) \in \mathbb{R}_{>0}/\lambda^{\mathbb{Z}} = [\lambda, 1).$

Theorem

Let $0 < \lambda < 1$. If \mathcal{M}^{α} is of type III_{λ} , then $mod(\theta) = q$ or $\lambda^{1/2}q$ in $\mathbb{R}_{>0}/\lambda^{\mathbb{Z}}$. In each case, α is unique up to conjugacy.

This immediately implies the following result.

Corollary

Let $0 < \lambda < 1$.

Suppose that $\mu \in \mathbb{R}$ satisfies $0 < \mu < 1$ and $\mu
otin (\lambda^{1/2})^{\mathbb{Z}_+}.$

Then $\operatorname{Ind}_{\mathcal{T}}^{\mathcal{G}_q}(\operatorname{id}_{\mathcal{R}_{\lambda}} \otimes \sigma_{t/\log \mu}^{\varphi_{\mu}})$ is not of product type. In particular, for any such λ , there exist uncountably

non-product type, mutually non-cocycle conjugate actions of $SU_{a}(2)$ on \mathcal{R}_{∞} with type III fixed point factor.

When \mathcal{M}^{α} is of type III_{λ} , write $\mathcal{R} = \mathcal{M}^{\alpha} \rtimes_{\theta} \mathbb{Z}$. We know θ^{n} is not centrally trivial (= not modular). So, the automorphism θ is classified by Connes–Takesaki module $mod(\theta) \in \mathbb{R}_{>0}/\lambda^{\mathbb{Z}} = [\lambda, 1).$

Theorem

Let $0 < \lambda < 1$. If \mathcal{M}^{α} is of type III_{λ} , then $mod(\theta) = q$ or $\lambda^{1/2}q$ in $\mathbb{R}_{>0}/\lambda^{\mathbb{Z}}$. In each case, α is unique up to conjugacy.

This immediately implies the following result.

Corollary

Let $0 < \lambda < 1$. Suppose that $\mu \in \mathbb{R}$ satisfies $0 < \mu < 1$ and $\mu \notin (\lambda^{1/2})^{\mathbb{Z}_+}$. Then $\operatorname{Ind}_{q}^{G_q}(\operatorname{id}_{\mathcal{R}_\lambda} \otimes \sigma_{t/\log \mu}^{\varphi_{\mu}})$ is not of product type. In particular, for any such λ , there exist uncountably many, non-product type, mutually non-cocycle conjugate actions of $SU_q(2)$ on \mathcal{R}_{∞} with type III_{λ} fixed point factor.

Related problem

We know that $L^{\infty}(T \setminus G_q)$ is a type I factor. Actually, the right action δ is implemented by a unitary:

$$\delta(x) = U(x \otimes 1)U^*, \quad x \in L^{\infty}(T \setminus G_q).$$

Then the following Ω satisfies the 2-cocycle relation:

$$U_{12}U_{13} = (\mathrm{id} \otimes \delta)(U)(1 \otimes \Omega^*).$$

Then the twisted bialgebra $G_{q,\Omega} = (L^{\infty}(G_q), \delta_{\Omega})$ is again a (locally compact) quantum group (De Commer).

Problem

Realize $G_{q,\Omega}$ as a concrete quantum group.

If $G_q = SU_q(2)$, then $G_{q,\Omega} \cong \widetilde{E}_q(2)$ (De Commer).

Thank you!