Totally Disconnected L.C. Groups: The Scale and Minimizing Subgroups

> George Willis The University of Newcastle

February $10^{th} - 14^{th}$ 2014

[Lecture 1: The scale and minimizing subgroups for an](#page-2-0) [endomorphism](#page-2-0)

[Compact open subgroups; Examples](#page-2-0) [The scale of an endomorphism](#page-5-0) [The scale function on](#page-7-0) *G* [The structure of minimizing subgroups](#page-10-0)

[Lecture 2: Tidy subgroups and the scale](#page-16-0)

[Lecture 3: The contraction group and the nub](#page-16-0)

[Lecture 4: Flat groups of automorphisms](#page-16-0)

Topological background

Definition (Inductive dimension)

The empty set is defined to have inductive dimension -1 . The topological space (X, \mathfrak{T}) has *inductive dimension n* if it does not have dimension less than *n* and there is a base for \mathcal{T} comprising sets whose boundary has inductive dimension at most $n - 1$.

The inductive dimension of *X* is denoted *ind*(*X*).

A locally compact space is totally disconnected if and only if it has inductive dimension 0, in which case the topology has a base of compact open subsets.

Totally disconnected locally compact groups are sometimes referred to as 0*-dimensional groups*.

Compact open subgroups

Theorem (van Dantzig)

Let G be a totally disconnected locally compact groups and $\mathscr{O} \ni e$ be a neighbourhood of the identity. Then there is a *compact open subgroup* $V \subseteq \mathcal{O}$.

The compact open subgroup need not be normal.

Corollary

Every compact t.d. group is profinite, that is, a projective limit of finite groups. Conversely, every profinite group is compact with the profinite topology.

The set of all compact open subgroups of t.d.l.c. group *G* will be denoted by B(*G*).

Examples of tdlc groups

Examples

- 1. $F^{\mathbb{Z}}$, where F is a finite group, with the product topology. This group is compact.
- 2. $(\mathbb{F}_p((t))$, +), the additive group of the field of formal Laurent series over the field of order *p*. $t^n \mathbb{F}_p[[t]] \cong \mathbb{F}_p^\mathbb{N}$ $_P^\mathbb{N}$ is a compact open subgroup for each $n\in\mathbb{Z}.$
- 3. Aut(T_q), the automorphism group of the regular tree with every vertex having valency *q*. The stabilizer of any finite subtree is compact and open.
- 4. *SL*(*n*, Q*p*), the special linear group over the field of *p*-adic numbers.

 $SL(n, \mathbb{Z}_p)$ is a compact open subgroup.

The scale of an endomorphism

Let *G* be a t.d.l.c. group.

- ► An *endomorphism* of *G* is a continuous homomorphism α : $G \rightarrow G$.
- ► An *automorphism* of *G* is an endomorphism that is a bijection whose inverse is continuous.
- **If** The automorphism α is *inner* if there is $q \in G$ such that $\alpha=\alpha_{\boldsymbol{g}}$ where $\alpha_{\boldsymbol{g}}(\boldsymbol{\mathsf{x}})=\boldsymbol{g}\boldsymbol{\mathsf{x}}\boldsymbol{g}^{-1}$ for every $\boldsymbol{\mathsf{x}}\in\boldsymbol{G}.$

Definition

Let *G* be a t.d.l.c. group and α be an endomorphism of *G*. The *scale* of α is

$$
s(\alpha) = \text{min} \left\{ [\alpha(V) : \alpha(V) \cap V] \mid V \in \mathcal{B}(G) \right\}.
$$

Any *V* at which the minimum is attained is *minimizing for* α.

Properties of the scale

Theorem

Let G be a t.d.l.c. group and $\alpha \in$ *End*(*G*). Then

 \blacktriangleright $s(\alpha^n) = s(\alpha)^n$ for every $n \geq 0$.

If α *is an automorphism, then*

- ► $s(\alpha) = 1 = s(\alpha^{-1})$ if and only if there is $V \in \mathcal{B}(G)$ such *that* α (V) = V *; and*
- \blacktriangleright $\Delta(\alpha) = \mathsf{s}(\alpha) / \mathsf{s}(\alpha^{-1}),$ where $\Delta(\alpha)$ is the module of $\alpha.$
- \blacktriangleright The function $\bm{s}: \bm{G} \rightarrow \mathbb{Z}^{+}$ defined by $\bm{s}(g) = \bm{s}(\alpha_g)$ is *continuous.*

These properties will be explained in the first two lectures for the case when α is an automorphism.

The set of topologically periodic elements is closed

An element $g \in G$ is *topologically periodic* if $\overline{\langle g \rangle}$ is compact. Denote the set of topologically periodic elements in *G* by *P*(*G*). K. H. Hofmann asked whether *P*(*G*) is closed. The answer uses only that there is a function on *G* with the properties of *s*.

Proposition

P(*G*) is closed.

Proof.

- 1. $g \in P(G)$ implies that $s(g) = 1$.
- 2. $s(h) = 1$ for every $h \in \overline{P(G)}$.
- 3. If $h \in \overline{P(G)}$, then *h* normalizes some $V \in \mathcal{B}(G)$.
- 4. There is $g \in P(G) \cap hV$. Then *g* normalizes V and $h \in gV$. Hence $\langle h \rangle \langle q \rangle$ *V* and has compact closure.

The scale on *G* as a spectral radius

Proposition (R. G. Möller) Let $\alpha \in Aut(G)$ and $V \in B(G)$. Then

$$
s(\alpha)=\lim_{n\to\infty}[\alpha^n(V):\alpha^n(V)\cap V]^{1/n}.
$$

For each $V \in \mathcal{B}(G)$ define $w_V(g) = [\alpha_q(V) : \alpha_q(V) \cap V].$ Proposition

- \blacktriangleright *W*_V is submultiplicative, that is, $w_V(gh) \leq w_V(g)w_V(h)$.
- **►** All weights w_V are equivalent, that is, given $U, V \in \mathcal{B}(G)$ there is $K > 0$ such that

$$
K^{-1}w_V(g)\leq w_U(g)\leq Kw_V(g) \text{ for all } g\in G.
$$

The scale on *G* as a spectral radius 2

Equivalence of the weights implies that the weighted L¹-space

$$
L^1(G,w_V)=\left\{\varphi\in L^1(G)\mid\int_G|\varphi|w_V<\infty\right\}
$$

is independent of the weight *w^V* .

Submultiplicativity of the weights implies that $L^1(G, w_V)$ is a Banach algebra under convolution.

For $g\in G$, let L_g denote the operator on $L^1(G, w_V)$ of left translation by *g*. $L_g: \varphi \mapsto \varphi_g$, where $\varphi_g(x) = \varphi(gx)$. Then L_g is a bounded operator and

$$
s(g) = r(L_g) (= the spectral radius of L_g).
$$

Subgroups tidy for an endomorphism

Let
$$
\alpha \in \text{End}(G)
$$
 and $V \in B(G)$. Define
\n
$$
V_+ = \{v \in V \mid \exists \{v_n\}_{n \geq 0} \subset V \text{ with } v_0 = v \text{ and } \alpha(v_{n+1}) = v_n\}
$$
\nand $V_- = \{v \in V \mid \alpha^n(v) \in V \forall n \geq 0\}$.

Theorem

The subgroup $V \in \mathcal{B}(G)$ *is minimizing for* $\alpha \in \text{End}(G)$ *iff* $TA(\alpha)$ $V = V_+V_-$; $\mathsf{T}\mathsf{B} 1(\alpha)$ $\mathsf{V}_{++} := \bigcup_{n\geq 0} \alpha^n(\mathsf{V}_+)$ *is closed; and* $\mathsf{T}\mathsf{B2}(\alpha) \; \left\{ \left[\alpha^{n+1}(\mathsf{V}_+) : \alpha^n(\mathsf{V}_+) \right] \right\}_{n\geq 0}$ is constant. *In this case, s*(α) = [α (V_{+}) : V_{+}].

V is *tidy above* for α if it satisfies TA(α) and *tidy below* if it satisfies TB1(α) and TB2(α).

Subgroups tidy for an endomorphism 2

OUTLINE OF PROOF

- 1. Given $V \in \mathcal{B}(G)$, reduce to a subgroup U that satisfies TA(α). $w_U(\alpha) \leq w_V(\alpha)$, with equality iff V satisfies TA(α).
- 2. Given $V \in \mathcal{B}(G)$ satisfying TA(α), augment V to obtain a subgroup *U* satisfying $TB(\alpha)$ as well. $w_{U}(\alpha) \leq w_{V}(\alpha)$, with equality iff V satisfies TB(α).
- 3. Show that, if U and V are both tidy for α , then $w_U(\alpha) = w_V(\alpha)$.

Achieving tidiness above

From now on, α *will be an automorphism.* In this case, $V_+ = \bigcap_{n \geq 0} \alpha^n(V)$ and $V_- = \bigcap_{n \geq 0} \alpha^{-n}(V)$.

Lemma *Let V* ∈ B(*G*)*. There is N* ≥ 0 *such that the subgroup* $U := \bigcap_{k=0}^N \alpha^k(V)$ *satisfies*

$$
\alpha(U) \subseteq \alpha(U_+)U. \tag{1}
$$

Achieving tidiness above 2

Lemma *Suppose that* $\alpha(V) \subseteq \alpha(V_+)V$. Then $V = V_+V_-$. *Conversely, if* $V = V_+V_-$ *then* $\alpha(V) \subseteq \alpha(V_+)V$.

Lemma

Let V be any compact open subgroup of G. Then

$$
w_V(\alpha) = [\alpha(V) : \alpha(V) \cap V] \geq [\alpha(V_+) : V_+], \tag{2}
$$

with equality if and only if α (*V*) $\leq \alpha$ (*V*₊)*V*.

Summary: Given $V \in B(G)$, there is $N \geq 0$ such that $U := \bigcap_{k=0}^N \alpha^k(V)$ is tidy above for α . The subgroup *U* satisfies $w_U(\alpha) \leq w_V(\alpha)$ with equality if and only if *V* is already tidy above.

Tidiness above in the examples 2

Examples

\n- 1. Let
$$
G = F^{\mathbb{Z}}
$$
, let α be the shift automorphism and $V = \{g \in F^{\mathbb{Z}} \mid g(-1) = e = g(1) = g(2)\}$. Then $N = 1$ and $U = \{g \in F^{\mathbb{Z}} \mid g(n) = e \text{ if } |n| < 3\}$.
\n- 2. Let $G = (\mathbb{F}_p((t)), +)$, let α be multiplication by t^{-1} and $V = \text{span}\{t^{-4}, t^{-3}, t^{-2}\} + \mathbb{F}_p[[t]]$. Then $N = 3$ and $U = \mathbb{F}_p[[t]]$.
\n

Tidiness above in the examples

Examples

- 3. Let $G = Aut(T_a)$, let α be the inner automorphism α_a where *q* is a translation with axis ℓ , and $V = Fix(a)$, where *a* is a vertex distance 4 from ℓ . Then $N = 1$ and $U = Fix([a, g.a])$, where [a, g.a] is the path of length 9 from *a* to $g.a$ (which intersects ℓ in an edge).
- 4. Let $G = SL(n, \mathbb{Q}_p)$, let α conjugation by $\begin{pmatrix} \rho & 0 \ 0 & 1 \end{pmatrix}$, and

$$
V = SL(n, \mathbb{Z}_p). \text{ Then } N = 1 \text{ and}
$$

$$
U = \left\{ \begin{pmatrix} a_{11} & pa_{12} \\ a_{21} & a_{22} \end{pmatrix} \middle| a_{ij} \in \mathbb{Z}_p \right\}.
$$

References

- 1. E. Hewitt & K. Ross, *Abstract harmonic analysis, I & II*, Springer, (1979,1970).
- 2. W. Jaworski, J. Rosenblatt & G. Willis, 'Concentration functions in locally compact groups', *Math. Annalen*, **305** (1996), 673–691.
- 3. L. Pontryagin, *Topological groups*, Princeton University Press (1939).
- 4. J. Tits, 'Sur le groupe des automorphismes d'un arbre', *Essays on topology and related topics (Mémoires dédiés à Georges de Rham)*, Springer, New York, (1970), pp. 188–211.
- 5. G. Willis, 'The structure of totally disconnected, locally compact groups', *Math. Annalen*, **300** (1994), 341–363.
- 6. G. Willis, 'Further properties of the scale function on totally disconnected groups', *J. Algebra*, **237** (2001), 142–164.

