Amenability properties of Banach algebra valued continuous functions Fields workshop, Toronto, May 24, 2014

Yong Zhang

based on joint work with R. Ghamarshoushtari

Department of Mathematics University of Manitoba, Winnipeg, Canada

Outline

[Preliminaries](#page-1-0)

- **[Amenability](#page-15-0)**
- [generalized amenability](#page-26-0)
- [weak amenability](#page-30-0)

C(*X*,*A*)

Let *X* be a compact Hausdorff space and *A* a Banach algebra. Denote

 $C(X.A)$ = the space of *A*-valued continuous functions on X.

With pointwise algebraic operations and the uniform norm

$$
||f||_{\infty} = \sup\{||f(x)||_A : x \in X\}
$$

C(*X*, *A*) is a Banach algebra.

Examples

 $C(X, \ell_1) = \{(x_i(t)) : x_i \in C(X), \sum_{i=1}^{\infty}$ *i*=1 |*xi* | converges uniformly on *X*}

• Let $\mathfrak M$ be a W^{*}-algebra and *E* be its predual, Then $C(X, \mathfrak{M}) = \mathcal{K}(E, C(X))$, the space of compact operators from *E* into $C(X)$.

Early investigation of *C*(*X*, *A*) goes back to 1940's, when I. Kaplansky and A. Hausner studied the maximal ideal space of the algebra for commutative *A*.

We note

- *C*(*X*, *A*) is a C*-algebra if and only if *A* is a C*-algebra.
- *C*(*X*, *A*) is commutative if and only if *A* is commutative.
- *C*(*X*, *A*) has a BAI if and only if *A* has a BAI.

Early investigation of *C*(*X*, *A*) goes back to 1940's, when I. Kaplansky and A. Hausner studied the maximal ideal space of the algebra for commutative *A*.

We note

- *C*(*X*, *A*) is a C*-algebra if and only if *A* is a C*-algebra.
- *C*(*X*, *A*) is commutative if and only if *A* is commutative.
- *C*(*X*, *A*) has a BAI if and only if *A* has a BAI.

It is reasonable to expect that, normally, *A* rather than *X* plays the decisive role in the structure of *C*(*X*, *A*).

Early investigation of *C*(*X*, *A*) goes back to 1940's, when I. Kaplansky and A. Hausner studied the maximal ideal space of the algebra for commutative *A*.

We note

- *C*(*X*, *A*) is a C*-algebra if and only if *A* is a C*-algebra.
- *C*(*X*, *A*) is commutative if and only if *A* is commutative.
- *C*(*X*, *A*) has a BAI if and only if *A* has a BAI.

It is reasonable to expect that, normally, *A* rather than *X* plays the decisive role in the structure of *C*(*X*, *A*).

We are concerned with the amenability properties of *C*(*X*, *A*). We will show constructively, among other things, that

- *C*(*X*, *A*) is amenable if and only if *A* is amenable;
- \bullet if *A* is commutative, then $C(X, A)$ is weakly amenable if and only if *A* is weakly amenable.

approximate diagonal

For Banach spaces *V* and *W*, we denote by *V* ⊗ *W* the algebraic tensor product, and by *V*⊗ˆ*W* the Banach space projective tensor product of *V* and *W*. The norm of *V* $\hat{\otimes}$ *W* is denoted by $\|\cdot\|_p$.

approximate diagonal

For Banach spaces *V* and *W*, we denote by *V* ⊗ *W* the algebraic tensor product, and by *V*⊗ˆ*W* the Banach space projective tensor product of *V* and *W*. The norm of *V* $\hat{\otimes}$ *W* is denoted by $\|\cdot\|_{p}$.

If A is a Banach algebra, then $\mathcal{A} \hat{\otimes} \mathcal{A}$ is a Banach \mathcal{A} -bimodule with the module actions determined by

$$
a\cdot (b\otimes c)=ab\otimes c,\quad (b\otimes c)\cdot a=b\otimes ca
$$

Definition 1

A net (α_{ν})) $\subset A\hat{\otimes}A$ *is called an approximate diagonal for* A *if*

$$
\lim_{\nu} \|a \cdot \alpha_{\nu} - \alpha_{\nu} \cdot a\|_{p} = 0 \text{ and } \lim_{\nu} \pi(\alpha_{\nu})a = a \quad (a \in \mathcal{A}),
$$

where π : $\mathcal{A} \hat{\otimes} \mathcal{A} \to \mathcal{A}$ *is the product map defined by* $\pi(a \otimes b) = ab$. If in *addition there is constant m* > 0 *such that* $\|\alpha_\nu\| \leq m$ *for all* ν *, then* (α_ν) *is called a bounded approximate diagonal.*

amenability

A Banach algebra is called amenable if there is a bounded approximate diagonal for it.

amenability

A Banach algebra is called amenable if there is a bounded approximate diagonal for it.

- For a locally compact group *G*, B.E. Johnson (1972) showed that *L* 1 (*G*) is amenable if and only if *G* is an amenable group.
- Using Johnson's above result on *L* 1 (*G*) and the Stone-Weierstrass Theorem, M. V, Sheinberg (1977) showed that $C(X) = C(X, \mathbb{C})$ is amenable for any compact Hausdorff space *X*.
- \bullet A direct proof for the amenability of $C(X)$, by constructing a bounded approximate diagonal, was give by (Abtahi-Z. 2010).

We are concerned with general *C*(*X*, *A*).

Grothendieck inequality

The following inequality due to A. Grothendieck is important to us.

Theorem 1 (Grothendieck)

*Let K*1, *K*² *be compact Hausdorff spaces, and let* Φ *be a bounded scalar-valued bilinear form on* $C(K_1) \times C(K_2)$ *. Then there are probability measures* µ1, µ² *on K*1, *K*2*, respectively, and a constant* $k > 0$ *such that*

$$
|\Phi(x,y)| \leq k \|\Phi\| \left(\int_{K_1} |x|^2 d\mu_1 \int_{K_2} |y|^2 d\mu_2 \right)^{\frac{1}{2}}
$$

for $x \in C(K_1)$ *and* $y \in C(K_2)$ *.*

The smallest constant *k* in the above theorem is called the Grothendieck constant, denoted *K* C $G^{\mathbb{C}}$. We have known $4/\pi \leq \mathcal{K}_G^\mathbb{C} <$ 1.405. Therefore, the constant k in the theorem may be chosen independent of the spaces K_1 and K_2 .

As a consequence of the Grothendieck Theorem we have

Corollary 2

Let K_1, K_2 be compact Hausdorff spaces and $c=\frac{1}{2}$ $\frac{1}{2}K_G^{\mathbb{C}}$ *G . Then for each* $u = \sum_{i=1}^n x_i(t) \otimes y_i(t) \in C(K_1) \otimes C(K_2)$ we have

$$
||u||_p \leq c \left(|| \sum_{i=1}^n |x_i(t)|^2 ||_{\infty} + || \sum_{i=1}^n |y_i(t)|^2 ||_{\infty} \right).
$$

As a consequence of the Grothendieck Theorem we have

Corollary 2

Let K_1, K_2 be compact Hausdorff spaces and $c=\frac{1}{2}$ $\frac{1}{2}K_G^{\mathbb{C}}$ *G . Then for each* $u = \sum_{i=1}^n x_i(t) \otimes y_i(t) \in C(K_1) \otimes C(K_2)$ we have

$$
||u||_p \leq c \left(|| \sum_{i=1}^n |x_i(t)|^2 ||_{\infty} + || \sum_{i=1}^n |y_i(t)|^2 ||_{\infty} \right).
$$

Proof.

We note that $(C(K_1)\hat{\otimes}C(K_2))^* = BL(C(K_1), C(K_2); \mathbb{C}).$

$$
||u||_p = \sup_{\Phi \in [BL(C(K_1), C(K_2); \mathbb{C})]_1} |\Phi(u)| \leq K_G^{\mathbb{C}} \sum_{i=1}^n \left(\int |x_i|^2 d\mu_1 \int |y_i|^2 d\mu_2 \right)^{1/2} \leq c \left(\int \sum_{i=1}^n |x_i|^2 d\mu_1 + \int \sum_{i=1}^n |y_i|^2 d\mu_2 \right) \leq c \left(|| \sum_{i=1}^n |x_i|^2 || + || \sum_{i=1}^n |y_i|^2 || \right).
$$

why is the inequality useful to us?

why is the inequality useful to us?

Given a finite open covering $\{V_1, V_2, \ldots V_n\}$ of the compact space X, from the partition of unity there are continuous functions $0 \leq g_i \leq 1$, $i = 1, 2, \ldots, n$, such that supp $(g_i) \subset V_i$ and

$$
\sum_{i=1}^n g_i(t) = 1 \quad t \in X.
$$

Now let $u_i = \sqrt{g_i}$ and $u = \sum_{i=1}^n u_i \otimes u_i$. Normally we can only estimate

$$
||u||_p\leq \sum_{i=1}^n||u_i||_\infty^2\leq n.
$$

However, using the Grothendieck inequality we have

$$
\|u\|_p \leq c \left(\|\sum_{i=1}^n u_i^2\|_{\infty} + \|\sum_{i=1}^n u_i^2\|_{\infty} \right) = 2c \|\sum_{i=1}^n g_i\|_{\infty} = 2c.
$$

Outline

[generalized amenability](#page-26-0)

[weak amenability](#page-30-0)

Amenability of *C*(*X*,*A*)

Theorem 3

Let X be a compact Hausdorff space and let A be a Banach algebra. If A has a bounded approximate diagonal, then so does C(*X*, *A*)*.*

Proof

It suffices to show that there is a constant *L* so that, for any $\varepsilon > 0$ and any finite set $F \subset C(X, A)$, we can find $U = U_{(F,\varepsilon)} \in C(X, A) \hat{\otimes} C(X, A)$ such that

$$
||U||_p \leq L, \quad ||f \cdot U - U \cdot f||_p < \varepsilon \quad \text{and } ||\pi(U)f - f||_{\infty} < \varepsilon
$$

for all $f\in\mathcal{F}.$ Indeed, this will implies that the net $(U_{(F,\varepsilon)})$ is the desired bounded approximate diagonal for *C*(*X*, *A*).

Amenability of *C*(*X*,*A*)

Theorem 3

Let X be a compact Hausdorff space and let A be a Banach algebra. If A has a bounded approximate diagonal, then so does C(*X*, *A*)*.*

Proof

It suffices to show that there is a constant L so that, for any $\varepsilon > 0$ and any finite set $F \subset C(X, A)$, we can find $U = U_{(F,\varepsilon)} \in C(X, A) \hat{\otimes} C(X, A)$ such that

$$
||U||_p \leq L, \quad ||f \cdot U - U \cdot f||_p < \varepsilon \quad \text{and } ||\pi(U)f - f||_{\infty} < \varepsilon
$$

for all $f\in\mathcal{F}.$ Indeed, this will implies that the net $(U_{(F,\varepsilon)})$ is the desired bounded approximate diagonal for *C*(*X*, *A*). To avoid complicated computation we only consider the case that *F*

contains only elements of the form $f(t) = h(t)a$ ($t \in X$), where $h \in C(X)$ and $a \in A$.

$$
T(u, \alpha) = \sum_{i,j} u_i \alpha_j \otimes v_i \beta_j \in C(X, A) \hat{\otimes} C(X, A) \text{ and}
$$

$$
\|T(u, \alpha)\|_p \le \|u\|_p \|\alpha\|_p.
$$

Let $(\alpha_{\nu}) \subset A\hat{\otimes}A$ be a bounded approximate diagonal for A such that $\|\alpha_{\nu}\|_{p} \leq M$ for all ν .

$$
T(u, \alpha) = \sum_{i,j} u_i \alpha_j \otimes v_i \beta_j \in C(X, A) \hat{\otimes} C(X, A) \text{ and}
$$

$$
||T(u, \alpha)||_p \le ||u||_p ||\alpha||_p.
$$

Let $(\alpha_{\nu}) \subset A\hat{\otimes}A$ be a bounded approximate diagonal for A such that $\|\alpha_{\nu}\|_{p} \leq M$ for all ν . Denote

$$
F_A = \{a \in A : f(t) = h(t)a \text{ for some } f \in F\}
$$

$$
F_{\mathbb{C}} = \{h \in C(X) : f(t) = h(t)a \text{ for some } f \in F\}.
$$

These are finite sets in, respectively, *A* and *C*(*X*).

$$
T(u, \alpha) = \sum_{i,j} u_i \alpha_j \otimes v_i \beta_j \in C(X, A) \hat{\otimes} C(X, A) \text{ and}
$$

$$
\|T(u, \alpha)\|_p \le \|u\|_p \|\alpha\|_p.
$$

Let $(\alpha_{\nu}) \subset A\hat{\otimes}A$ be a bounded approximate diagonal for A such that $\|\alpha_{\nu}\|_{p} \leq M$ for all ν . Denote

$$
F_A = \{a \in A : f(t) = h(t)a \text{ for some } f \in F\}
$$

$$
F_{\mathbb{C}} = \{h \in C(X) : f(t) = h(t)a \text{ for some } f \in F\}.
$$

These are finite sets in, respectively, A and $C(X)$. So there is $\alpha \in (\alpha_{\nu})$ such that

$$
\|\boldsymbol{a}\cdot\boldsymbol{\alpha}-\boldsymbol{\alpha}\cdot\boldsymbol{a}\|_{\boldsymbol{p}}<\varepsilon,\quad \|\pi(\boldsymbol{\alpha})\boldsymbol{a}-\boldsymbol{a}\|_{\boldsymbol{A}}<\varepsilon\quad(\boldsymbol{a}\in\boldsymbol{F}_{\boldsymbol{A}}).
$$

$$
T(u, \alpha) = \sum_{i,j} u_i \alpha_j \otimes v_i \beta_j \in C(X, A) \hat{\otimes} C(X, A) \text{ and}
$$

$$
\|T(u, \alpha)\|_p \le \|u\|_p \|\alpha\|_p.
$$

Let $(\alpha_{\nu}) \subset A\hat{\otimes}A$ be a bounded approximate diagonal for A such that $\|\alpha_{\nu}\|_{p} \leq M$ for all ν . Denote

$$
F_A = \{a \in A : f(t) = h(t)a \text{ for some } f \in F\}
$$

$$
F_{\mathbb{C}} = \{h \in C(X) : f(t) = h(t)a \text{ for some } f \in F\}.
$$

These are finite sets in, respectively, A and $C(X)$. So there is $\alpha \in (\alpha_{\nu})$ such that

$$
\|a\cdot \alpha - \alpha \cdot a\|_p < \varepsilon, \quad \|\pi(\alpha)a - a\|_A < \varepsilon \quad (a \in F_A).
$$

Since F_C is finite, there are finite open sets $V_i \subset X$ ($i = 1, 2, ..., n$). such that $X = \cup_i V_i$ and

$$
|h(t)-h(s)|<\varepsilon\quad (h\in F_{\mathbb C}, t,s\in V_i).
$$

Apply partition of unity. We obtain continuous functions $g_1, g_2, \ldots, g_n \in C(X)$ such that $\textsf{Supp}(g_i) \subset V_i$, $0 \leq g_i(x) \leq 1$ and $g_1, g_2, \ldots, g_n \in O(N)$ such that $\text{Copp}(g_i) \subseteq V_i$, $\sigma \leq g_i(x) \leq 1$ and g_i .
 $g_1 + g_2 + \cdots + g_n \equiv 1$ on *X*. Let $u_i = \sqrt{g_i}$ and set $u = \sum_{i=1}^n u_i \otimes u_i$. Then $u \in C(X) \otimes C(X)$ and $\pi(u) = 1$. By Grothendieck's inequality, $||u||_p \leq 2c$.

Apply partition of unity. We obtain continuous functions $g_1, g_2, \ldots, g_n \in C(X)$ such that $\textsf{Supp}(g_i) \subset V_i$, $0 \leq g_i(x) \leq 1$ and $g_1, g_2, \ldots, g_n \in O(N)$ such that $\text{Copp}(g_i) \subseteq V_i$, $\sigma \leq g_i(x) \leq 1$ and g_i .
 $g_1 + g_2 + \cdots + g_n \equiv 1$ on *X*. Let $u_i = \sqrt{g_i}$ and set $u = \sum_{i=1}^n u_i \otimes u_i$. Then $u \in C(X) \otimes C(X)$ and $\pi(u) = 1$. By Grothendieck's inequality, $\|u\|_p \leq 2c$. Now from each V_i we take a point t_i . We have

$$
||h \cdot u - u \cdot h||_p \le ||\sum_i (h - h(t_i))u_i \otimes u_i||_p + ||\sum_i u_i \otimes (h - h(t_i))u_i||_p < 4c\varepsilon
$$

for all $h \in F_{\mathbb{C}}$.

Apply partition of unity. We obtain continuous functions $g_1, g_2, \ldots, g_n \in C(X)$ such that $\textsf{Supp}(g_i) \subset V_i$, $0 \leq g_i(x) \leq 1$ and $g_1, g_2, \ldots, g_n \in O(N)$ such that $\text{Copp}(g_i) \subseteq V_i$, $\sigma \leq g_i(x) \leq 1$ and g_i .
 $g_1 + g_2 + \cdots + g_n \equiv 1$ on *X*. Let $u_i = \sqrt{g_i}$ and set $u = \sum_{i=1}^n u_i \otimes u_i$. Then $u \in C(X) \otimes C(X)$ and $\pi(u) = 1$. By Grothendieck's inequality, $\|u\|_p \leq 2c$. Now from each V_i we take a point t_i . We have

$$
\|h\cdot u-u\cdot h\|_p\leq \|\sum_i (h-h(t_i))u_i\otimes u_i\|_p+\|\sum_i u_i\otimes (h-h(t_i))u_i\|_p< 4c\varepsilon
$$

for all $h \in F_{\mathbb{C}}$. We now take $U = T(u, \alpha)$. Then $||U||_p \le ||u||_p ||\alpha|| \le 2cM = L$ and for all $f(t) = h(t)a \in F$ we can have

 $||f \cdot U - U \cdot f||_p < \text{const.} \cdot \varepsilon$; $||\pi(U)f - f|| < \text{const.} \cdot \varepsilon$.

Since $\varepsilon > 0$ is arbitrary we obtain the desired inequalities.

Apply partition of unity. We obtain continuous functions $g_1, g_2, \ldots, g_n \in C(X)$ such that $\textsf{Supp}(g_i) \subset V_i$, $0 \leq g_i(x) \leq 1$ and $g_1, g_2, \ldots, g_n \in O(N)$ such that $\text{Copp}(g_i) \subseteq V_i$, $\sigma \leq g_i(x) \leq 1$ and g_i .
 $g_1 + g_2 + \cdots + g_n \equiv 1$ on *X*. Let $u_i = \sqrt{g_i}$ and set $u = \sum_{i=1}^n u_i \otimes u_i$. Then $u \in C(X) \otimes C(X)$ and $\pi(u) = 1$. By Grothendieck's inequality, $\|u\|_p \leq 2c$. Now from each V_i we take a point t_i . We have

$$
\|h\cdot u-u\cdot h\|_p\leq \|\sum_i (h-h(t_i))u_i\otimes u_i\|_p+\|\sum_i u_i\otimes (h-h(t_i))u_i\|_p<4c\varepsilon
$$

for all $h \in F_{\mathbb{C}}$. We now take $U = T(u, \alpha)$. Then $||U||_p \le ||u||_p ||\alpha|| \le 2cM = L$ and for all $f(t) = h(t)a \in F$ we can have

 $||f \cdot U - U \cdot f||_p \le \text{const.} \cdot \varepsilon$; $||\pi(U)f - f|| \le \text{const.} \cdot \varepsilon$.

Since $\varepsilon > 0$ is arbitrary we obtain the desired inequalities.

Corollary 4 *C*(*X*, *A*) *is amenable if and only if A is amenable.*

Outline

[Preliminaries](#page-1-0)

[Amenability](#page-15-0)

[weak amenability](#page-30-0)

unbounded approximate diagonal

A Banach algebra A is called pseudo amenable if it has an (unbounded) approximate diagonal. It is still open whether *C*(*X*, *A*) is pseudo amenable if *A* is pseudo amenable.

unbounded approximate diagonal

A Banach algebra $\mathcal A$ is called pseudo amenable if it has an (unbounded) approximate diagonal. It is still open whether *C*(*X*, *A*) is pseudo amenable if *A* is pseudo amenable.

An approximate diagonal (u_{α}) for A is called

- central if $a \cdot u_{\alpha} = u_{\alpha} \cdot a$ for all $a \in A$ and all α ;
- a compactly approximate diagonal if $\|a \cdot u_{\alpha} u_{\alpha} \cdot a\|_{p} \to 0$ and
	- $\pi(u_{\alpha})a \rightarrow a$ uniformly on compact sets of A.

unbounded approximate diagonal

A Banach algebra A is called pseudo amenable if it has an (unbounded) approximate diagonal. It is still open whether *C*(*X*, *A*) is pseudo amenable if *A* is pseudo amenable.

An approximate diagonal (u_{α}) for *A* is called

- central if $a \cdot u_{\alpha} = u_{\alpha} \cdot a$ for all $a \in A$ and all α ;
- a compactly approximate diagonal if $\|a \cdot u_\alpha u_\alpha \cdot a\|_p \to 0$ and
	- $\pi(u_{\alpha})a \rightarrow a$ uniformly on compact sets of A.

The proof of Theorem [3](#page-16-0) may be modified to get the following.

Theorem 5

Let X be a compact Hausdorff space and let A be a Banach algebra. If A has a central compactly approximate diagonal, then C(*X*, *A*) *has a compactly approximate diagonal.*

Example

 $C(X, \ell_1)$ has a compactly approximate diagonal and hence is pseudo *amenable.*

Outline

[Preliminaries](#page-1-0)

- **[Amenability](#page-15-0)**
- [generalized amenability](#page-26-0)

[weak amenability](#page-30-0)

weak amenability

Let *A* be a Banach algebra and *Y* a Banach *A*-bimodule. A linear map *D*: $A \rightarrow Y$ is a derivation if

$$
D(ab) = a \cdot D(b) + D(a) \cdot b \quad (a, b \in A).
$$

In 1987 Bade, Curtis and Dales introduced weak amenability for commutative Banach algebras. Their definition is as follows.

Definition 2

A commutative Banach algebra A is weakly amenable if every continuous derivation from A into a commutative Banach A-bimodule is necessarily zero.

Here an *A*-bimodule *X* is commutative if $a \cdot x = x \cdot a$ ($a \in A, x \in X$). They showed

Theorem 6 (Bade-Curtis-Dales)

A commutative Banach algebra A is weakly amenable if and only if every continuous derivation from A into A[∗] *is necessarily zero.*

for *C*(*X*, *A*), we have noticed that it is commutative if and only if *A* is so.

Lemma 1

Let A be a unital commutative Banach algebra. If A is weakly amenable, then so is C(*X*, *A*)*.*

for *C*(*X*, *A*), we have noticed that it is commutative if and only if *A* is so.

Lemma 1

Let A be a unital commutative Banach algebra. If A is weakly amenable, then so is C(*X*, *A*)*.*

Proof.

Let *Y* be a commutative Banach *C*(*X*, *A*)-bimodule and *D*: $C(X, A) \rightarrow Y$ be a continuous derivation. Let *e* be the unit of *A*. Identify *C*(*X*) with the subalgebra *C*(*X*)*e* of *C*(*X*, *A*). Then *Y* is naturally a commutative Banach *C*(*X*)- and also *A*-bimodule.

$$
D_{C(X)}: h \mapsto D(he) \quad (h \in C(X)), \text{ and } D_A: a \mapsto D(a) \quad (a \in A)
$$

are continuous derivations into *Y*. They must be zeros.Thus

$$
D(ha) = hD_A(a) + D_{C(X)}(h)a = 0
$$
 $(h \in C(X), a \in A).$

Then $D = 0$ on the dense subset $\lim \{ ha : h \in C(X), a \in A \}$ of $C(X, A)$. So $D = 0$ on the whole $C(X, A)$.

For a commutative Banach algebra *A* the following are well-known.

- *A* is weakly amenable iff A^\sharp is weakly amenable.;
- if *A* is weakly amenable, then a closed ideal *I* of *A* is weakly amenable if and only if $l^2 = \textit{lin}\{ab : a,b \in l\}$ is dense in *I*.
- If there is a Banach algebra epimorphism from *A* onto *B* and if *A* is weakly amenable, then so is *B*.

For a commutative Banach algebra *A* the following are well-known.

- *A* is weakly amenable iff A^\sharp is weakly amenable.;
- if *A* is weakly amenable, then a closed ideal *I* of *A* is weakly amenable if and only if $l^2 = \textit{lin}\{ab : a,b \in l\}$ is dense in *I*.
- If there is a Banach algebra epimorphism from *A* onto *B* and if *A* is weakly amenable, then so is *B*.

Theorem 7

let X be a compact Hausdorff space and A be a commutative Banach algebra. Then C(*X*, *A*) *is weakly amenable if and only if A is weakly amenable.*

For a commutative Banach algebra *A* the following are well-known.

- *A* is weakly amenable iff A^\sharp is weakly amenable.;
- if *A* is weakly amenable, then a closed ideal *I* of *A* is weakly amenable if and only if $l^2 = \textit{lin}\{ab : a,b \in l\}$ is dense in *I*.
- If there is a Banach algebra epimorphism from *A* onto *B* and if *A* is weakly amenable, then so is *B*.

Theorem 7

let X be a compact Hausdorff space and A be a commutative Banach algebra. Then C(*X*, *A*) *is weakly amenable if and only if A is weakly amenable.*

Proof.

If *A* is weakly amenable, then so is A^{\sharp} . So is $C(X, A^{\sharp})$ due to previous lemma. Now $C(X,A)$ is a closed ideal of $C(X,A^{\sharp}),$ and $C(X,A)^2$ is dense in $C(X,A)$ iff and only if A^2 is dense in A which is true since A is weakly amenable. Thus *C*(*X*, *A*) is weakly amenable.

non-commutative case

For non-commutative Banach algebras, B. E. Johnson suggested the following definition.

Definition 3

A Banach algebra A is weakly amenable if every continuous derivation from A into A[∗] *is inner.*

In this definition all group algebras and all C*-algebras are weakly amenable. However many nice properties that a commutative weakly amenable Banach algebra has will no longer be available. For example, homomorphic image of a weakly amenable Banach algebra may not be weakly amenable. It is weakly amenable only when the kernel of the homomorphism has so called the trace extension property.

For $C(X, A)$ with *A* being non-commutative, we take a $t_0 \in X$ and consider the the Banach algebra epimorphism

$$
T_0: C(X, A) \to A \text{ defined by } T_0(f) = f(t_0).
$$

It can be verified that ker(T_0) has the trace extension property. So we have

 \bullet If $C(X, A)$ is weakly amenable, then so is A.

For $C(X, A)$ with *A* being non-commutative, we take a $t_0 \in X$ and consider the the Banach algebra epimorphism

$$
T_0: C(X, A) \to A \text{ defined by } T_0(f) = f(t_0).
$$

It can be verified that ker(T_0) has the trace extension property. So we have

If *C*(*X*, *A*) is weakly amenable, then so is *A*.

We do not know whether the converse is true or not. The main difficulty is how to deal with a continuous derivation from *A* into $C(X, A)^*$. We don't know this kind of derivation is inner or not, assuming *A* is weakly amenable. However, it is not hard to see

Suppose that *X* is a finite set. If *A* is weakly amenable, then so is *C*(*X*, *A*).

testing non-commutative case

Let *A* be weakly amenable and have a bounded approximate identity. Then a continuous derivation *D*: $C(X,A) \to C(X,A)^*$ must satisfy

$$
D(ha) = hD(a) \quad (h \in C(X), a \in A).
$$

So to show *D* is inner is equivalent to show $D|_{\mathcal{A}}\colon \mathcal{A}\to C(X,\mathcal{A})^*$ is inner.

testing non-commutative case

Let *A* be weakly amenable and have a bounded approximate identity. Then a continuous derivation *D*: $C(X,A) \to C(X,A)^*$ must satisfy

$$
D(ha) = hD(a) \quad (h \in C(X), a \in A).
$$

So to show *D* is inner is equivalent to show $D|_{\mathcal{A}}\colon \mathcal{A}\to C(X,\mathcal{A})^*$ is inner. Consider the simplest compact space that has infinite elements: $X = \overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$, the one point compactification of N. Then we have the *A*-module decomposition

$$
C(\overline{\mathbb{N}}, A) = c_0(A) \oplus A, \quad \text{and } C(\overline{\mathbb{N}}, A)^* = \ell_1(A^*) \oplus A^*.
$$

So $D|_A = (\bigoplus_i D_i) \oplus \overline{D}$. Each term on the right side is a continuous derivation from *A* to *A* [∗] and hence is inner.

testing non-commutative case

Let *A* be weakly amenable and have a bounded approximate identity. Then a continuous derivation *D*: $C(X,A) \to C(X,A)^*$ must satisfy

$$
D(ha) = hD(a) \quad (h \in C(X), a \in A).
$$

So to show *D* is inner is equivalent to show $D|_{\mathcal{A}}\colon \mathcal{A}\to C(X,\mathcal{A})^*$ is inner. Consider the simplest compact space that has infinite elements: $X = \overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$, the one point compactification of N. Then we have the *A*-module decomposition

$$
C(\overline{\mathbb{N}}, A) = c_0(A) \oplus A, \quad \text{and } C(\overline{\mathbb{N}}, A)^* = \ell_1(A^*) \oplus A^*.
$$

So $D|_A = (\bigoplus_i D_i) \oplus \overline{D}$. Each term on the right side is a continuous derivation from *A* to *A* [∗] and hence is inner. But there is a difficulty to control the norm of the elements of A^{*} that implement these inner derivations. We can only conclude the following.

• If *A* is weakly amenable, then $C(\overline{N}, A)$ is approximately weakly amenable.

Thank You!